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Gap-filling states induced by disorder and Zeeman coupling in the nodeless chiral
superconducting Bi/Ni bilayer system

Rasoul Ghadimi, Mehdi Kargarian,* and S. Akbar Jafari
Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran

(Received 28 March 2019; published 8 July 2019)

Motivated by the recently discovered time-reversal symmetry-breaking superconductivity in the epitaxial
Bi/Ni bilayer system with transition temperature Tc ≈ 4.2 K and the observation of a zero-bias anomaly in a
background of gap-filling states in tunneling measurements, we show that gap-filling states can appear in the
fully gapped dxy ± idx2−y2 superconducting states. We consider a model of helical electron states with d-wave
pairing. In particular, we show that both magnetic and nonmagnetic impurities can create states within the
superconducting gap. Alternatively, we show that the coupling of the electron spins to the in-plane Zeeman
field provided by nickel can also create gap-filling states by producing Bogoliubov Fermi surfaces.

DOI: 10.1103/PhysRevB.100.024502

I. INTRODUCTION

The interplay between topology and electronic band struc-
tures in insulators, superconductors, and metals has received
enormous attention and interest in recent years and has
become a central issue in condensed-matter physics [1–3].
The nontrivial topology encoded in the bulk band structures,
usually characterized by integer numbers, results in nontrivial
consequences for the electronic states living on the boundary
of the system: the topologically protected gapless surface
states. Helical edge states at the one-dimensional boundary
of HgTe [4,5], Dirac electrons on the surface of the three-
dimensional topological materials Bi2Se3 and Bi2Te3 [6,7],
Majorana fermions at the open ends of a one-dimensional
topological superconductor [8], and the Fermi arcs in topo-
logical Weyl semimetals [9] such as TaAs [10–12] are a few
known examples.

Special attention has been paid to the realization of topo-
logical superconductors promising a platform for topological
quantum computations [13], a central paradigm in building a
quantum computer. At the heart of material realization lies the
nontrivial pairing wave function of Cooper pairs of electrons
in the vicinity of the Fermi surface. While the phonon-based
mechanism for superconductivity leads to the conventional
s-wave superconductor, the intrinsic spin or charge density
fluctuations due to electron correlations may result in a more
complex structure for the pairing wave functions [14,15],
for instance, in cuprates, Sr2RuO4 [16,17], and UPt3 [18].
Alternatively, the nontrivial pairings can be induced by an
ingenious combination of more conventional materials. A
famously celebrated structure was introduced by Fu and Kane
in Ref. [19], where a conventional s-wave superconductor
proximitized to the surface of topological insulators (sSc-
TI interface) was shown to support Majorana zero-energy
states in vortex cores. Furthermore, the surface of topological
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insulators can be replaced with a more conventional two-
dimensional electron gas with strong Rashba spin-orbit cou-
pling, where the spin degeneracy is lifted, and a magnetic field
or a Zeeman coupling turns the conventional induced s-wave
pairing into a topological superconductor [20,21].

The recently discovered superconductivity with rather high
critical temperature Tc ≈ 4.2 K in an epitaxial Bi/Ni bilayer
system [22] provided yet another example of a supercon-
ducting state with nontrivial pairing. The bilayer system is
schematically shown in Fig. 1, where the surface termina-
tion Bi(110) is exposed to vacuum and Ni is a ferromagnet
with in-plane magnetization. The optical measurements of the
Kerr signal from the Bi(110) surface clearly show that the
superconductivity breaks the time-reversal symmetry (TRS)
[23]. Not only that, cooling below Tc in a weak magnetic field
applied to the sample and measuring resistivity on warming
up in the zero field show that the pairing states must break
the TRS spontaneously. The theoretical model proposed in
Ref. [23] uses the dominantly spin-orbit coupled electronic
states localized on the surface of Bi(110), showing that the
pairing symmetry should be dxy ± idx2−y2 , a chiral topological
superconductor characterized by Chern numbers c = ±2. The
complex structure of the superconducting order parameter
indicates that the superconductivity in the Bi/Ni system is
fully gapped, an observation which is in agreement with the
recently measured optical conductivity using time-domain
terahertz spectroscopy [24].

In addition to the transport and optical measurements
outlined above, a zero-bias anomaly on a background of
gap-filling states has also been observed in the point-contact
Andreev reflection [22]. The gap-filling states seemingly
contradict a fully gapped dxy ± idx2−y2 superconductor. Un-
derstanding the origin of the gap-filling states is the main
motivation of our work in this paper. We ask the following
specific question: do the gap-filling states arise in topological
dxy ± idx2−y2 superconductors? We give an affirmative answer
to this question by introducing two possible scenarios. These
states may appear as a result of (i) magnetic and nonmagnetic
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FIG. 1. Schematic representation of the epitaxial Bi/Ni bilayer
system grown on a substrate such as MgO. The arrows show the in-
plane magnetization of Ni.

impurities distributed randomly through the system and/or
(ii) emergent Bogolon Fermi surfaces due to the coupling
of electron spins to in-plane magnetic moments shown by
arrows in Fig. 1. In the first scenario we treat the disorder
effects using the Abrikosov-Grokov formalism [25] and ig-
nore the inhomogeneity which might result in enhancement of
superconductivity [26–30]. In particular, we show that there
is a critical disorder strength beyond which the gap closes.
Impurity bound states may arise in chiral superconductors in
the absence of spin-orbit coupling [31] and also in systems
with extrinsically induced superconductivity [32]. In our work
we consider intrinsically chiral superconductors in systems
with strong spin-orbit coupling.

The second scenario was first introduced for the sSc-TI
interface, where it is found that the gapless states appear
in the presence of Zeeman coupling [33]. We extend this
finding to the chiral superconductors which may be relevant
to the superconducting states in the Bi/Ni system, although
the zero-bias anomaly requires careful treatment of Andreev
bound states localized between the domains with opposite
dxy ± idx2−y2 chiralities [23] and we leave it for future study.
Assuming bulk superconductivity [24] with possible nodal
p-wave pairing [34], an analysis based on the Andreev bound
states was developed [35] as a possible origin of the zero-bias
anomaly.

This paper is organized as follows. We first discuss the
disorder-induced states in Sec II, and then the effects of in-
plane Zeeman coupling are discussed in Sec III. Section IV
concludes.

II. DISORDER-INDUCED GAP-FILLING STATES
IN CHIRAL SUPERCONDUCTORS

The chiral dxy ± idx2−y2 superconductors are fully gapped.
However, the point-contact Andreev reflection measurements
show that below the critical temperature some states appear
within the gap, the gap-filling states, with a notable zero-bias
anomaly [22]. Here our aim is to understand the gap-filling
states by considering a minimal model, which can describe the
chiral superconducting states in the clean limit, in the presence
of magnetic and nonmagnetic impurities. The electron states
at the Bi(110) surface are strongly spin momentum locked
due to the breaking of inversion symmetry near the surface
[36] with a large hole pocket located around the center of
the surface Brillouin zone. The latter pocket resembles the
helical states at the surface of topological insulators. Notice
that the bulk Bi is not a topological insulator, so there are

also other small electron and hole pockets at the surface of
Bi, and the helical spin structure is merely an effect of strong
Rashba coupling [36]. However, for simplicity of formalism,
below we first begin with the large hole pocket, the one similar
to the surface of a topological insulator, in Sec. II A. Then
multiple Fermi surfaces are studied in Sec. II B by consider-
ing a two-dimensional (2D) electron gas in the presence of
Rashba spin-orbit coupling. We also assume that the magnetic
fluctuations of Ni provide the pairing glue, as detailed in
Ref. [23]. Our objective is to study the effects of disorder on
the superconducting states.

A. Surface of a topological insulator

The effective description of the surface states of topologi-
cal insulators is given by the 2D Hamiltonian σ × k · ẑ, where
k = (kx, ky) is the wave vector and σ = (σx, σy) are Pauli
matrices [1]. After a rotation it can be brought to the canonical
Dirac form σ · k, or, equivalently,

H ′
0 =

∑
k,σσ ′

c†
kσ [vF |k|(sin θkσy + cos θkσx ) − μ]σσ ′ckσ ′ , (1)

where θk is the polar angle of k plus π/2. This Hamiltonian
can be diagonalized by the following transformation:

d†
kλ = 1√

2
(c†

k↑ + λeiθk c†
k↓), (2)

where λ = ± is helicity and labels the energy bands. Moti-
vated by earlier work on the TRS breaking superconductivity
in the Bi/Ni system and the theoretical proposal of d ± id
pairing in this system [23], we formulate the effect of impurity
scattering for such a superconducting state. Using the time-
reversal (TR) operator � = iσyK, with K being the complex
conjugation operator, the TR transformation of the creation
operator d†

kλ becomes d̃†
kλ = �d†

kλ�
−1 = λe−iθk d†

−kλ, which
can be used to construct the pairing interaction from the
time-reversed partners as

Hsc =
∑

k

�e−i2θk d†
k+d̃†

k+ + H.c. (3)

We have included only the pairing between electron states
with positive helicity, which is justified when the chemical
potential is much larger than the pairing energy scale, i.e.,
the paring Hamiltonian is projected on the Fermi surface. In
terms of the Nambu spinor ψk = (dk+, d̃†

k+)T we can write the
superconducting Hamiltonian as

H0 =
∑

k

ψ
†
k [(vF |k| − μ)τ3 + � cos 2θkτ1

+� sin 2θkτ2]ψk, (4)

where Pauli matrices τ act within the particle-hole space. On
top of this clean pairing Hamiltonian we add a disorder term
Hdis. The total Hamiltonian becomes

H = H0 + Hdis, (5)

where

Hdis =
Ndis∑
i=1

∑
σ

c†
iσ (μiδσσ ′ + JSi · σσσ ′ )ciσ ′ , (6)
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which describes scattering from magnetic and nonmagnetic
impurities. For the latter the random scalar potential is given
by the random variables μi, while the randomness in the
magnetic impurities is given by the random orientation of
the local spin Si. The exchange coupling J is essentially
determined by the hybridization of conduction and impurity
electron states and the strength of the on-site Hubbard term,
which is assumed to be nonrandom. The average values of μi

and Si vanish, but their standard deviations are nonzero and
together with the concentration of impurities determine the
strength of impurity interactions.

By Fourier transform to momentum space Hdis becomes

Hdis = 1

A
∑

i,σ,kk′
e−i(k−k′ )·Ri c†

kσ
(μiδσσ ′ + JSi · σσσ ′ )ck′σ ,

where A is the area of the system. In the band basis it takes
the following form:

Hdis = 1

2A
∑

i,λλ′,kk′
d†

kλH̄dis(k, k′)dk′λ′ , (7)

with

H̄dis(k, k′) = e−i(k−k′ )·Ri
(
μiv

k,k′
λ,λ′ + JSi · mk,k′

λ,λ

)
, (8)

where

vk,k′
λ,λ′ ≡ 1 + λλ′e−iθk+iθk′ ,(

mk,k′
λ,λ′

)
x

≡ λe−iθk + λ′eiθk′ ,(
mk,k′

λ,λ′
)

y ≡ iλe−iθk − iλ′eiθk′ ,(
mk,k′

λ,λ′
)

z ≡ 1 − λλ′e−iθk+iθk′ .

The above Hamiltonian is compactly represented in Nambu
space as

Hdis = 1

2A
∑
i,kk′

ψ
†
kHdis(k, k′)ψk′ , (9)

where

Hdis(k, k′) = e−i(k−k′ )·Ri (μiV
k,k′ + JSi · Mk,k′

). (10)

Here by assumption of a large, positive chemical potential we
focus on λ = +1 matrix elements, i.e.,

V k,k′ =
(

vk,k′
++ 0
0 ṽk,k′

+,+

)
, (11)

Mk,k′ =
(

mk,k′
++ 0
0 m̃k,k′

++

)
, (12)

where we have introduced

ṽk,k′
λ,λ′ = (−λλ′e−iθk+iθk′ )v−k′,−k

λ′,λ ,

m̃k,k′
λ,λ′ ≡ −λλ′e−iθk+iθk′ m−k′,−k

λ′,λ .

In order to study the effect of disorder, we use the
language of Green’s functions. The disordered and clean
Green’s functions are defined as G(k, iωn) = (iωn − H )−1

and G(0)(iωn) = (iωn − H0)−1, respectively, where ωn is the
fermionic Matsubara frequency. According to Dyson’s equa-
tion, these Green’s functions are related by

G(k, iωn)−1 = G(0)(k, iωn)−1 − �(k, iωn), (13)

where, in the self-consistent Born approximation up to second
order, the self-energy is given by [33,37]

�(k, iωn) ≈ 〈Hdis(k, k)〉
+

∑
k′

〈Hdis(k, k′)G(k′, iωn)Hdis(k′, k)〉, (14)

where 〈· · · 〉 means that the ensemble average is taken over
disorder configurations. Following the approach presented in
Refs. [32,38] for disordered systems, we assume that the
excitations can be described in terms of an effective, clean
single-particle Hamiltonian H̃0, which is similar to the original
H0 with � now depending on ωn; that is, we make the follow-
ing replacement: � → �n in H0. Similarly, for the Green’s
function the spectral rearrangements due to disorder are taken
into account by iωn → iω̃n, where iω̃n is a function of iωn,
as described below. The effective Hamiltonian H̃0 satisfies
G(iωn) = (iω̃n − H̃0)−1. Equations (13) and (14) can now be
cast into an algebraic self-consistency between iω̃n and �n

[see Eqs. (17) and (18)].
Since we have assumed that the mean values of μi and

Si are zero, the first term in Eq. (14) vanishes. However, the
standard deviations are [37]

1

A 〈μiμ je
−iq·Ri e−iq′ ·Rj 〉dis = ndisμ̄2δi, jδq,q′ , (15)

1

A
〈
Sα

i Sβ
j e−iq·Ri eiq′ ·Rj

〉
dis = 1

3
ndisS(S + 1)δi jδαβδq+q′,0, (16)

where ndis is the disorder concentration and S is the value of
the spin of the magnetic impurity.

Obviously, there is no correlation between electrostatic and
magnetic scattering forces, i.e., 〈μiS j〉 = 0. Therefore, the
nonzero contribution of the second term in Eq. (14) arises
from the above fluctuations. By assumption of a constant
density of states (DOS) N (0) at the Fermi surface the integral
in the second term of Eq. (14) can be performed, giving rise
to the following equations for iω̃n and �n:

ω̃n = ωn + �
ω̃n

2
√

�̃2
n + ω̃2

n

, (17)

�̃n = � + α�
�̃n

2
√

�̃2
n + ω̃2

n

, (18)

where � = [ū2 + S(S + 1)J2]πndisN (0) defines the disorder
strength. Note that the assumption of constant N (0) around
the Fermi level is justified for parabolic bands as well as a
highly doped Dirac cone.

For a chiral d ± id superconductor, α = 0. This is because
the e2iθk factors in the pairing enforce the angular integration
becoming zero. Therefore, in the d ± id case, the pairing
potential �̃n is not renormalized in the presence of disorder,
in sharp contrast to s-wave pairing. For the latter pairing
and within a model that scatters only single particles (not
the Cooper pairs), α = +1 [38] (−1 [32]) for nonmagnetic
(magnetic) disorders. This leads to an important difference
between the chiral d ± id and s-wave pairings. In the s-wave
case, the fact that �̃n depends on n implies that for magnetic
impurities (α = −1) Tc will be suppressed much faster than
that of nonmagnetic impurities (α = +1). In the chiral d ± id
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FIG. 2. Density of states as a function of energy for different
disorder strengths � by d + id superconductivity with amplitude
� = 0.2, showing the spectral gap closing with increasing disorder
strength.

case, α is always zero, and to that extent, the magnetic and
nonmagnetic impurities have comparable effects on the Tc. As
a function of impurity concentration, the transition tempera-
ture reads [32,38]

Tc(ni ) = Tc(0) − π

8
(1 − α)�. (19)

Therefore, the chiral superconductivity is fragile against im-
purity scattering, irrespective of the magnetic nature of scat-
tering centers.

The DOS can be evaluated by momentum integration along
with an analytical continuation iωn → ω + i0+ of the Green’s
function, and the expression reads

N (ω) = − 1

π
N (0)Im

[
lim

iωn→ω+i0+

−iω̃n√
ω̃2

n + �2

]
. (20)

One way to perform the analytical continuation is to use
the Padé approximation to represent −iω̃n/

√
ω̃2

n + �2 by
the function F (iωn) = Q(iωn)/P(iωn), where Q and P are
polynomials of iωn, from which the analytical continuation
F (ω + i0+) can be evaluated. An alternative way is to perform
the analytical continuation before solving the self-consistency
Eqs. (17) and (18) [39]. We have checked that these two
approaches give identical results.

In Fig. 2, we plot the DOS for � = 0.2 as a function
of energy for the different disorder strengths � indicated in
the legend. It is seen that beyond a certain critical disorder
strength the superconducting gap is completely filled and we
have a gapless superconductor. The value of the DOS at ω = 0
determines whether the superconductor is gapless or gapped.
Therefore, in left panel of Fig. 3 we probe the density of
states for ω → 0 in the plane of pairing and disorder strength.
This gives us a border that separates gapless and gapped
superconducting phases. To emphasize the difference between
the behaviors of chiral and nonchiral superconductors against
disorder, in the right panel of Fig. 3 for a fixed disorder
strength of � = 0.5, we obtain a map of the DOS at ω = 0 in
the plane of α and �. The chiral superconductor corresponds
to α = 0. The s-wave superconductors with magnetic (non-
magnetic) scatterers correspond to α = −1 (α = +1). This
comparison indicates that the impurity-induced states can fill
up the gap in the chiral superconductor, providing a possible

FIG. 3. Left: Density plot of ω = 0 density of states in terms
of disorder and pairing potential strength. Right: Map of the DOS
at ω = 0 for relatively large disorder strength � = 0.5 in the plane
of α and �. α = 0 corresponds to chiral superconductivity, while
α = +1 (α = −1) corresponds to an s-wave superconductor with
nonmagnetic (magnetic) scatterers.

explanation for the observed in-gap features in the Bi/Ni
system [22].

B. Electron gas with Rashba coupling

In this section we employ the methods used in the pre-
ceding section to study the effects of disorder on chiral
superconductors in a system with multiple Fermi surfaces. For
simplicity we consider a two-dimensional electron gas in the
presence of strong Rashba spin-orbit coupling described by
the following Hamiltonian:

H0 =
∑
k,σσ ′

c†
kσ

Hσσ ′ (k)ckσ ′ , (21)

with

Hσσ ′ (k) = |k|2
2m

δσσ ′ + [vR|k|(sin θkσy + cos θkσx ) − μ]σσ ′,

(22)
where the spin-orbit coupling is expressed in the form of a
velocity scale vR to make it similar to the helical surface states
considered in the preceding section. This Hamiltonian reduces
to the helical Hamiltonian (1) upon the replacement m → ∞
and vR → vF . The pairing in the two cases is, however, dif-
ferent. In the helical metallic case for any chemical potential,
there is only one Fermi contour. But in the Rashba spin-orbit
coupled case, the spin-orbit coupling splits the degenerate
electron gas into two Fermi contours. For a large enough
chemical potential, the two spin-orbit split Fermi contours will
have opposite helicities. Therefore, the pairing will include
both helicities λ = ±1,

Hsc =
∑
k,λ

�λe−i2θk d†
kλd̃†

kλ + H.c., (23)

which together with Eq. (21) yields the following supercon-
ducting Hamiltonian:

H =
∑
kλ

ψ
†
k

(
σ0 + λσ3

2

)[( |k|2
2m

+ λvR|k| − μ

)
τ3

+�λ(cos 2θkτ1 + sin 2θkτ2)

]
ψk, (24)

where ψk = (dk+, d̃†
k+, dk−, d̃†

k−)T is the Nambu spinor.
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The calculation follows the same steps as in the preceding
section with the difference that, instead of one helicity (λ = +
for the surface of the TI), now we have both helicities λ = ±,
and hence, for the impurity Hamiltonians in Eqs. (9) and (10)
the relevant matrices will be 4 × 4, which are given by

V k,k′ =

⎛
⎜⎜⎜⎜⎜⎝

vk,k′
++ 0 vk,k′

+− 0

0 ṽk,k′
+,+ 0 ṽk,k′

+,−
vk,k′

−+ 0 vk,k′
−− 0

0 ṽk,k′
−+ 0 ṽk,k′

−−

⎞
⎟⎟⎟⎟⎟⎠ (25)

and

Mk,k′ =

⎛
⎜⎜⎜⎜⎜⎝

mk,k′
++ 0 mk,k′

+− 0

0 m̃k,k′
++ 0 m̃k,k′

+−
mk,k′

−+ 0 mk,k′
−− 0

0 m̃k,k′
−+ 0 m̃k,k′

−−

⎞
⎟⎟⎟⎟⎟⎠. (26)

For the chiral d ± id superconductor we obtain �̃λ,n = �λ

due to the vanishing angular integration of e2iθk . That is,
α = 0 in Eq. (18), albeit with a new helicity index acquired
due to two Fermi contours. The self-consistency equation
corresponding to Eq. (17) will now become

ω̃n = ωn + �

⎛
⎝ξ

ω̃n

2
√

ω̃2
n + �2−

+ ω̃n

2
√

ω̃2
n + �2+

⎞
⎠, (27)

where

Nλ(0) = m

2π

⎛
⎝1 − λ

vR√
2μ

m + v2
R

⎞
⎠

is the DOS for the Fermi contour with helicity λ and

ξ = N−(0)

N+(0)
> 1.

In this case from Eq. (27) it follows that the total DOS is
given by

N (ω) = 2

�π
Im[ lim

iωn→ω+i0+
i(ω̃n − ωn)], (28)

which again can be calculated either by Padé analytic contin-
uation or the direct solution of the self-consistency equations
slightly above the real-frequency axis [39]. Densities of states
for different �+/�− ratios with �+ = 0.2 and ξ = 1.2 as a
function of energy are plotted in Fig. 4 for different disorder
strengths: � = 0 [Fig. 4(a)], � = 0.05 [Fig. 4(b)], � = 0.1
[Fig. 4(c)], and � = 0.15 [Fig. 4(d)]. In Fig. 4(a), where the
disorder is zero, both gaps are clearly visible as two coherent
peaks. Adding a small amount of disorder, in Fig. 4(b), the
visible peaks are smeared out, and both gaps start to get
filled. Indeed, within Eq. (27), if the DOSs at zero energy
for two bands were the same (ξ = 1), then both gaps would
evolve similarly. In the present case corresponding to ξ = 1.2,
both gaps are filled almost in the same manner. In this way,
the smaller of the two gaps will be filled first. This is what
happens in Fig. 4(c), where the smaller gap is filled in, while
the larger gap still survives. Finally, in Fig. 4(d), both gaps are

FIG. 4. Density of states for different �−/�+ ratios and ξ =
1.2 as a function of energy plotted for (a) � = 0, (b) � = 0.05,
(c) � = 0.1, and (d) � = 0.15.

filled. Transport measurements can clearly indicate the value
of � at which the smaller gap is filled. The second critical
disorder at which the larger gap is filled shows up as a kink
in the trend of the zero-bias peak as a function of disorder.
The presence of such a kink is an essential difference between
the chiral superconductivity in helical states and Rashba spin-
orbit coupled systems. If the system is in a regime where the
smaller gap is already filled, the specific heat measurement
can detect the in-gap features and the larger gap.

III. GAP-FILLING STATES CAUSED BY IN-PLAIN
ZEEMAN COUPLING

In this section we investigate the effect of in-plane mag-
netic field as another possible origin of midgap states. This
mechanism was suggested recently [33] in the context of
sSc-TI. In this section we investigate this mechanism for
the chiral d ± id superconductivity and also for the d-wave
pairings. In our setup shown in Fig. 1 the in-plane Zeeman
coupling is provided by proximity to Ni. We start by adding
an in-plane Zeeman field V σy to Hamiltonian (21),

H0 =
∑

k

c†
k

[ |k|2
2m

σ0 + vR(kxσy − kyσx ) − μ − V σy

]
ck

+
∑
k,σσ ′

(�σσ ′ (k)c†
k,σ c†

−k,σ ′ + H.c.), (29)

where the matrix �(k) is parameterized as follows:

�(k) =
(

i|k|�1(k)e−iθk �0(k)
−�0(k) i|k|�1(k)eiθk

)
. (30)

For numerical calculations we set (m, vR, μ) = (0.3, 1, 0.5).
To address the surface of the topological insulator we let
1/2m → 0 and vR = vF .
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FIG. 5. Density of states for (a)–(c) the surface of the topological insulator and a Rashba electron gas with (d)–(f) spin singlet (�0, �1) =
(0.5, 0) and (g)–(i) spin triplet (�0,�1) = (0, 0.5). The contribution of dx2−y2 and dxy pairings in each row is as follows: in the first row
(ζx2−y2 , ζxy ) = (1, 0). In the second row (ζx2−y2 , ζxy ) = (0, 1), and in the third row we have set (ζx2−y2 , ζxy ) = (1, 1), as shown in each panel.
The values of in-plane Zeeman coupling V are indicated in the legend.

For the Rashba model with two Fermi contours λ = ± and,
consequently, pairings �±(k), the gap functions in Eq. (30)
can be written as [40,41] �1(k) = �+(k) − �−(k) and
�0(k) = �+(k) + �−(k). We take a general case for
band pairings as �±(k) = (�0 ± �1)(ζx2−y2 cos 2θk +
iζxy sin 2θk ), where (ζx2−y2 , ζxy) are O(1) numerical
parameters that encode the relative contribution of dx2−y2

and dxy pairings. With this identification for pairing functions,
we rewrite the pairing matrix (30) as(

i|k|�1e−iθk �0

−�0 i|k|�1eiθk

)
(ζx2−y2 cos 2θk + iζxy sin 2θk ),

(31)

where (kx, ky) = |k|(cos θk, sin θk ). In this way the explicit
d ± id structure has been factored out. Now the amplitudes
�0 and �1 do not depend on k. The above pairing matrix has
a structure in which the superconductivity is nodal unless both
ζx2−y2 and ζxy become nonzero, which then breaks the TRS.

In Fig. 5 we present DOSs for various cases. The three
rows, from top to bottom, correspond to (ζx2−y2 , ζxy) = (1, 0),
(ζx2−y2 , ζxy) = (0, 1), and (ζx2−y2 , ζxy) = (1, 1). The panels in
the first column depict the results for the surface of topological

insulators, while those in the next two columns are for the
electron gas with Rashba coupling.

Let us first consider the surface of a topological insulator.
As pointed out, in this case we need to set �0 = �1 =
0.5. The corresponding DOS is shown in Figs. 5(a)–5(c).
Figures 5(a) and 5(b) correspond to nodal dx2−y2 and dxy

pairing symmetries. As seen, in the absence of the Zeeman
field we have a V-shaped pseudogap arising from the node
in the pairing function, as shown by the solid red line. The
smallest amount of in-plane Zeeman V gives rise to Bo-
goliubov Fermi contours, and consequently, a finite DOS is
created at E = 0. The most interesting situation occurs when
the superconducting state is fully gapped [Fig. 5(c)] due to
TRS breaking of the dx2−y2 + idxy pairing wave function. In
the absence of Zeeman coupling there is a clear gap in the
DOS. However, a rather strong Zeeman coupling can fill the
gap by creating Bogoliubov Fermi contours. The creation of
the latter contours is shown in Fig. 6. In the normal case and
in the absence of a Zeeman field the single Fermi contour is
shown by a helical circle [Fig. 6(a)], emanating from the linear
dispersion in Fig. 6(d). While in the chiral superconducting
phase the Fermi contour disappears, an in-plane Zeeman field
creates Bogoliubov Fermi contours [Fig. 6(b)], resulting from
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ky
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FIG. 6. (a) The Fermi contour and (d) the dispersion of the surface of the topological insulator. The red arrows indicate the helical structure
of the Fermi contour, and the red dashed line indicates the Fermi level. Bogoliubov Fermi contours with � = 0.5 appear for (b) V = 0.4 and
(c) V = 0.6. (e) and (f) The corresponding Bogoliubov quasiparticle dispersions.

evolving the Bogoliubov quasiparticle bands and crossing the
zero energy as shown in Fig. 6(e). A stronger Zeeman field
makes the Bogoliubov Fermi contours more pronounced, as
depicted in Figs. 6(c)–6(f).

The DOSs for the Rashba model are shown in Figs. 5(d)–
5(g) for dx2−y2 pairing, Figs. 5(e)–5(h) for dxy pairing, and
Figs. 5(f)–5(i) for dx2−y2 + idxy pairing. Here we can also tune
�0 and �1 independently. We consider two extreme cases
where (�0,�1) = (0.5, 0), corresponding to purely singlet
pairing, as shown in Figs. 5(d)–5(f), and (�0,�1) = (0, 0.5),
corresponding to a triplet case, as shown in Figs. 5(g)–5(i).
Again, it is clearly seen that for nodal cases a tiny Zeeman
field creates a finite DOS at zero energy, and the fully gapped
case needs stronger Zeeman coupling for the gap to be filled
with Bogoliubov quasiparticles.

IV. CONCLUSIONS

This work was mainly motivated by the observation of
in-gap states in the point-contact tunneling measurements in
the nodeless time-reversal symmetry-breaking superconduct-
ing epitaxial Bi/Ni bilayer system. In the previous work by
one of the authors and coworkers [23], it was proposed that
the pairing symmetry should be the surface chiral d ± id
superconductor, in agreement with Kerr measurements and
the thickness-dependent transition temperature. In this work
we considered the effects of both magnetic and nonmagnetic

impurities on the superconducting gap. We showed in all
cases gap-filling states appear in the gap and start to fill it.
Alternatively, we showed that the in-plane Zeeman coupling,
which is produced by a Ni layer lying underneath Bi, can
also create Bogoliubov Fermi contours of quasiparticles with
nonvanishing spectral weight within the gap. This latter mech-
anism underlying the gap-filling states is of particular interest
when we compare the value of the superconducting gap �

with the strength of the Zeeman coupling V in the Bi/Ni
bilayer. According to recent optical measurements, the value
of the superconducting gap is � = 0.7 mV [24], and the one
for Zeeman coupling is V = 2 mV [34]. Thus, it is quite
possible that the in-plane Zeeman coupling exceeding the gap
creates Bogoliubov Fermi contours, and as we have shown in
Figs. 5 and 6, a large number of gap-filling states appear.

It is interesting to examine the boundary modes localized
between domains with opposite chiral pairings and their possi-
ble impact on the formation of the zero-bias anomaly observed
in tunneling measurements, which we leave for future study.
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