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Quasiperiodic boundary conditions for three-dimensional superfluids
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We derive boundary conditions that allow a three-dimensional periodic array of superfluid vortices to be
modeled in a Cartesian domain. The method is applicable to vortices in the Gross-Pitaevskii description of a
superfluid and to fluxtubes in the Ginzburg-Landau description of a superconductor. Unlike standard methods
for modeling infinite arrays of vortices, the boundary conditions can be used to study the three-dimensional
tangling and reconnection of vortex lines expected in superfluid turbulence. In the two-dimensional case, the
boundary conditions include two parameters that determine the lattice offset, which for a single superfluid is
essentially arbitrary. In the three-dimensional case the boundary conditions include three parameters that must
satisfy a particular linear relationship. We present an algorithm for finding all vortex lattice states within a given
domain. We demonstrate the utility of the boundary conditions in two specific problems with imperfect or tangled
lattices.
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I. INTRODUCTION

At sufficiently high densities and low temperatures, many
materials transition from a “normal” phase of matter to a
quantum superfluid phase. The properties of superfluids are
of interest in many laboratory systems, including ultracold
atomic gases [1], superconductors [2], and liquid helium
[3], and also in neutron stars, which are believed to contain
neutron and proton superfluids [4].

The vorticity in a superfluid (and the magnetic flux in a su-
perconductor) is quantized into discrete microscopic filaments
called vortices (or fluxtubes in the case of a superconductor).
In the Gross-Pitaevskii description, the superfluid is repre-
sented by a complex mean-field wave-function ψ , called the
order parameter, and its density ρ and velocity v are defined
as

ρ = m|ψ |2, (1)

v = h̄

m
∇ arg ψ = h̄

m
∇χ, (2)

where χ ≡ arg ψ is the phase of the superfluid, m is the
mass of a superfluid particle (or Cooper pair in a fermionic
superfluid), and h̄ is Planck’s reduced constant. Equation (2)
implies that the superfluid has vanishing vorticity ∇ × v =
0 at all locations where the phase χ is smooth. However,
vortices can still arise as filaments (in three dimensions) or
points (in two dimensions) where ψ = 0 and hence χ is
undefined. Around a vortex, χ winds by 2π , and so each
vortex induces a quantum of circulation [5]:∮

v · dx = 2π
h̄

m
. (3)

A superfluid can mimic the rotation of a classical fluid by
forming an array of vortices that are, on average, aligned with
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the rotation axis. The effective macroscopic rotation � of a
vortex array is precisely half of its average vorticity, i.e.,

� = π
h̄

m
n, (4)

where n represents the number of vortex lines per unit perpen-
dicular cross-sectional area. Although we have here derived
Eq. (4) for a Gross-Pitaevskii superfluid, this result—known
as Feynman’s rule [6]—holds more generally, and has been
confirmed in several laboratory experiments with superfluid
3He and 4He [7–9]. Equation (4) has a direct analogy in a
(nonrotating) superconductor; in that case, the magnetic flux
is quantized, and the macroscopic magnetic field is propor-
tional to the number of fluxtubes per unit area. Given the close
analogy between the behavior of vortices and fluxtubes, for
brevity from here on we will use the term vortices to refer to
both cases collectively.

In most superfluids, and in type-II superconductors, the
vortices are mutually repulsive. When their number density is
sufficiently high, they therefore tend to form a periodic array,
which we call a lattice (see Fig. 1). A lattice is characterized
by a pair of primitive lattice vectors �1 and �2 from which
the vortex density can be calculated using the formula n =

�1×�2
|�1×�2|2 . Many superfluid systems contain a large number of
vortices—too many for all of them to be modeled individually.
For example, in a typical liquid helium experiment with a
cross-sectional area of 1 cm2, rotating at a rate of 1 rad/s,
there are approximately 2000 vortices. A more extreme ex-
ample is the outer core of a typical neutron star, which is
believed to contain of order 1016 vortices and 1030 fluxtubes
[10,11], within a radius of 10 km. To model such systems,
it is natural to consider a small but representative piece, and
impose periodic boundary conditions, formally regarding the
system as having infinite extent. However, in a vortex lattice
the phase of the superfluid is not periodic (see Fig. 1); rather,
it is quasiperiodic, in a sense that we define in the next section.
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FIG. 1. (a) The order parameter ψ for a hexagonal lattice of
vortices (black circles), with primitive vectors �1 and �2. The color
represents the phase of the superfluid χ , and the brightness represents
its density |ψ |2, and hence the vortex cores appear black. The vectors
L1 and L2 indicate the sides of the computational domain, which is
plotted alongside two quasiperiodic copies. The density is spatially
periodic, but the phase is not. (b) The phase of an inclined rectangular
lattice in a cube. The vortex lines (drawn in black) are arranged
periodically within the domain.

The traditional method for modeling an infinite array of
vortices is to use an analytical approximation for the order
parameter—the lowest Landau level [12,13]. This approach is
well suited to superfluids that are essentially two dimensional,
and particularly for a tightly packed lattice, for which the
analytical approximation holds to high accuracy. However,
this method cannot be applied to tangled vortex lines, or to
superfluids with large density variations.

An alternative method is to model a representative piece
of the system, and apply quasiperiodic boundary conditions
that relate the value of the order parameter on opposite sides
of the domain. The two-dimensional (2D) case (in which
the computational domain is a perpendicular cross section
through the vortex array) has recently been considered by
Mingarelli et al. [14,15], but the fully three-dimensional (3D)
case presents additional challenges. Obtaining suitable 3D
boundary conditions is necessary to describe two-component
systems in which the arrays are mutually inclined, as is the
case for the vortex and fluxtube arrays in the core of a neutron
star, for example [11,16].

The plan for this paper is as follows. In Sec. II we de-
scribe the essential properties of vortex and fluxtube arrays,
and deduce the general form of the quasiperiodic boundary
conditions in 2D. In Sec. III we verify explicitly that these
boundary conditions are compatible with all possible 2D

lattice configurations. In Sec. IV we generalize our results to
3D, obtaining quasiperiodic boundary conditions for an in-
clined array in a cuboidal domain. Two particular applications
of these boundary conditions are presented in Sec. V, demon-
strating that a periodic lattice is not the preferred state in all
cases. We conclude in Sec. VI by discussing the implications
for systems of many vortices.

II. SYMMETRY PROPERTIES OF VORTEX
AND FLUXTUBE ARRAYS

Consider an infinite array of vortices with mean angular
velocity �. Suppose that the vector L represents a discrete
translational symmetry of the array, i.e., that the vortex lo-
cations are unchanged under a coordinate shift x → x + L,
where x is the position vector. In that case the relative velocity
of the superfluid (that is, the velocity in the rotating frame)
must be periodic, i.e.,

h̄

m
∇χ |x+L − � × (x + L) = h̄

m
∇χ |x − � × x

⇒ ∇χ
∣∣x+L
x = m

h̄
� × L

= πn × L

⇒ χ
∣∣x+L
x = π (n×L) · x+c mod 2π,

(5)

where c is some unknown constant, whose value is defined
only modulo 2π . A similar line of reasoning can be applied
to an array of magnetic fluxtubes in a superconductor, with
magnetic vector potential A. In this system, the definition of
the superfluid velocity is modified in accordance with minimal
coupling:

v = h̄

m
∇χ − q

mc
A, (6)

where q is the electric charge of a superfluid particle (or
Cooper pair). If we choose to work in a symmetric gauge, then
we have A = 1

2 H × x + A′, where H is the mean magnetic
field, and A′ is a periodic perturbation. In that case, we can
repeat the above argument with � replaced by q

2mc H, once
again arriving at Eq. (5), with n now representing the number
of fluxtubes per unit area. From here on we will therefore
adopt a symmetric gauge whenever referring to the phase in
a superconductor, although of course all of our results can be
easily transformed into any gauge.

Equation (5) defines precisely the sense in which χ is
quasiperiodic, and this is the fundamental result for obtaining
boundary conditions for numerical calculations. In a typical
calculation, the domain will be a Cartesian box, as illustrated
for example in Fig. 1(a), whose sides are the vectors L1 and
L2. (For the moment we will only consider a two-dimensional
box, and the three-dimensional box will be considered later, in
Sec. IV.) Note, however, that the vortices within the domain
need not form a periodic lattice; we assume only that the
arrangement of vortices within the domain is duplicated in
each of its quasiperiodic neighbors. In that case the number
of vortices per unit area can be calculated as

n = N

L1L2
e3, (7)
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where N is the number of vortices within the computational
domain, which must be an integer. More precisely, N is the
total quanta of vortices in the direction e3; if the domain
contains N+ positive (anticlockwise) and N− negative (clock-
wise) vortices, then N = N+ − N−. We observe that the sides
of the computational domain L1 and L2 must be translational
symmetries of the vortex array, even if the vortices within the
domain do not form a lattice. Equation (5) can therefore be
used to obtain a pair of quasiperiodic boundary conditions:

χ
∣∣x+Li

x = π (n × Li ) · x + ci mod 2π, i = 1, 2. (8)

It is not immediately clear whether these boundary conditions
are mutually compatible, i.e., whether they can be imposed
without producing corner singularities in the phase of the
superfluid. If we follow a circuit anticlockwise around the
edge of the computational domain, the boundary conditions
(8) imply that we experience a net phase shift:

χ
∣∣x+L1

x + χ
∣∣x+L1+L2

x+L1
+ χ

∣∣x+L2

x+L1+L2
+ χ

∣∣x
x+L2

= −2πn · (L1 × L2) = −2πN mod 2π.

Hence these boundary conditions are mutually compatible
provided that N is an integer.

The boundary conditions (8) contain a pair of unknown
constants c1 and c2, whose values must be specified prior
to performing any numerical simulation. Recently, Mingarelli
et al. [14,15] have used these boundary conditions to simulate
infinite vortex arrays in a 2D Cartesian domain, and have
shown that changing the values of c1 and c2 corresponds to
a spatial translation of the vortex array. The main motivation
for the present work is to precisely relate the values of the
parameters c1, c2 to the vortex locations in the lattice, and to
generalize the quasiperiodic boundary conditions to the fully
3D case of an inclined vortex array, as illustrated in Fig. 1(b).

III. THE VELOCITY FIELD OF A VORTEX LATTICE

To elucidate the physical significance of the parameters c1

and c2 in Eq. (8), we consider the case of a periodic vortex
lattice, for which the phase can be expressed analytically [17].
Suppose we have an infinite lattice of point vortices in the
complex z plane, at the locations

z = z0 + Pπ + Qπτ, for P, Q ∈ Z, (9)

where z0 and τ are some complex constants. If the lattice
is uniformly rotating anticlockwise about the origin, then
the phase of the superfluid must be (apart from an arbitrary
constant)

χ = Im

{
(z − 2i Im{z0})2

2π Im{τ } + ln ϑ1(z − z0; τ )

}
, (10)

where ϑ1 is the Jacobi theta function. Using the well-known
quasiperiodicity properties of ϑ1, we can thus evaluate the
phase shift between an arbitrary point z and any of its images
z + Pπ + Qπτ :

χ |z+Pπ+Qπτ
z = Im{(P + Qτ �)(z − 2z0)}

Im{τ } + π (P + Q + PQ),

(11)

where τ � is the complex conjugate of τ . The same result can
be expressed in vector form as

χ
∣∣x+P�1+Q�2

x = πn · [(P�1 + Q�2) × (x − 2x0)]

+ π (P + Q + PQ), (12)

where �1 and �2 are the primitive vectors of the vortex lattice,
and where x0 is the location of any vortex in the lattice.
We will refer to x0 as the lattice offset. Although we have
derived this result assuming that the vortex locations are given
by Eq. (9), we note that the phase of the superfluid must
be invariant under a rotation about the origin or a uniform
rescaling of the axes. Since any vortex lattice can be put
into the form of Eq. (9) under an appropriate rotation and
rescaling, the result (12) therefore applies to all lattices.

If we have a vortex lattice in a rectangular domain with
sides L1 and L2, as in Fig. 1(a) for example, then we must have
Li = Pi�1 + Qi�2 for some integers Pi, Qi. Using Eq. (12) we
deduce that the unknown constants in the boundary conditions
(8) are related to the lattice offset x0:

ci = −2π (n × Li ) · x0 + π (Pi + Qi + PiQi ) mod 2π.

(13)
Crucially, for any given lattice and any choice of c1, c2, this
equation can always be solved for x0. Therefore the choice
of constants ci is essentially arbitrary; their values only deter-
mine the lattice offset x0, and do not constrain the shape of the
lattice. The geometrical meaning of ci can be made clearer by
rewriting Eq. (13) as

ci = −2π (n × Li ) · x + πN mod 2π, (14)

where x is the average location of the N vortices in the
domain, modulo (L1/N, L2/N ) (see the Appendix).

In summary, then, to model a 2D array of vortices in
a domain with sides L1 and L2, we can use the boundary
conditions (8), and the values of ci merely serve to fix the
average position of the vortices.

IV. BOUNDARY CONDITIONS IN 3D

So far we have only considered 2D vortex arrays, i.e.,
arrays of point vortices. Our results are easily extended to
3D vortex arrays that are, on average, aligned in the direction
of the third coordinate, i.e., n ‖ e3. In that case, we have
quasiperiodic boundary conditions in the first two coordinates,
given by Eq. (8), and a periodic boundary condition in the
third coordinate. As in the 2D case, the boundary conditions
include two parameters c1 and c2, whose values control the
transverse offset of the array.

However, there are situations in which the vortex array
cannot be assumed to align with any of the coordinates. The
core of a neutron star is one example, in which there are arrays
of vortices and fluxtubes whose mean directions align with
the star’s rotation and magnetic axes, respectively, which in
general are mutually inclined [18] (as shown schematically in
Fig. 2). To model an inclined vortex array, in a Cartesian box
whose edges are L1, L2, and L3, we must apply quasiperiodic
boundary conditions in all three directions. Since each of the
vectors Li represents a translational symmetry of the array,
these boundary conditions must have the form

χ
∣∣x+Li

x = π (n × Li ) · x + ci mod 2π, i = 1, 2, 3. (15)
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FIG. 2. Illustration of the internal structure of a neutron star. The
dashed green and red lines indicate the rotation and magnetic axes,
respectively. Below the star’s crust (shown in black) the neutrons
and protons form superfluids. The vorticity of the neutron fluid is
quantized into vortices (shown in green) that on average align with
the star’s rotation axis. The magnetic field of the proton fluid is
quantized into fluxtubes (shown in red) that on average align with
the star’s macroscopic magnetic field.

For these boundary conditions to be mutually compatible,
each face of the domain must be intersected by an integer
number of vortices, in which case we have

n =
(

N1

L2L3
,

N2

L3L1
,

N3

L1L2

)
, (16)

where the vector N = (N1, N2, N3) ∈ Z3 counts the number
of intersections. Our boundary conditions therefore contain
three parameters ci, but by analogy with the aligned array
case described above, we anticipate that only two of these
parameters are independent. Choosing their values arbitrarily
would impose a nonzero phase shift, and therefore by Eq. (2)
a flow, parallel to the vortex array. To avoid imposing such a
flow, we must choose the values of c1, c2, c3 such that

χ
∣∣x+L
x = 0 mod 2π (17)

for any translational symmetry vector L that is parallel to n.
One such symmetry vector is

L‖ ≡
(

N1

G
L1,

N2

G
L2,

N3

G
L3

)
= L1L2L3

G
n, (18)

where G ≡ gcd{N} is the greatest common positive divisor
of N1, N2, N3. When the condition (17) is applied for the
symmetry vector L‖, using the boundary conditions (15), it
implies the following relation between the parameters ci:

N · c = πN1N2N3/G mod 2πG. (19)

Furthermore, using the fact that the quantity
(N1/G)(N2/G)(N3/G)(G − 1)G is guaranteed to be an
even integer, we can write this result in the simpler but
equivalent form

N · c = πN1N2N3 mod 2πG. (20)

It is clear that this condition is necessary to avoid imposing
a flow along the vortex array, and in fact it is also sufficient,
i.e., provided that this condition holds, it is always possible
to find a uniformly rotating vortex lattice that satisfies our
boundary conditions and has zero flow along the rotation
axis. To demonstrate the sufficiency of condition (20), we can

simply observe that each of the ci is only defined modulo 2π ,
and therefore the value of N · c cannot be imposed to higher
accuracy than given by Eq. (20). This is essentially Bézout’s
identity.

In order to prove the sufficiency of condition (20) more
explicitly, in the Appendix we present an algorithm for gen-
erating all possible lattice states, for a given choice of N ∈
Z3, and demonstrate that each lattice is compatible with the
boundary conditions (15) if condition (20) holds.

V. APPLICATIONS

To demonstrate the utility of our quasiperiodic boundary
conditions, in the following sections we consider two specific
applications.

A. Imperfections in a 2D fluxtube lattice

We consider a two-dimensional Ginzburg-Landau super-
conductor in the symmetric Weyl gauge. This system is char-
acterized by the complex order parameter ψ (x1, x2, t ) and
the magnetic vector potential A(x1, x2, t ). The free energy, in
dimensionless units, is

H =
∫ [

1

2
(|ψ |2 − 1)2 + |(∇ − iA)ψ |2 + κ2|∇ × A|2

]
d2x,

where κ is the Ginzburg-Landau parameter. Provided that
κ > 1/

√
2, the lowest energy state in this system is generally

achieved by quantizing the magnetic field B = ∇ × A into
discrete fluxtubes, i.e., we have a type-II superconductor.
Moreover, in the absence of geometric constraints the flux-
tubes preferentially form a hexagonal lattice [12,19]. In the
dissipative regime appropriate for laboratory superconductors,
ψ and A evolve according to the time-dependent Ginzburg-
Landau equations

−∂ψ

∂t
= δH

δψ�
and − 2κ2

η

∂A
∂t

= δH
δA

, (21)

where η is the dimensionless resistivity. These equations
guarantee that the free energy decreases monotonically, until
a local minimum is achieved.

We solve these equations using a discrete approximation to
the free energy, in which the components of A are defined on
the links between the gridpoints for ψ . The gauge coupling
between ψ and A is implemented using a standard Peierls
substitution, i.e., by making the approximation∫

|(∂i − iAi )ψ |2 d2x

	
∑

x

∣∣∣∣∣∣
ψ |x+δxiei − ψ |x exp

(
i δxiAi|x+ 1

2 δxiei

)
δxi

∣∣∣∣∣∣
2

δx1 δx2,

(22)

where δxi is the grid spacing and where the sum is taken over
the gridpoints for ψ .

Our goal is to simulate a periodic array of fluxtubes,
with N fluxtubes in the computational domain, which
is a rectangle with sides L1 and L2. We therefore de-
fine n = N

L1L2
e3, impose periodic boundary conditions for
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FIG. 3. The ground state for a system of N = 9 fluxtubes in
a domain of size (10

√
3, 10), indicated as a white rectangle. The

color scheme matches that in Fig. 1(a). The computational domain
is plotted alongside its eight nearest quasiperiodic copies. For this
domain size, the ground state is not a lattice.

A′ = A − πn × x, and impose the quasiperiodic boundary
conditions (8) for ψ . In the results presented below we have
taken the constants in these boundary conditions to be c1 =
c2 = πN . We have also set κ = 5 and η = 1, and used a
rectangular computational domain of size L1 = 10

√
3, L2 =

10. For a domain of this size and aspect ratio, a hexagonal
lattice of fluxtubes can be achieved with N = 2, 6, 8, 18, or
24. (For N � 27, the mean magnetic field H = 2πn exceeds
the upper critical field, which is unity in our dimensionless
units, and superconductivity is lost.) We have set N = 9, in
order to study the ground state in a case where the preferred
symmetry is frustrated by the boundary conditions. In the
case N = 9 there are σ (9) = 13 possible lattice configurations
(see the Appendix), only two of which are local minima of
the free energy, and hence linearly stable. In order to identify
the true ground state for this system, we have used a range
of initial conditions, including each of the 13 periodic lattice
states, and states with fluxtubes at randomly chosen locations.

For most choices of initial conditions, we find that the
fluxtubes do not ever achieve a lattice configuration. Instead
they reach a steady state with an irregular but roughly uniform
spacing, as illustrated in Fig. 3. In this state, the free energy
was computed to be H = 514.063, which is smaller than the
free energy in both of the stable lattice states (which have
H = 514.103), demonstrating that the ground state for the
chosen domain size is not a lattice. (Of course the average
free energy per unit area in Fig. 3 is still larger than that
for a hexagonal lattice with the same mean magnetic field,
which would be the preferred state in the absence of geometric
constraints.)

B. Tangling in a 3D vortex array

We consider a single-component superfluid in the rotating
frame. We include a potential whose gradient exactly balances
the centrifugal force, so that the effective potential vanishes in
the rotating frame, allowing the bulk density of the superfluid
to be homogeneous. The free energy in the Gross-Pitaevskii

FIG. 4. A local minimum of the free energy (23) for a cube of
side L = 64, each face of which is intersected by 16 vortices. The
vortex lines (drawn in black) remain tangled, and do not form a
lattice.

description can then be written in dimensionless form as

H =
∫ [

1

2
(|ψ |2 − 1)2 + |∇ψ − iπψ n × x|2

]
d3x, (23)

where πn is the dimensionless angular velocity of the frame
of reference. In our numerical calculations, the free energy is
approximated using a discretization similar to that described
in the previous section.

We choose the computational domain to be a cube of side
L = 64, and we take n to be

n =
(

16

L2
,

16

L2
,

16

L2

)
.

We impose the boundary conditions (15) for ψ , with c1 =
c2 = c3 = 0, which satisfies Eq. (20) in this case.

Starting from a random initial condition, we solve the
imaginary-time Gross-Pitaevskii equation

−∂ψ

∂t
= δH

δψ�
, (24)

which guarantees that the free energy decreases monotoni-
cally. We anticipate that the true ground state for this system
will be a periodic and rectilinear array of vortices. However,
as illustrated in Fig. 4, in most of our simulations the vortex
array never achieves such a state, and instead converges to
a metastable state in which the vortex lines remain some-
what tangled. We find that multiple metastable states exist
with various degrees of tangling, demonstrating that the vor-
tex array is a “glassy” system, in spite of the long-range
order imposed by the quasiperiodic boundary conditions. In
order for the system to reach the true ground state, further
reconnection of the vortex lines would need to be induced
through an appropriate injection of energy (i.e., annealing).
This can be achieved by reducing the size of the domain, and
thereby forcing the tangled vortex lines closer together. In our
simulations, we find that such reconnections occur once the
distance between vortex lines becomes comparable to the size
of the vortex core, which is order unity in our dimensionless
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units. In the case shown in Fig. 4, reducing the size of the
domain to L = 48 is sufficient to guarantee that the vortex
lines completely untangle.

VI. CONCLUSIONS

We have derived quasiperiodic boundary conditions for
an inclined vortex lattice in a Cartesian domain with sides
L1, L2, L3. The most general boundary conditions are given
by Eq. (15), where n = ( N1

L2L3
, N2

L3L1
, N3

L1L2
) is the vortex den-

sity, the integers Ni count the number of intersections of the
lattice with the faces of the domain, and the ci parameters must
satisfy condition (20).

Our boundary conditions contain two free parameters,
whose values determine the lattice offset, relative to the ro-
tation axis. In the case of a single homogeneous superfluid,
these parameters are essentially arbitrary, but for multicom-
ponent superfluids they determine the relative displacement
between the lattices, which can be crucial for the dynamics
[15]. Importantly, the choice of these parameters does not
affect the symmetry of the lattice, which is determined entirely
by the domain size and by N = (N1, N2, N3). For given N ∈
Z3 the number of distinct lattice states is given by the sum of
all positive common divisors of {N1, N2, N3}. In the particular
case N = (0, 0, N ) this reduces to a well-known result in
lattice algebra [20].

The results of Sec. V demonstrate two situations in which
a perfect lattice is not achieved, despite the long-range order
imposed by the boundary conditions. In the first case, the
dimensions of the domain L1, L2 frustrate the preferred hexag-
onal symmetry, and the ground state is not a lattice at all. In
the second case, the vortex topology depends on the initial
conditions for the simulation, indicating that there are many
(meta)stable vortex configurations.

Although the simulations we have presented include only
a relatively small number of vortices, we expect that these
results will hold also for larger-scale systems, such as neutron
stars. In fact, as the size of the system increases so does
the number of possible vortex configurations, and also the
number of metastable states. As an example, we have repeated
the simulation shown in Fig. 3 with a domain of twice the
size in both directions, and with the same density of vortices
(N = 36). This system has a much larger number of possible
lattice states [σ (36) = 91], and we have also identified several
metastable nonlattice states, one of which is illustrated in
Fig. 5. All of the stable states in this system roughly ap-
proximate a hexagonal lattice within most of the domain, and
all have a lower free energy per unit area than the ground
state shown in Fig. 3. In general, as the size of the system
increases the vortex arrangement becomes less constrained
by the domain aspect ratio, but the likelihood of becoming
trapped in a metastable state increases.

In the case of neutron stars, it is well known that the time
required to achieve the true ground state globally is much
longer than the age of the system [4]. However, it is often
assumed that the arrays of vortices and fluxtubes are roughly
periodic and rectilinear on scales comparable to the vortex
separation. Our results suggest that, even on this scale, the
vortex arrays are likely to be aperiodic and tangled. However,
determining the true nature of these vortices would require a

FIG. 5. A metastable state with N = 36 fluxtubes in a domain of
size (20

√
3, 20). Other parameters are as in Fig. 3.

more complete model of neutron star matter, which is beyond
the scope of this paper.
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APPENDIX: EXPLICIT LATTICE CONSTRUCTION

Each periodic vortex lattice is characterised by a pair of
primitive vectors �1 and �2, and its offset, that is, the separa-
tion between the rotation axis and the closest vortex. Our goal
is to identify all possible pairs �1 and �2 for a given choice
of L = (L1, L2, L3) ∈ R3 and N = (N1, N2, N3) ∈ Z3, which
represent the size of the Cartesian domain and the number
of lattice intersections with each face. Each pair �1, �2 must
satisfy the equation

n =
(

N1

L2L3
,

N2

L3L1
,

N3

L1L2

)
= �1 × �2

|�1 × �2|2 , (A1)

and moreover each side of the domain Li must be a transla-
tional symmetry of the lattice. So if we define L̃i to be the
projection of Li in the plane perpendicular to n, then we must
have

L̃i ≡ Li − Li · n
|n|2 n = Pi�1 + Qi�2, (A2)

for some Pi, Qi ∈ Z. The parallelogram with sides L̃i, L̃ j is
intersected by the same number of vortices as is the rectangle
with sides Li, L j , and so

L̃1 × L̃2 = N3 �1 × �2,

L̃2 × L̃3 = N1 �1 × �2,

L̃3 × L̃1 = N2 �1 × �2.

These relations imply that the vectors P = (P1, P2, P3) and
Q = (Q1, Q2, Q3) must satisfy the equation

P × Q = N. (A3)
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FIG. 6. The vectors L̃1 and L̃2 are the projections of L1 and L2 in
the plane perpendicular to the vortex array. In this plane, the vortex
locations are defined by the primitive lattice vectors �1 and �2, and
the vectors p and q define the reciprocal lattice.

Finding all lattice configurations is therefore equivalent to
finding all pairs of vectors P, Q ∈ Z3 that satisfy Eq. (A3).
Indeed, once P and Q are known, we can invert Eq. (A2) to
obtain explicit expressions for �1 and �2:

�1 = q × n
|n|2 and �2 = n × p

|n|2 , (A4)

where p ≡
(

P1

L1
,

P2

L2
,

P3

L3

)
and q ≡

(
Q1

L1
,

Q2

L2
,

Q3

L3

)
.

(A5)

Equation (A3) implies that p × q = n, which together with
Eq. (A4) demonstrates that the vectors p, q define the recipro-
cal of the vortex lattice [21]. The relations between the various
vector quantities are illustrated in Fig. 6.

For each lattice, i.e., for each solution of Eq. (A3), we can
calculate the three phase shifts χ |x+Li

x from Eq. (12). As in the
case of a 2D lattice, we deduce that the unknown constants
ci in our quasiperiodic boundary conditions (15) are given
by Eq. (13), with i = 1, 2, 3. However, unlike the 2D case,
in general it is not possible to find a lattice offset x0 that
simultaneously satisfies all three equations, if the ci are chosen
arbitrarily. Indeed, if we cross-eliminate x0 from these three
equations, we obtain the following constraint on the ci values:

N · c = π (N1P1Q1 + N2P2Q2 + N3P3Q3) mod 2πG,

(A6)

where G ≡ gcd{N}, as before. In order to show that our con-
dition (20) is sufficient, we need to show that it is equivalent
to Eq. (A6) for every solution of Eq. (A3). That is, we need to
prove the following theorem.

Theorem. For every P, Q ∈ Z3 such that P × Q = N, we
have

N1P1Q1 + N2P2Q2 + N3P3Q3 = N1N2N3 mod 2G, (A7)

where G ≡ gcd{N1, N2, N3}.

Proof. First, we note that for any particular solution
we can construct infinitely many more solutions of the
form P′ = M11P + M12Q and Q′ = M21P + M22Q, where

(
M11 M12

M21 M22
) ∈ SL2(Z). Since all such solutions ultimately

generate the same lattice, we will regard them as equivalent.
[It is also easily proved that the left-hand side of Eq. (A7)
is invariant under such a transformation, modulo 2G, as we
would expect.]

Equation (A7) is trivial in the case N = 0, so we will
assume, without loss of generality, that N3 > 0. Because P
and Q are perpendicular to N, they must be (integer) combina-
tions of the vectors (1, 0,−N1/N3) and (0, 1,−N2/N3). More-
over, for each solution there is a unique equivalent solution
that has

P = P1(1, 0,−N1/N3) + P2(0, 1,−N2/N3)

and Q = Q2(0, 1,−N2/N3), (A8)

where 0 � P2 < Q2. (This simplified form is obtained by
applying Euclid’s algorithm to reduce the first components
of P and Q.) The equation P × Q = N then becomes simply
P1Q2 = N3, and so P1 must be a (positive) divisor of N3.
Furthermore, the third component of Q, Q3 = −N2/P1, must
be an integer, which implies that P1 is also a divisor of N2.
It is convenient at this point to define H ≡ gcd{N2, N3}, so
that the previous two conditions can be replaced with the
single condition that P1 must be a divisor of H , i.e., we must
have D ≡ H/P1 ∈ N. The final requirement is that the third
component of P must be an integer, which is equivalent to

N1

D
+ P2

N2

H
= 0 mod

N3

H
. (A9)

For this equation to have solutions, the first term must be an
integer, and so D must be a (positive) divisor of G. If N2 
= 0,
then N2/H is coprime to N3/H , and so Eq. (A9) has exactly
D nonequivalent solutions for P2. Using Euler’s theorem, we
can express these solutions as

P2 = −(N1/D)(N2/H )φ(N3/H )−1 + d (N3/H ), (A10)

where φ is the totient function and where d = 0, 1, . . . , D −
1. Hence the general solution for P and Q is

P = H

D
(1, 0,−N1/N3) + d (0, N3/H,−N2/H )

− N1

D

(
N2

H

)φ(N3/H )−1

(0, 1,−N2/N3), (A11)

Q = D(0, N3/H,−N2/H ). (A12)

So for each D that is a positive divisor of G we have D
distinct lattice solutions, indexed by d . The total number of
distinct lattices is therefore σ (G), i.e., the sum of all positive
common divisors of N1, N2, N3. In the special case where
N2 = 0, Eq. (A9) is automatically satisfied for any P2, and
our general solution still holds provided that we omit the final
term in Eq. (A11).

Finally, we just need to verify that the general solutions
(A11) and (A12) satisfy Eq. (A7), i.e., we need to prove
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that

(N2 + N3)

G

(
dD

N2N3

H2
− N1

(
N2

H

)φ(N3/H )
)

= N1

G
N2(N3 − 1) mod 2. (A13)

We note that N2
H

N3
H ( N2

H + N3
H ) is always even, and therefore so

is the first term on the left-hand side. It therefore suffices to
prove that

(N2 + N3)

(
N2

H

)φ(N3/H )

= N2(N3 − 1) mod 2. (A14)

If N2 is even, then both sides of this equation are even. If N2 is
odd, then both sides of this equation have the opposite parity
to N3. Therefore the equation holds in all cases. �

In the special case of a 2D lattice, with N = (0, 0, N ), our
general solution for P and Q simplifies to

P = (N/D, d ) and Q = (0, D),

where D is any positive divisor of N and where d =
0, 1, . . . , D − 1. The primitive lattice vectors are then

�1 = (DL1/N, 0) and �2 = (−dL1/N, L2/D),

and so the sum of all N lattice locations in the rectangle
(L1, L2) is

(N/D)−1∑
i=0

D−1∑
j=0

(x0 + i�1 + j�2) = Nx0 + (N/2)(N/D − 1)�1 + (N/2)(D − 1)�2 mod (L1, L2)

= Nx0 − 1
2 (P2 + Q2 + P2Q2 − N )L1 − 1

2 (P1 + Q1 + P1Q1 − N )L2 mod (L1, L2),

where x0 represents any particular lattice point. From this result we can calculate the average location of the N lattice points, x,
which we used to obtain Eq. (14).
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