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Spectroscopic evidence of nematic fluctuations in LiFeAs
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The role of nematic fluctuations in the pairing mechanism of iron-based superconductors is frequently
debated. Here, we present a method to reveal such fluctuations by identifying the energy and momentum of
the corresponding nematic boson through the detection of a boson-assisted resonant amplification of Friedel
oscillations. Using Fourier-transform scanning tunneling spectroscopy, we observe for the unconventional
superconductor LiFeAs strong signatures of bosonic states at momentum q ∼ 0 and energy � ≈ 8 meV. We
show that these bosonic states survive in the normal conducting state, and, moreover, that they are in perfect
agreement with well-known strong above-gap anomalies in the tunneling spectra. Attributing these small-q boson
modes to nematic fluctuations, we provide a spectroscopic approach to the nematic boson in an unconventional
superconductor.
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I. INTRODUCTION

The identification of the fine structure of tunneling spec-
tra of strong-coupling conventional superconductors with the
fingerprints of the phononic Cooper pairing glue counts as a
fundamental step in the rationalization of superconductivity
[1,2]. The extension of this approach to unconventional super-
conductors, such as cuprates and iron-based superconductors
(IBSs), is highly desirable for clarifying the nature of super-
conductivity in these materials. However, despite the salient
above-gap anomalies often present in tunneling spectra [3–8],
their interpretation typically remains elusive. A major reason,
apart from difficulties in differentiating between elastic and
inelastic tunneling contributions [9], is the lack of momentum
information. An accurate resolution of spectral properties in
momentum space is, however, crucial for rationalizing super-
conductivity in multiband materials such as IBSs.

In many canonical IBSs superconductivity emerges upon
doping from an antiferromagnetic spin-density-wave (SDW)
parent state which probably is related to Fermi-surface nesting
[10]. The SDW state furthermore seems intimately connected
with unidirectional electronic, so-called nematic order, in-
volving orbital degrees of freedom [11]. These proximities
of superconductivity and antiferromagnetic order on the one
hand and nematic order on the other have nourished pertinent
scenarios for the mechanism of the Cooper pairing, i.e., re-
spectively, antiferromagnetic spin fluctuations [12] and orbital
fluctuations [13] are conjectured to drive the superconductiv-
ity in the IBS.

A strong antiferromagnetic spin resonance, which would
be supportive of the spin fluctuation scenario, has been
detected in inelastic neutron scattering for some of the
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prototypical IBSs [14]. While similar spectroscopic signatures
of nematic fluctuations supporting superconductivity, how-
ever, do not exist up to present, evidence for the relevance
of small-q nematic fluctuations for superconductivity has
been accumulating [11]. Prominent recent examples are static
small-q electronic density variations observed in tunneling
experiments on FeSe thin films [15] and strained LiFeAs
[16], where superconductivity is suppressed. Theoretically,
the influence of dynamic nematic fluctuations can be modeled
by a coupling of itinerant electrons to Ising nematic bosons
within the framework of an Eliashberg treatment [17]. These
small-momentum nematic modes play a role similar to that of
phonons in a conventional superconductor with the difference
that the pairing potential becomes strongly momentum depen-
dent, is attractive in all pairing channels, and so enhances Tc

[17]. A generalization of this model to a system of coupled
fermion bond density and pseudospin-1/2 degree of freedom
has been solved by quantum Monte Carlo simulations [18]
and the enhancement of superconducting pairing has been
confirmed.

Here, we report spectroscopic evidence of such small-
momentum bosonic modes representing nematic fluctuations.
To this end, we exploit a combined theoretical and experimen-
tal approach for detecting the signatures of bosonic degrees of
freedom in quantum materials using Fourier-transform scan-
ning tunneling spectroscopy (FT-STS) experiments. FT-STS
is well established to detect the momentum space represen-
tation of the so-called quasiparticle interference (QPI), i.e.,
the Fourier transform of real-space wavelike modifications of
the local density of states (LDOS) caused by an impurity,
i.e., the Friedel oscillations. The geometry of the Friedel
oscillations in momentum space has successfully been used
to reconstruct the electronic band structure of many corre-
lated materials [20–27]. This includes, since very recently,
even the detection of subtle band renormalizations due to

2469-9950/2019/100(2)/024506(16) 024506-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.024506&domain=pdf&date_stamp=2019-07-11
https://doi.org/10.1103/PhysRevB.100.024506


ZHIXIANG SUN et al. PHYSICAL REVIEW B 100, 024506 (2019)

FIG. 1. Illustration of the boson-enhanced QPI and of the fermi-
ology of LiFeAs. (a) Sketch of a holelike band ε̃k (black) in the
superconducting state which is renormalized due to electron-boson
coupling giving rise to the well-known kinklike structures above
and below the Fermi level at energies indicated by dashed lines (the
inset shows the bare band in red). Blue line: Renormalized impurity
potential Ṽk,−k combining opposite momentum vectors representing
relevant elastic scattering processes in the QPI. The renormalization
is strong at the particular k points of the kink structure. (b) Sketch
of the Fourier-transformed LDOS arising from the renormalized
quantities ε̃k and Ṽk,−k of (a) (see Appendix A 1). The intensity is
strongly enhanced around the particular scattering momentum com-
bining points where both the fermion band as well as the impurity
scattering potential are strongly renormalized due to electron-boson
coupling. Inset: Feynman diagram of the corresponding dominant
scattering process which is dressed by the excitation of a virtual
bosonic mode. (c) Illustration of the FS of LiFeAs [19]. Black:
Projection of quasi-two-dimensional FS pockets to the kz = 0 plane.
Red: FS pockets of the α bands at kz = π (Z point) which appear
only near this point. (d) Dispersion of the holelike bands along the
blue arrow in (c) for kz = 0 (black) and kz = π (red).

electron-boson interactions [25–27]. Despite this enormous
success of QPI analysis, the impact of the electron-boson in-
teraction on the Friedel oscillation itself has remained largely
unexplored. We have investigated this aspect theoretically (see
Appendix A 1 for details) and find that the impurity scattering
potential and thus the amplitude of the QPI is resonantly
enhanced if the involved electronic states are interacting with
a boson [see Figs. 1(a) and 1(b)]. The effect is strong and im-
plies that an amplitude analysis of the QPI can yield signatures
of an interacting boson, including specific information about
the bosonic momentum and energy. The exploitation of this
effect in tunneling experiments can therefore be viewed as the
addition of momentum information to the analysis of bosonic
signatures in tunneling spectroscopy. We particularly point out
that our method can be used to detect a boson independently of
its nature, i.e., the boson could be the effective representation
of spin, charge, orbital, or nematic fluctuations, or it de-
scribes phonons. The mentioned amplitude sensitivity is here

exploited to investigate the unconventional superconductor
LiFeAs, where the method works particularly well, as we will
show below.

LiFeAs differs in its properties from most other IBSs for
the following reasons: It is a stoichiometric superconductor
which shows no sign of Fermi-surface nesting [28,29] and
no magnetic or nematic order, even under doping [30,31].
Instead of an antiferromagnetic spin resonance, only weak
signatures of spin excitations are observed at incommensurate
positions in momentum space [32] which are understood
to arise from interband transitions between the quasi-two-
dimensional large holelike and the electronlike Fermi-surface
(FS) pockets [labeled γ and β, respectively—see Fig. 1(c)]
[33]. In fact, these weak spin fluctuations exhibit only subtle
changes upon switching between the normal and supercon-
ducting state which renders these fluctuations poor candidates
for providing the superconducting pairing interaction.

In spite of all this, LiFeAs has a relatively large critical
temperature Tc of about 18 K [31], supporting the idea that
an alternative intrinsic mechanism which enhances the super-
conducting pairing could be relevant in LiFeAs. This material
thus is, among the IBSs, an ideal candidate to search for
evidence of small-momentum nematic mode bosons which
couple to the electronic states and stabilize the pairing. Indeed,
small-momentum electronic states in connection to the small
three-dimensional FS droplets arising from holelike bands
(labeled α) along the �-Z direction have been assigned an im-
portant role for the superconducting state [19,34] [Fig. 1(d)].
Interestingly, the superconducting gap has been observed to
be significantly larger for these α states (	1 ≈ 6 meV) as
compared to that of the β and γ bands (	2 � 4 meV) [35],
which indeed suggests that the strongest pairing interaction in
LiFeAs primarily involves states of these bands [cf. Fig. 2(a)
for the signatures of 	1 and 	2 in low-temperature tunneling
spectra].

Previous FT-STS studies of LiFeAs [22–24,26,36] have not
specifically addressed these α bands in the required energy
and temperature range to reveal their connection to supercon-
ductivity. A possible reason is that these states are located
at very small in-plane momenta which requires a particularly
high resolution in momentum space. In order to achieve this
high resolution in our QPI experiments, we recorded large
(110 nm × 110 nm) spectroscopic maps of LiFeAs, where
we measured the differential conductance dI/dU (Ubias) as a
direct access to the LDOS (see Appendix B for experimen-
tal details). The measurements of these maps have further-
more been performed at several temperatures ranging from
6.7 K up to 25 K to cover the QPI evolution from the
superconducting state to the normal conducting state and to
explore a possible temperature evolution of bosonic mode
signatures.

II. RESULTS

Here, we show our experimental results of spectroscopic
tunneling measurements of LiFeAs in the superconducting
and normal conducting state. From these data we reveal a
resonance in the QPI which we assign to a boson representing
the nematic fluctuations in LiFeAs.
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FIG. 2. Experimental spectroscopic tunneling data in the superconducting state. (a) Average dI/dU spectrum measured on a defect-free
surface area of LiFeAs at T = 300 mK. (b) A representative surface topography (Ubias = −50 mV, I = 100 pA) with clearly identifiable Fe
defects (inset). The directions of the shortest Fe-Fe distance a = 2.68 Å [31] are indicated by arrows. (c) Illustration of the space of in-plane
scattering vectors. Green lines indicate the high-symmetry directions considered in Fig. 3. The gray square shows the q-space area covered
by the insets in (d)–(i). (d)–(i) Real-space conductance map data recorded at T = 6.7 K at energies eUbias = ±12, ±8, and ±2.67 meV. All
conductance map data are taken in the same area as shown in (b). The Fourier transformation of the real-space conductance map data is shown
in the corresponding insets.

A. Quasiparticle interference

Figure 2(b) depicts representative topographic data of a
cleaved surface where the spectroscopic maps have been
recorded. In these data one can recognize primarily the typical
dumbbell-like iron site defects/impurities (135 defects in to-
tal, corresponding to a defect concentration of less than 0.1%
with respect to Fe), which have frequently been observed
in LiFeAs [22,23,37,38]. They serve as the main scattering
centers in the sample. In Figs. 2(d)–2(i), we present the
spectroscopic map data in the superconducting state at 6.7 K
for several selected energy values (see Appendix C and the
Supplemental Material [39] for a comprehensive represen-
tation of the whole data set). From these data not only is
the profound impact of the impurities on the LDOS in their

vicinity of several nanometers apparent. It is also very evident
that this impact is strongly energy dependent: The relative
conductance change around the impurities remains relatively
subtle at E � 8 meV. However, at E = 12 meV, the dI/dU
variation around the impurities becomes very strong, and ac-
quires a much larger extension. This is also recognizable in the
Fourier-transformed data (see Appendix B for a description
of the method) shown in the insets of Figs. 2(d)–2(i) (see
also Appendix C). For E � 8 meV, the QPI signal always
remains below about 10 pS but significantly exceeds this value
at E = 12 meV.

In order to highlight the pronounced energy and momen-
tum dependence of the Fourier-transformed data, we plot in
Figs. 3(a) and 3(b) line cuts of the QPI pattern along the
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FIG. 3. Energy and momentum dependence of the FT-STS data in the superconducting and the normal conducting state. (a)–(d) QPI line
cuts along the high-symmetry directions [cf. Fig. 2(c)] for the conductance maps taken in the superconducting phase at T = 6.7 K [(a) and
(b)] and in the normal phase at T = 25 K [(c) and (d)]. Solid line arrows in (a) indicate the energetic position of features (i) and (ii), whereas
the dashed line arrow indicates the “replica” of feature (ii) at negative energy. (e) QPI intensity as a function of q along �-M of feature (ii) and
feature (i) at 14 and 2.67 meV, respectively. Inset: The same data normalized at q ∼ 0. The solid lines represent fits according to an exponential
decay ∝ exp(−αq) and a Gaussian for feature (i) and feature (ii), respectively. (f) Integrated QPI density at |q| < r = 0.07π/a [as indicated
in (d)] for the 6.7- and 25-K data. Signatures of the enhanced QPI signal are visible at both positive and negative energy, where a pronounced
enhancement occurs in the superconducting state. The FT-STS signature [feature (i)] caused by defect bound states (DBSs) is visible as well.

two high-symmetric directions as illustrated by the green
lines in Fig. 2(c). This data representation reveals a relatively
weak anisotropy and two main features [labeled (i) and (ii) in
Fig. 3(a)] at small momenta q � 0.1π

a which correspond to
large wavelength modulations in real space.

Feature (i) occurs at |E | � 6 meV, i.e., its energy range
coincides with the large superconducting gap 	1. This strong
in-gap intensity is incompatible with conventional QPI arising
from quasiparticle intra- or interband scattering processes,
obviously because of the absence of quasiparticle states in this
energy range. Instead, this structure can straightforwardly be
attributed to defect/impurity bound states of LiFeAs. The QPI
intensity that arises from these particular states is expected to
occur strictly within the superconducting gap energy range.
Furthermore, feature (i) decays rapidly with increasing q and
thus reproduces other studies which show clearly that the in-
tensity of the bound states emanate outward from the center of
an impurity on a length scale of a few nanometers [37,38,40].
The connection of feature (i) to impurity bound states and
thus to the superconducting state can be further corroborated
by an investigation of its temperature dependence across the
critical temperature. Here, we observe the feature to fade out,
as expected [see Figs. 3(c) and 3(d) for T = 25 K, as well as
Appendix C for intermediate-temperature data]. At the highest
temperature studied (T = 25 K) there remains just a weak
intensity around E = 0 which accounts for the impact of the
impurity on the LDOS in the normal conducting state.

After having established the rather conventional nature of
the in-gap intensity, we turn now to analyzing feature (ii)
which by far dominates the data. This structure has a sharp
onset at about 10 meV and extends up to about 22 meV
with a maximum at Eres ≈ 14 meV. It is sharply peaked at
q ∼ 0, and has a much larger amplitude than feature (i) [see
Fig. 3(e)]. Moreover, while the latter decays exponentially in
q, the momentum dependence of feature (ii) is well described
by a Gaussian [inset of Fig. 3(e)]. This functional variation is
remarkable and excludes long-wavelength spatial noise as the
origin of our observations. At first glance, the occurrence of
such a strong intensity in this energy range significantly away
from the superconducting gap appears surprising. Clearly, it
cannot be the direct signature of an impurity bound state
because such a state would exist strictly only within the super-
conducting gap energy [41]. Furthermore, conventional QPI
arising from intra- or interband scattering processes within the
two α bands (which in principle would be compatible with
the relatively small q value) at first glance cannot account for
this observation: It is well known that the α bands possess
a strong kz dispersion [19,42]. Thus, the QPI signal that
emerges from these bands normally should be very broad and
featureless in energy and momentum. This is because the QPI
that is measured by scanning tunneling spectroscopy (STS) is
a priori not sensitive to the kz. At a given energy, the measured
QPI pattern is expected to be a result of the superposition of
all different in-plane (i.e., 	kz = 0) scattering wave vectors at
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different kz and the in-plane projection of scattering vectors
with finite 	kz. Since the scattering vectors must combine
points of equal energy, a kz dispersion is always related to
a certain broadening in the (kx, ky) direction. Indeed, one
might conjecture that the faint and broad QPI structures of
rather low amplitude lower than ∼5 pS as seen for example
in Fig. 2(h) are compatible with this picture. In contrast,
the observed extraordinary enhancement of intensity in the
particular energy range of feature (ii) cannot be explained
in this way and therefore directly implies an unusual am-
plification of the measured QPI. In fact, feature (ii) can
straightforwardly be interpreted as resonantly enhanced QPI
due to a boson-assisted renormalization of scattering potential
as is illustrated in Figs. 1(a) and 1(b). More specifically, this
scenario implies feature (ii) to be caused by bosons centered
at energy � and momentum q ∼ 0, where Eres = 	 + �, with
	 the superconducting gap (Appendix A 1).

Before we discuss the possible implications of the detec-
tion of pertinent bosonic excitations with small momentum,
we investigate further corroborations of this fundamental
finding. First, the electron-boson interaction must concern
not only the unoccupied states (as discussed so far) but also
the occupied electronic states. Indeed, the close inspection
of the data shown in Figs. 3(a) and 3(b), reveals, despite
an overall weaker amplitude, a pronounced enhancement of
the QPI signal at about −Eres = −	 − � (dashed arrow).
Second, feature (ii) is significantly more intense than robust
QPI signatures at larger wave vectors. This can be inferred
from the additional data set in Appendix D, where we ex-
plicitly compare the integrated intensity of feature (ii) with
well-known nested intraband scattering within the γ band.

Interestingly, the signature of the boson persists in the
whole temperature regime up to the normal conducting state
far above the critical temperature at T = 25 K, as is revealed
by the inspection of our temperature dependent QPI data
[see Figs. 3(c), 3(d), and also Fig. 12 in Appendix C 3]. The
difference between the superconducting and normal conduct-
ing states is further illustrated in Fig. 3(f), where we show
the integrated QPI intensity over the region with |q| < r =
0.07π

a [cf. Fig. 3(d)] as a function of the energy for both
T = 6.7 K and T = 25 K. The data for the superconducting
state show clearly that there are resonancelike peaks with a
quite sharp onset at around ±10 meV with peak values at
about ±(13 . . . 14) meV, where the peak at positive energy
is much more pronounced. Both peaks broaden in the normal
conducting state where the low-energy edge shifts to about
±5 meV, whereas the peak positions, in particular, that of
the better resolved peak at positive energy, barely change.
Qualitatively, the sharpening of the peaks in the supercon-
ducting state can be rationalized as a direct consequence of
the formation of Bogoliubov quasiparticle states and a further,
resonancelike enhancement of the QPI signal at Eres = 	 + �

by an exaggeration of the scattering potential due to coupling
to the bosons. We extract, by focusing on the better resolved
peak in the superconducting state at positive energy where
Eres = 14 ± 4 meV and by employing the gap at the α states
	1 = 6 meV [35], a mode peak energy � = 8 ± 4 meV [43].

At first glance it seems surprising that the resonance peak
remains practically unshifted in energy upon entering the
normal state. In order to obtain further insight into the nature

of our observation we performed a careful theoretical analysis
of the impurity scattering in LiFeAs using realistic param-
eters for band structure (including the spin-orbit coupling
[42]), scattering potential, and electron-boson coupling (see
Appendix A 2). A central finding of this analysis is that, due
to the particular structure of the α bands in LiFeAs, which
encompasses a spin-orbit coupling induced separation of the
band maxima with a high density of states by approximately
the same amount (of the order of 10 meV) than 	1, the
resonance conditions in the normal state are accidently similar
to that of the superconducting state. Indeed, the analysis yields
a consistent description of the observed resonance in both
phases, explaining the absence of a shift of the peaks. A
further important and interesting result of this analysis is that
the interaction of the considered boson with the band structure
of LiFeAs leads to a stable superconducting solution with the
leading experimental gap value at the α states.

It further is interesting to verify our finding of a small-
momentum boson against optical spectroscopy where sig-
natures of electron-boson coupling at q ∼ 0 should be well
detectable. Indeed, a recent optical study [44] which re-
veals a q = 0 mode at the very same energy underpins our
finding, however, lacking the general momentum sensitivity
and resolution which is provided by the analysis of resonantly
enhanced QPI as presented in this work.

B. Comparison with tunneling spectroscopy

Another, alternative way to identify the signature of
bosonic excitations is the investigation of tunneling dI/dU
spectra far away from impurities, where bosonic excitations
may leave their fingerprints in two fundamentally different
ways: On the one hand, bosonic excitations which couple to
Bogoliubov quasiparticles of a superconductor may induce
a characteristic fingerprint in the tunneling spectra if the
coupling is strong enough. More specifically, a well-defined
bosonic mode at energy � is expected to give rise to a peak
structure at the energy 	 + � (with 	 the superconducting
gap) [1,2] [see Fig. 4(a)]. On the other hand, bosonic exci-
tations may open up a relevant inelastic scattering channel in
addition to the usual elastic one, playing a dominant role in the
dI/dU in unconventional superconductors, and particularly in
LiFeAs [9]. In the case of a relevant inelastic tunneling contri-
bution due to a well-defined boson, a significant enhancement
of the tunneling dI/dU is expected for E > 	 + � and E >

� in the superconducting and the normal conducting states,
respectively [Fig. 4(b)]. As is shown in Figs. 4(b) and 4(c), this
leads to a characteristic depletion and steplike enhancement of
the dI/dU in the superconducting state with respect to that of
the normal conducting state at E < 	 + � and E > 	 + �,
respectively.

We therefore show in Fig. 4(d) a direct comparison of the
dI/dU for both the superconducting state and the normal
conducting state and investigate the data for fingerprints of the
boson that we have identified from the QPI data. Quite clearly,
the data show dominant signatures of inelastic tunneling: At
energies close to the gap edges, dI/dU of the superconducting
state exhibits a depletion with respect to that of the nor-
mal state whereas it shows a steplike enhancement at about
14 meV and exceeds the dI/dU of the normal state beyond.
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FIG. 4. Impact of bosonic excitations on tunneling spectra.
(a)–(c) Calculated (a) elastic and (b) inelastic contributions to the
dI/dU spectrum both in the superconducting (SC) and the normal
conducting state (red and blue lines, respectively) for the simplified
model of electron-boson coupling (boson energy �, superconducting
gap 	) as described in Appendix A 1. The theoretical approach to the
inelastic contributions is taken from Ref. [9]. For the total tunneling
spectrum shown in (c) the ratio of elastic and inelastic contribution
is fixed by the chosen model parameters. The combination of the
two different contributions leads in an energy range between �

and 	 + � to the characteristic depletion of spectral weight in the
superconducting state with respect to the normal conducting state.
This depletion results in a characteristic dip-hump structure in nor-
malized tunneling spectra [9]. (d) Average dI/dU spectra measured
on defect-free surface areas in the superconducting (6.7 K, red) and
normal conducting state (25 K, blue). Inset: dI/dU spectrum at 6.7 K
normalized with respect to the normal conducting state spectrum
at 25 K revealing the dip-hump structure. (e) Voltage derivative
d2I/dU 2 of the data in (d). The dashed lines in both polarities
through (a) to (e) indicate the inelastic peak position.

This energy dependence leads to the known characteristic
“dip-hump” anomaly in normalized dI/dU data [9], which
is often observed in various unconventional superconductors,
including LiFeAs [3–8,40] [inset of Fig. 4(d)]. Since the
steplike increase of the dI/dU in the superconducting state at
about 14 meV [cf. Fig. 4(e)] is expected to occur at 	 + �, we
extract � = 8 ± 4 meV if we use 	1 = 6 meV as the leading
gap [43]. Thus, this completely different approach of access-
ing the bosonic excitations in LiFeAs yields a boson energy in
excellent agreement with our QPI analysis. This suggests that
the salient above-gap structure in the local dI/dU tunneling
spectra of LiFeAs result from the same small-wave-vector
bosonic mode which we infer from our QPI data. Scenarios
which interpret the nature of the dip-hump structure in terms
of an antiferromagnetic spin resonance [7,9,40] can therefore
be excluded. It is interesting to point out that the intrinsic
width of the step is not significantly reduced in tunneling
spectra at very low temperature (see Appendix C for data at
300 mK) despite a significant sharpening of the thermal width
of the coherence peaks. This suggests that the energetic width
of the involved boson is not sharp, indicative of the importance
of many-body effects for the nature of the boson.

III. CONCLUSIONS

Our identification of bosonic modes at � ≈ 8 meV with a
small wave vector q and a connected resonancelike enhance-
ment of the QPI signal in the superconducting state provides
fresh input and constraints for rationalizing the pairing mecha-
nism of LiFeAs [19,34,45–47]. The observed incommensurate
spin fluctuations definitely can be excluded as a microscopic
origin for our observations because inelastic neutron scatter-
ing proves a too large wave vector and a negligible difference
between the normal and the superconducting states [32]. A
further alternative but rather exotic origin of our bosonic mode
could be small-q spin fluctuations, which have been derived
in model calculations [45], but have not yet experimentally
been observed. The final remaining microscopic origin of the
mode which is consistent with our analysis lies in dynamic ne-
matic or small-q electronic density fluctuations, representing a
pertinent instability of the system. In this context it is im-
portant to note that static small-q electronic density fluctua-
tions have been observed experimentally in strained LiFeAs
[16] and that nematicity induced by the superconductivity
has been reported in a recent angle-resolved photoemission
spectroscopy (ARPES) study [48].

In this context it is important to emphasize recent scanning
tunneling microscopy (STM) results of Ref. [16] on strained
LiFeAs, where a static form of the nematic fluctuations, i.e.,
a rotational symmetry broken phase with long-range small-
wave-vector density variations, and a concomitant suppres-
sion of superconductivity is observed. The interpretation of
small-momentum excitations observed in our study as dy-
namic nematic fluctuations is therefore strongly corroborated.
Furthermore, the reported suppression of superconductivity
upon the onset of charge-density-wave order supports our con-
clusion that the “nematic” small-wave-vector density fluctua-
tions are crucial for sustaining superconductivity in LiFeAs.
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APPENDIX A: THEORY

Here, we present our theoretical approach to the ob-
served resonance feature in the QPI. Starting from a gen-
eral treatment of impurity scattering in the presence of an
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electron-boson interaction, we show that an exaggerated effect
is particularly obtained in the specific situation of LiFeAs.

1. Renormalization of the scattering potential

We consider one single local impurity embedded in a
system of conduction electrons which additionally couples
to a system of bosons. Of particular interest is the change
of the electronic local density of states in the environment
of the impurity due to elastic scattering of quasiparticles
interacting via virtual bosonic excitations. The calculated
effect to the local density of states variations is compared with
STS measurements in LiFeAs. To avoid taking into account
additional effects from the band structure we consider here
a single parabolic band and the simplest possible form of
electron-boson coupling and impurity scattering. The model
Hamiltonian for such a system consists of three parts, H =
H0 + HV + Heb, where

H0 =
∑
k,σ

εkc†
k,σ

ck,σ +
∑

q

ωqb†
qbq,

Heb = 1√
N

∑
k,q,σ

gk,q(b†
qc†

k,σ ck+q,σ + bqc†
k+q,σ ck,σ ),

HV = 1

N

∑
k,q,σ

Vk,q(c†
k,σ ck+q,σ + c†

k+q,σ ck,σ ).

Here, N is the number of lattice sites. The first term describes a
system of free conduction electrons and bosons. Thereby, the
operator c†

k,σ creates an electron with momentum k (disper-
sion εk) and spin σ and the operator b†

q creates a boson with
momentum q (dispersion ωq). The coupling between electrons
and bosons is represented by the second term Heb. It describes
the scattering of an electron between states k and k + q
while a boson with momentum q is created or annihilated.
The corresponding parameter of the coupling strength gk,q
generally depends on the contributing momentum vectors
accounting for a possible nonlocal electron-boson interaction.
The term HV describes the scattering interaction off the single
impurity with the momentum-dependent scattering potential
Vk,q. Note that this part breaks the translation symmetry of the
Hamiltonian.

The variations of the local density of states due to the
impurity scattering in an electron-boson coupled system is
calculated as follows. At first the Hamiltonian H = H0 +
HV + Heb is mapped to a particular effective Hamiltonian
H̃ = H̃0 + H̃V which is constructed in such a way that the
electron-boson coupling is fully integrated out by use of a
unitary transformation. The new Hamiltonian has the same
form as the original one,

H̃ =
∑
k,σ

ε̃kc†
k,σ ck,σ +

∑
q

ω̃qb†
qbq

+ 1

N

∑
k,q,σ

Ṽk,q(c†
k,σ ck+q,σ + c†

k+q,σ ck,σ ), (A1)

but with renormalized energy parameters ε̃k, ω̃q, and Ṽk,q. It
is calculated by using the projective renormalization method
(PRM) [49] which has already been successfully applied to
solve models with electron-boson interactions [50,51]. Note

that the form of Hamiltonian (A1) is strictly only valid in
the normal conducting state. For ordered states the inclusion
of symmetry breaking order parameter terms is necessary
[51]. Here, we focus on the renormalization of the impu-
rity potential in the third term of Eq. (A1) which can be
discussed most clearly in the normal conducting state. The
influence of the superconducting order is discussed further
below.

Within the PRM approach nonlinear difference equa-
tions for the renormalized parameters (renormalization equa-
tions) are numerically evaluated starting from the given
energy parameters of the original Hamiltonian H. The ef-
fective Hamiltonian (A1) is then taken to calculate the lo-
cal density of states variations using the standard t-matrix
method.

The main effect of the electron-boson coupling is the
renormalization of the impurity scattering potential. This can
be seen from the result of the renormalized impurity potential
Ṽk,q in lowest-order perturbation theory with respect to the
original coupling parameters gk,q and Vk,q. The perturba-
tion theory can be easily carried out within the PRM by
following the ideas of Ref. [49]. Considering for simplicity
momentum-independent coupling parameters of the original
Hamiltonian, gk,q = g and Vk,q = V , the lowest-order result
for the renormalized impurity potential can be written in the
form V (2)

k,k′ = (Ṽ (2)
k,k′ + Ṽ (2)

k′,k )/2, where

Ṽ (2)
k,k′ = V + V g

N

∑
q

[
2 fk′+q − 1

εk′+q − εk′ + ωq

×
(

g

εk′+q − εk′ + ωq
− g

εk+q − εk + ωq

)

+ 2 fk+q − 1

εk − εk+q + ωq

×
(

g

εk′ − εk′+q + ωq
− g

εk − εk+q + ωq

)]
.

(A2)

The function fk = 1/(1 + eβ(εk−εF ) ) denotes the Fermi distri-
bution with inverse temperature β = 1/(kBT ) and Fermi en-
ergy εF . Terms proportional to the boson distribution function
also arise in the second-order perturbation theory but they can
be neglected at low temperatures due to very small boson
occupation. Expression (A2) diverges below a characteristic
temperature for particular values of the momentum vectors k
and k′. The divergence appears since at certain momentum
vectors q in the summation the energy denominators become
zero while at the same time the Fermi factors (2 fk′+q − 1) and
(2 fk+q − 1) change their sign.

Since this behavior is essential for the observed resonance-
like enhancement of the tunneling density of states, we here
explain this renormalization process in more detail. Let us
simplify the discussion by considering dispersionless bosons,
i.e., ωq = �. Furthermore, we consider the renormalized scat-
tering potential in Eq. (A2) at a particular fixed momentum
vector k′ such that εk′ = εF + �. In this case the denom-
inator in the first line of Eq. (A2) becomes εk′+q − εk′ +
ωq = εk′+q − εF . Thus, during the summation over q this
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denominator becomes zero for εk′+q = εF but changes its sign
which usually leads to a cancellation of diverging terms. Here,
however, the situation is different. Due to the presence of the
Fermi distribution the numerator in the first line, 2 fk′+q − 1,
changes its sign exactly at the same q, namely, for εk′+q = εF .
Since the factor in parentheses in the second line does not
change its sign at this particular q (for k �= k′), the sign of
the diverging terms is preserved and we here have a real
divergency which cannot be canceled out by summation. From
a close inspection of all terms in Eq. (A2) with respect to the
above considerations one can conclude that the renormalized
scattering potential becomes strongly enhanced when the
momentum vectors fulfill roughly the “resonance conditions”
εF − εk′ = ±� and εF − εk = ±�.

Thus, the dominant scattering vectors in the presence of
an electron-boson coupling are determined by the intersection
points of the electron dispersion εk and the boson energy
ωq (see Fig. 5). The corresponding Feynman diagram of this
process is shown in the inset of Fig. 1(b). Note that in the ac-
tual numerical treatment the divergence is removed by taking
into account contributions to the renormalization up to infinite
order. Further note that the above considerations are also valid
for a general momentum-dependent boson energy ωq.

The same processes lead also to a renormalization of the
electron dispersion. This can be seen again from its second-
order perturbation theory result which has a similar form as
expression (A2). As seen from Fig. 5(a) at the intersection
points between the bare dispersion and the boson energy
the renormalization is strongest and gives rise to a kinklike
structure. This feature is also well known from several ARPES
studies in cuprate and pnictide materials.

We have calculated all renormalized quantities in Eq. (A1)
starting from a simplified model Hamiltonian H with fixed pa-
rameters describing roughly the situation relevant to LiFeAs.
The parameters of the free part H0 (related to some relevant
energy unit) are a two-dimensional (2D) parabolic holelike
dispersion εk = −k2 + 0.2 and a momentum-independent bo-
son energy ωq = � = 0.18 lying slightly below the top of
the fermion band. For the coupling parameters we have cho-
sen the momentum-independent values V = 0.1 and g = 0.1.
The numerical results are shown in Fig. 5(a). As already
observed in the perturbation theory discussed above, a strong
renormalization is found at the particular k points where the
original fermion band εk (red solid line) intersects with the
values ±� (dashed lines). This leads to kinklike structures
in the renormalized fermion dispersion (black solid line) and,
most importantly, to a strong enhancement of the elastic
scattering potential (blue solid line). Thus, in the presence
of an electron-boson interaction, the effective impurity scat-
tering potential becomes strongly momentum dependent for
a particular scattering momentum which is characterized by
the resonant coupling to a virtual bosonic mode [compare the
inset of Fig. 1(b)].

The calculated renormalized quantities ε̃k and Ṽk,q can be
used as input parameters for a subsequent standard t-matrix
approach to calculate the Fourier-transformed local density of
states,

ρ(q, E ) = 1

π

∑
k

� G(k, k − q, E ), (A3)

FIG. 5. Renormalization effects due to electron-boson coupling.
(a) Renormalized fermion dispersion ε̃k (black solid line) and im-
purity potential Ṽk,−k (blue solid line) combining opposite mo-
mentum vectors representing relevant elastic scattering processes
calculated for a simplified holelike dispersion (red solid line). The
momentum vector runs along the cut k = (k, 0). The particular k
points which fulfill the resonance condition εF − εk = ±� (indi-
cated by the intersection points of the dashed lines with the original
fermion band) give rise to strong renormalization of the impurity
potential as well as the fermionic dispersion (kinklike structures).
These pronounced momentum vectors are indicated by dotted lines.
(b) Fourier-transformed local density of states as a function of scat-
tering momentum calculated by a t-matrix method using the renor-
malized energy parameters from Eq. (1). The intensity is strongly
enhanced around the particular scattering momentum combining the
intersection points shown in (a). This exaggeration appears at the
renormalized boson energy �̃ which has decreased with respect to
the original value � (dashed lines).

which is the quantity that is directly measured by STM/STS
experiments. G(k, k′, E ) is the retarded Green’s function in
the presence of one single impurity and is related to the
retarded Green’s function G0(k, E ) of the bulk material via
the equation [41]

G(k, k′, E ) = G0(k, E ) + G0(k, E )Tk,k′ (E )G0(k′, E ),

(A4)

where the energy-dependent t-matrix Tk,k′ (E ) is determined
by the following self-consistency equation,

Tk,k′ (E ) = Ṽk,k′ +
∑
k′′

Ṽk,k′′G0(k′′, E )Tk′′,k′ (E ). (A5)

The noninteracting Green’s function G0(k, E ) = (E − ε̃k −
iδ)−1 contains the renormalized fermion dispersion.
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FIG. 6. Renormalized scattering potential in LiFeAs. (a) Renormalized impurity potential Ṽ α1
k,−k combining opposite momentum vectors

on the larger hole pocket α1 plotted against the corresponding renormalized dispersion ε̃
α1
k of the α1 pocket. To allow for comparison with

our measurements, the temperature is set to T = 0.3 K such that the system is in the superconducting (SC) state with a calculated gap of
	 = 5.5 meV. The initial parameters are V = 10 meV for the impurity potential, ω = 8.5 meV for the boson energy, and g = 10.9 meV for
the electron-boson coupling strength. As confirmed by our QPI data the calculated scattering is resonantly enhanced at about 12 meV (dotted
line) while it is significantly reduced in an energy range around the Fermi level. (b) Momentum cut (lattice constant a as defined in Fig. 2) of
the two relevant holelike bands α1 and α2 in LiFeAs which are used as input parameters of the calculations. The dispersions are taken from the
tight-binding model of Ref. [47] where the spin-orbit coupling in LiFeAs is included. (c) Renormalized impurity potential as in (a) but for the
temperature T = 25 K where the system is in the normal conducting (NC) state. The resonance appears at roughly the same energy as in
the superconducting state but is slightly broadened. Due to higher-order effects in combination with the characteristic spin-orbit splitting of the
α bands, the resonance energy deviates approximately by the value g2/λ (≈ 10 meV) from the boson energy as predicted from the perturbative
result (A2). (d) Renormalized impurity potential as in (a) and (c) but referring to the smaller α2 pocket.

Using as input parameters for our theory the two functions
G0(k, E ) and Ṽk,k′ we have solved the system of Eqs. (A4)
and (A5) self-consistently. The obtained result for the full
Green’s function G(k, k′, E ) is inserted in Eq. (A3) in order to
evaluate the intensity ρ(q, E ). The numerical result is shown
in Fig. 5(b). In a large energy range the intensity is slightly
enhanced for the scattering vectors combining momentum
vectors with the same energy (conventional elastic scattering).
There, the value of the scattering potential is nearly constant
and therefore the intensity (gray shaded area) is mainly deter-
mined by the fermionic density of states while its momentum
dependence is given by the dispersion ε̃k of the renormalized
band. However, at scattering momentum nearly equal to the
distance between the two inner peaks of Ṽk,−k in Fig. 5(b), the
intensity is strongly enhanced (black area) due to the exagger-
ation of the renormalized scattering potential. Moreover, fine
structures are visible which arise from the kink structure of ε̃k
around the resonance points. Note that similar considerations
have been also applied to study the pinning of dynamic spin-
density-wave fluctuations where strong modulations in the
local density of states could be traced back to the interaction
with a correlated background medium [52,53].

Energetically, the resonance appears inside the kink fea-
ture of ε̃k which corresponds also to the minimum value of
the renormalized boson energy �̃ = min(ω̃q). The numerical
result of this energy level is shown in Fig. 5(b) by the lower
dashed line. For the specific parameter values chosen in our
calculation the momentum dependence of the renormalized
boson energy ω̃q is rather weak and is therefore not shown
here. Note, however, that such a dispersion may become
important if the system is very close to a transition to ordered
states [50].

2. Application to LiFeAs

To verify the measured positions of the resonance in
LiFeAs in the superconducting as well as in the normal
conducting state we have performed a careful analysis of
the renormalized scattering potential based on realistic ma-
terial parameters of LiFeAs. The results are shown in Fig. 6.
For the input of the two relevant holelike bands α1 and α2

which are predominantly involved in the small-momentum
impurity scattering, we have used the tight-binding model
of Ref. [47] which includes also the spin-orbit interaction in
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LiFeAs. However, to obtain a correct fitting to the small Fermi
surfaces of the α bands as measured by ARPES [42], we
have used the reduced value λ = 10.5 meV of the spin-orbit
coupling parameter instead of the value 50 meV which has
been used in Ref. [47] to optimally describe the electron
pockets. The corresponding dispersions for λ = 10.5 meV are
shown in Fig. 6(b). For the initial boson energy we have used
the experimental value � = 8.5 meV. The electron-boson
coupling is fixed to g = 10.9 meV. This particular value is
chosen as a result of a self-consistent superconducting solu-
tion of the Hamiltonian H0 + Heb for the given realistic band
structure and boson energy within the approach of Ref. [51].
For g = 10.9 meV such a self-consistent calculation leads at
temperature T = 0.3 K to an s-wave gap of 	 = 5.5 meV,
which is equal to the gap as measured by our STM experiment.

Taking all the defined parameters as initial conditions we
have evaluated separately the PRM renormalization equations
for the backscattering impurity potentials Ṽ α1

k,−k and Ṽ α2
k,−k re-

ferring to states k and (−k) within the α1 and α2 band, respec-
tively. Figures 6(a) and 6(c) show the renormalized impurity
scattering potential for the α1 band in the superconducting
and normal conducting state, respectively. According to the
mechanism described above, we find a resonantly enhanced
scattering potential appearing in form of a maximum in Ṽ α1

k,−k
at a certain scattering momentum. In the superconducting
state, this scattering momentum corresponds to an energy
ε̃

α1
k that is as expected on an approximate level of Eres ≈

	 + � ≈ 12.8 meV [dotted line in Fig. 6(a)], in agreement
with the experiment. In the normal conducting state, however,
the resonance is not seen exactly at � as perturbation theory
predicts, but is shifted to a somewhat larger energy near the
position in the superconducting state [dotted line in Fig. 6(c)].
This behavior is also very well consistent with our experimen-
tal results (compare Figs. 3, 11, and 12). The reason for such
a shift is the influence of the higher-order contributions to the
renormalized scattering potential, which is discussed in more
detail below.

The resonance conditions derived above, εF − εk′ = ±�

and εF − εk = ±�, are the results of the specific form of the
energy denominators in Eq. (A2) arising as a consequence of
perturbation theory. The condition leads to a singularity in the
renormalized impurity potential Ṽ which must be removed
by the higher-order corrections. Schematically, according to
Eq. (A2), the renormalization equation for the backscattering
impurity potential Ṽk,−k has the following form in second-
order perturbation theory,

Ṽ (2)
k,−k = V + V

N

∑
q

g2

	Ek,q	E−k,q
+ · · ·, (A6)

where 	Ek,q is an energy denominator which includes the
energy difference between electron states and the boson
energy. The dots indicate more terms of the same structure.
According to the above discussion, the conditions 	E±k,q = 0
are responsible for the observed resonance in the impurity
scattering for a particular combination of the momentum
vectors k and q.

We now discuss the influence of the higher-order contribu-
tions to the perturbative result (A6). According to the method
of continued fractions (see, for example, Ref. [54]) which

can be considered for the solution of integral equations, the
higher-order correction to an arbitrary energy denominator
	E is 	E + g2/	E ′, where the correction g2/	E ′ must be
continued to all denominators up to infinite order, i.e., 	E ′ =
	E + g2/	E ′′, 	E ′′ = 	E + g2/ · · · . Thus, the correspond-
ing higher-order correction of Eq. (A6) reads

Ṽk,−k = V + V

N

∑
q

g2(
	Ek,q + 1

N

∑
q′

g2

	Ek,q′ +···
)
(· · · )

+ · · · ,

(A7)

where the factor (· · · ) denotes an equivalent factor with k
replaced by −k. As can be seen easily from the change
of the energy denominator in Eq. (A7), such a correction
leads immediately to a shift of the resonance condition from
	E±k,q = 0 (as in perturbation theory) to

	E±k,q + 1

N

∑
q′

g2

	E±k,q′ + · · · = 0, (A8)

where the energy denominator has the particular form
	E±k,q = ε±k − ε±k+q + � in a one-band system. Equation
(A8) enables to estimate the higher-order correction to the
perturbation theory value of the resonance energy. We start
with the simplest case of a usual metal. In this case 	E±k,q′

is of the order of (eV) for most of the momentum vectors
q′ in the momentum summation since for a given ±k the
energy difference ε±k − ε±k+q′ combines high-energy states
for a macroscopic amount (order of N) of q′ points. Thus, ac-
cording to Eq. (A8), for a usual one-band metal the correction
is of the order g2/(eV), which is usually a very small value.
For such a material the perturbation theory is valid. However,
the situation changes in the superconducting state where, due
to the presence of the superconducting gap 	, a macroscopic
number of states gives rise to energy transitions 	E±k,q′ of
the order of 	. In the case of superconducting LiFeAs, the
correction to the resonance condition in Eq. (A8) is also of
the order of 	 since g ≈ 10 meV. This explains the shift of
the resonance in the superconducting state from � to roughly
� + g2/	 ≈ � + 	.

In the normal conducting state of LiFeAs we would expect
a shift according to the same arguments. This is due to the
specific band structure in LiFeAs. As can be seen in Fig. 6(b),
there is a large density of states around the � point where the α

bands have maximum values. However, in this region the spin-
orbit splitting is significant and also of the order of 10 meV (as
the superconducting gap). Thus, the correction to the pertur-
bative resonance condition in the normal conducting state is
of the same order as in the superconducting state, which is
clearly seen in a comparison between Figs. 6(a) and 6(c).

Furthermore, one can recognize a characteristic depletion
of Ṽ α1

k,−k in a region around the Fermi level. This feature is
again a consequence of the specific band structure and can
be understood as follows. Due to the relatively strong kz

dispersion of both bands [compare solid and dashed lines in
Fig. 6(b)], the top of the α1 band ranges from about 8 to
16 meV. Thus, for scattering energies below about 8 meV,
the sign of the dominant energy denominators, which involve
states around the top of the band, can change.
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Moreover, at negative energies no further resonance is
found for the α1 band, which is also in agreement with the ex-
periment. Instead, such a resonance is found in a much weaker
form on the α2 band as shown in Fig. 6(d). This is the reason
why in our QPI measurements the feature at negative bias
voltage appears at a similar momentum as the main resonance
feature on the positive side. This observation suggests that
the involved boson, which leads to the exaggerated impurity
scattering and at the same time mediates the superconducting
pairing, must have a very small momentum q.

In our QPI measurements the intensity of the resonance at
positive energy is exaggerated in comparison with the usual
QPI at a larger momentum or negative energy. As discussed
in Fig. 6, such an amplification is clearly seen also in our
theoretical model by a significant variation of Ṽ α1

k,−k by a factor
of around 2. This amount of variation is sufficient to explain
the observed resonance behavior in the QPI measurements for
the following reasons. First, note that the QPI intensity is not
only determined by the renormalized scattering potential but
also by the density of states which is enhanced near the band
maximum of the α bands. Moreover, additional contributions
to the QPI are given by multiple scattering processes, which
become particularly important in the presence of a strong
scattering potential. Thus, a consistent calculation of the QPI
intensity requires in this case the self-consistent inclusion of
higher-order scattering processes by a standard t-matrix ap-
proach. Such treatments are known to boost the QPI intensity
particularly at energies around a resonance. These reasons
altogether lead to the conclusion that our calculated variation
of the scattering potential can fully explain our measured
resonance behavior in the QPI of LiFeAs.

In summary, our theoretical considerations allow us to
explain the characteristic intensity distribution of the observed

FIG. 7. Waterfall representation of the FT-STS data taken at
6.7 K. (a) Along �-M, and (b) along �-X .

resonance features as follows: The resonantly enhanced QPI
signal in the unoccupied energy range stems from the impurity
scattering between states of the α1 band. Thereby, also states
of the α2 band which are placed extremely close to the Fermi
level are involved through the virtually excited boson. These
processes lead to the particularly strong renormalization of
the scattering potential at positive energy. This is, however,
not the case for the resonance in the occupied region since
here, due to the specific band structure of LiFeAs, the virtual
states cannot be placed at such a vicinity to the Fermi level

FIG. 8. Amplitude of the FT-STS data for selected energies at 6.7
and at 25 K. Columns (a) and (b) show the data along the �-M and
�-X directions, respectively.
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FIG. 9. Experimental data in the normal conducting state at T = 25 K. (a) Representative surface topography (Ubias = −50 mV, I =
100 pA) of the sample surface. The directions of the shortest Fe-Fe distance are indicated by arrows. (b)–(g) Real-space conductance map at
selected energies eUbias = ±12, ±8, and ±2.67 meV. The conductance map is taken in the same area shown in (a). The Fourier transformation
of the real-space conductance map data is shown in the corresponding insets.

and consequently the resonance appears here with much less
intensity.

APPENDIX B: EXPERIMENTAL DETAILS

1. Sample preparation

Single crystals of stoichiometric LiFeAs have been grown
using the self-flux method as described in Ref. [55]. In order
to ensure stoichiometry and homogeneity of the sample, we
confirmed the 75As nuclear quadrupole resonance (NQR) fre-
quency and linewidth of the sample as 21.561 ± 0.001 MHz
and 31 ± 1 kHz, respectively [8]. Since LiFeAs is highly air
sensitive, these steps, and the mounting of the sample into our
scanning tunneling microscope, have been performed in Ar
atmosphere.

2. Scanning tunneling microscopy/spectroscopy measurements

The STM measurements are carried out in two home-
built low-temperature scanning tunneling microscopes using
a tungsten tip. One of the microscopes is optimized for QPI
data acquisition at variable temperatures [56]. All QPI and
point spectroscopy data at temperatures between 6.7 and 25 K
have been obtained with this instrument on one single crystal
of LiFeAs. The other [57] has been used for measuring the
300-mK point spectroscopy data on another LiFeAs crystal.

Atomically flat LiFeAs surfaces were obtained by cleaving
the crystal inside the scanning tunneling microscope in cryo-
genic vacuum or ultrahigh vacuum. For all tunneling conduc-
tance spectra, we used a lock-in amplifier with a modulation
of 0.4 mVrms at 1.1111 kHz. The 300-mK measurements
were performed with various modulation voltages between
0.4 mVrms and 40 μVrms. However, no significant change in
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FIG. 10. Waterfall representation of the FT-STS data taken at
25 K. (a) Along �-M, and (b) along �-X .

the width of the coherence peaks could be observed with
lower modulation amplitudes. Conductance maps are taken
with a grid size of 256 × 256 pixels. All the spectroscopic
maps are taken with stabilization condition of Ubias = −50
mV and IT = 600 pA. Each spectroscopic map is measured
over the energy range between ±30 mV with consecutive
energy point spacings of 0.67 mV. The total time for acquiring
one spectroscopic map was about 3.5 days. Prior to each spec-
troscopic map measurement, the microscope was stabilized at
the respective temperature for a sufficient time until a stable
drift of the tip with respect to the sample was reached. At
base temperature (6.7 K) the drift was immeasurably small,
whereas at 25 K the drift was lower than 2a per day.

3. Data processing

The FT-STS data are calculated as the amplitude of the fast
Fourier transform of the AC part of each energy slice of the
real-space spectroscopy map. Symmetrized FT-STS data sets
and images are subsequently achieved by symmetrizing the
raw FT-STS data along both the two lattice high-symmetry
directions (�-X and �-M) [as shown in Fig. 2(c)]. In order
to enhance the contrast of the QPI pattern, we have applied
a (5 × 5) linear convolvement to the symmetrized QPI data,
from which the line cuts in Figs. 3(a)–3(d) have been derived.

APPENDIX C: ADDITIONAL EXPERIMENTAL DATA

1. Superconducting state at 6.7 K

The whole data set at base temperature (6.7 K), of which
Fig. 2 shows selected energy slices, is visualized in Movie S1
in the Supplemental Material [39]. In order to further visualize
the energy and momentum dependence of the amplitude of
the FT-STS data, we show, complementary to Figs. 3(a) and

FIG. 11. Energy-momentum dependence of FT-STS data along
high-symmetry directions. (a)–(d) correspond to 6.7, 11, 15, and
17 K, respectively.

3(b), in Fig. 7 a waterfall representation of these data along
the �-M direction [Fig. 7(a)] and along the �-X direction
[Fig. 7(b)].

FIG. 12. Energy-momentum dependence of FT-STS data along
high-symmetry directions. (a) and (b) correspond to 18 and 25 K,
respectively.
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FIG. 13. Temperature evolution of feature (i). Representative
dI/dU spectrum on the bare surface at 6.7 K highlighting the size
of 	1 (red bar) in comparison to feature (i). Inset: Zoom-in into the
area spanned by momentum q = ±0.086π/a and energy eUbias =
±10 meV for each temperature of the line cuts shown in Figs. 11
and 12 and for further temperatures along the �-M direction.

Figure 8 depicts the amplitude of the FT-STS data in the
superconducting state at 6.7 K for selected energies in line
cuts along �-M and �-X in order to highlight the strong
enhancement of the amplitude at energies larger than about
10 meV, and to demonstrate the decay of the amplitude as a
function of q.

2. Normal conducting state at 25 K

Figure 9 shows the topography and selected energy slices
in real space and the corresponding Fourier-transformed data
of the conductance map measured in the normal state at 25 K.
Based on these results, the low-temperature (6.7 K) data in
Fig. 8 are complemented by analogous data for the normal
conducting state at 25 K. Evidently, the FT-STS amplitude
remains large at energies larger than 10 meV, whereas the
amplitude enhancement due the impurity bound state has
vanished (±2.67 meV). In order to further visualize the energy
and momentum dependence of the amplitude of the FT-STS
data, we show, complementary to Figs. 3(c) and 3(d), in

FIG. 15. Comparison of feature (ii) with QPI signals at larger q.
(a) Representative FT-STS data (the same as published in Ref. [23])
at −14.1 meV. The small-q area which is at the focus of this work
is indicated by the blue filled area “1”. The green filled area “2” is
located around those q where intraband scattering of the γ band is
located (labeled q4 in Ref. [23]). Apparently, this intraband scattering
generates a particularly sharp and intense QPI signal, which is caused
by a significant nesting of the band (cf. Fig. 1). We integrate the
amplitudes at areas 1 and 2 and plot the integrated amplitude in
(b) as a function of energy. Clearly, the integrated amplitude around
2 remains significantly lower than that of area 1. In particular,
a pronounced peak at � + 	 corresponding to feature (ii) of the
current study is visible, in addition to clear signatures due to defect
bound states (DBS).

Fig. 10 a waterfall representation of the FT-STS data along
the �-M direction [Fig. 10(a)] and along the �-X direction
[Fig. 10(b)].

Figure 8 depicts the amplitude of the FT-STS data for
selected energies in order to highlight the strong enhancement
of the amplitude at energies larger than about 10 meV, and
to demonstrate the decay of the amplitude as a function of q.
An overall smaller amplitude as compared to that at 6.7 K is
evident.

3. Temperature-dependent FT-STS data

dI/dU maps of 110 nm × 110 nm areas have been mea-
sured in the temperature range between 6.7 and 25 K at
ten specific temperatures. The resulting energy-momentum
dependence of the FT-STS data at selected energies is shown
in Figs. 11 and 12 as line cuts along high-symmetry directions

FIG. 14. Low-temperature point spectroscopy. Comparison of 300-mK point spectroscopy data with those shown in Figs. 4(d) and 4(e).
(a) dI/dU data at 300 mK, 6.7 K, and 25 K. (b) Second derivative d2I/dU 2 for the same temperatures.
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analogous to Figs. 3(a) and 3(b). These data show quite clearly
that feature (ii) remains present at all temperatures and even
in the normal conducting state, whereas feature (i) vanishes
at the critical temperature Tc ≈ 18 K. The latter is further
visualized in Fig. 13.

4. Low-temperature point spectroscopy

Figure 14 shows a comparison of the 300 mK point spec-
troscopy data of Fig. 2(a) with those shown in Figs. 4(d) and
4(e). The dI/dU data at 300 mK apparently are a systematic
low-temperature evolution of the data at 6.7 K, since the
coherence peaks of the large gap 	1 and of the small gap 	2

become clearly discernible [Fig. 14(a)]. The second derivative
d2I/dU 2 shown in Fig. 14(b) underpins the sharpening of the
spectral features at |eU | � 	1. In contrast, the width of the

steplike increase in dI/dU at about 14 mV reduces only by
a small amount upon cooling from 6.7 K to 300 mK, as is
revealed by the corresponding peaks in d2I/dU 2.

APPENDIX D: COMPARISON OF FEATURE (ii) WITH
STANDARD QPI AT LARGER q

Figure 15 shows a comparison of the integrated amplitude
of feature (ii) with that of standard QPI. For this comparison,
we analyzed our previous LiFeAs data [23] which include
such large-q QPI information. The inspection of these data
clearly confirm the presence of feature (ii) and furthermore
reveal that feature (ii) is significantly more intense than stan-
dard QPI.
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