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Spin wave stiffness and exchange stiffness of doped permalloy via ab initio calculations
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The way doping affects the spin wave stiffness and the exchange stiffness of permalloy (Py) is investigated
via ab initio calculations, using the Korringa-Kohn-Rostoker (KKR) Green function formalism. By considering
various types of dopants of different nature (V, Gd, and Pt), we are able to draw general conclusions. To describe
the trends of the stiffness with doping it is sufficient to account for the exchange coupling between nearest
neighbors. The polarizability of the impurities is not important for the spin wave stiffness. Rather, the decisive
factor is the hybridization between the impurity and the host states as reflected by changes in the Bloch spectral
function. Our theoretical results agree well with earlier experiments.

DOI: 10.1103/PhysRevB.100.024435

I. INTRODUCTION

The modification of the properties of magnetic materials
by doping is a promising and intensively studied way to make
progress in device technology and spintronics. One of the
widely studied materials in this respect is permalloy Fe19Ni81.
It attracts attention because of its high magnetic permeability
but also because of its transport properties, which are char-
acterized by a high and low electrical conductivity in the
majority and minority spin channels, respectively.

When studying the spin dynamics of materials, the contin-
uum approximation can be often employed. It assumes that
the angle of the magnetization changes slowly over atomic
distances so that the spin vectors can be replaced by a contin-
uous function m(r). The exchange energy is then [1]

E [m] =
∫

V
d3r Aex

∑
c=x,y,z

(
∂m
∂c

)2

. (1)

Here, the exchange stiffness constant Aex is closely connected
to the spin wave stiffness constant D via [1]

Aex = D Ms

2gμB
, (2)

where Ms is the saturation magnetization, g is the Landé factor
(g ≈ 2 for metals), and μB is the Bohr magneton. The spin
wave stiffness constant D is linked to the long wavelength
limit of the acoustic mode of magnon dispersion [2],

ε(q) = D |q|2 + β |q|4 + . . . , (3)

where ε(q) is the magnon energy and q is the corresponding
wave vector. From the application point of view, the exchange
stiffness is an important characteristic as it determines—
together with the magnetic anisotropy—the domain structure
of magnetic materials. In addition, it determines magnetiza-
tion dynamics in them.
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Recent interest in the spin wave and/or exchange stiff-
ness of doped permalloy (Py) has been motivated both by
fundamental science and by potential applications. Yin et al.
[3] studied the magnetic properties of Py doped with noble
metals Ag, Pt, and Au and found a good agreement between
theoretical and experimental values of Aex for dopant concen-
trations 10–30%. In another study the effect of doping Py by
4d and 5d elements on the stiffness was studied theoretically
for modest concentrations (5–15%) but corresponding experi-
mental data for comparison are lacking [4]. On the other hand,
experimental data are available for Py doped with V, Gd, and
Pt with concentrations from 1% to 10% thanks to the works
of Lepadatu et al. [5,6] and Hrabec et al. [7].

Tailoring magnetic properties by alloying and doping is
one of the very active fields in materials science. It would
be useful to understand better the mechanism how different
dopants affect the spin wave and exchange stiffness. In par-
ticular, it was suggested that the polarizability of the dopant
may be an important factor [3,7]. This should be checked and
assessed against other possible factors, such as hybridization
between host and dopant states. Another question is whether
the trends of the spin wave stiffness D and the exchange stiff-
ness Aex with the composition of an alloy system are always
the same. The studies often focus either on one quantity or the
other. Given the relation Eq. (2) between D and Aex this may
be appropriate but then again it is possible that some dopants
will have the same influence on D but different influence on
Ms, implying that the trends of D will be similar for these
dopants but the trends of Aex will differ. Finally, for practical
applications it would be helpful to have a simple model or
ansatz that would enable a quick estimate of how the stiffness
will change upon a particular doping.

To address these questions, we present here results of an
ab initio study of the spin wave stiffness and the correspond-
ing exchange stiffness for Py doped with V, Gd, and Pt.
These dopants have quite different electronic and magnetic
properties in many respects. Here, the electronic structure
is calculated relying on spin-density functional theory. For
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the Gd dopant the open core formalism is employed. The
exchange coupling constants are then obtained and the D and
Aex constants are evaluated and compared to experiment. The
influence of the magnetic properties of the dopants is dis-
cussed and analyzed. Moreover, it is shown that the effect of
doping on D can be parametrized either in terms of the mean-
field critical temperature or in terms of the nearest-neighbor
coupling. Densities of states and Bloch spectral functions are
evaluated and compared to monitor the hybridization between
the host and dopant states.

II. THEORETICAL SCHEME

A. Evaluation of the stiffness constants

We assume that the system can be described by a Heisen-
berg Hamiltonian

H = −
∑

i j

Ji j êi · ê j, (4)

with êi being a unit vector characterizing the orientation of the
magnetic moment for the atom i and Ji j being the exchange
coupling constant. The spin wave stiffness constant D can then
be expressed as a sum [8,9]

D =
∑

j

2μB

3μ j
J0 j R2

0 j, (5)

where μ j is the magnetic moment of atom j and R0 j is the cor-
responding interatomic distance. Equation (5) was originally
derived for systems containing atoms of one type only. The
sum over the atoms

∑
j converges only conditionally, so an

additional damping factor has been introduced which enables
evaluation of Eq. (5) by extrapolating the partial results to
zero damping [9]. Recently the applicability of Eq. (5) was
extended to multicomponent systems [4,10,11]. In our case we
are dealing with doped Py so we have atoms of three different
types located on lattice sites of an fcc structure. If we label
atomic types by α and lattice sites by j, the spin wave stiffness
constant D can be evaluated as

D = lim
η→0

D(η) , (6)

D(η) =
∑

α

cα Dα (η) , (7)

Dα (η) =
∑

j

∑
β

cβ

2μB

3
√|μα||μβ | J (αβ )

0 j R2
0 j e−η

R0 j
R01 , (8)

where cα and μα are the concentration and the magnetic
moment of atoms of type α, J (αβ )

0 j is the pairwise exchange
coupling constant if an atom of type α is located at the lattice
origin and an atom of type β is located at the lattice site
j, R0 j is the distance of the site j from the lattice origin,
η is the damping parameter, and R01 is the nearest-neighbor
interatomic distance.

When evaluating the sums in Eqs. (7) and (8), one should
keep in mind that the magnetic moments are not all of the
same nature. Namely, the moments of the V and Pt atoms
do not originate from the atoms themselves but are induced
by the neighboring Fe and Ni atoms. Thus, they cannot be
treated as independent entities when describing the tilting

of the magnetic moments. This point was recognized in the
past, for example, in connection with efforts to describe the
temperature dependence of magnetism of compounds such as
FePt [12], FeRh [13], or NiMnSb [14]. A thorough discussion
and a way to solve the problem by treating the induced
moments via the linear response formalism can be found in
Ref. [15]. In our case the situation is different because we
are interested in the spin wave stiffness for T = 0, which
is determined by the energetics of spin waves in the long-
wavelength limit, where the angles between the spins are very
small and the corresponding decrease of the induced magnetic
moments will be also very small.

Reckoning all this, we deal with the moments on V and
Pt atoms in a hybrid way: We include them in the

∑
β sum

in Eq. (8) but not in the
∑

α sum in Eq. (7). The V and
Pt moments are thus supporting the orientations of magnetic
moments at the Fe and Ni atoms but they themselves do not
contribute to D directly. To get more insight into the role of
the dopant moments, we present further on in Sec. III A also
the results obtained when the moments at the dopants were
ignored completely in Eqs. (7) and (8) and when they were
treated equally as the moments at Fe or Ni atoms, i.e., fully
included both in the

∑
α sum in Eq. (7) and in the

∑
β sum in

Eq. (8). The moments of Gd atoms are intrinsic. Therefore, we
treat them in the same way as moments of Fe and Ni atoms,
unless explicitly said otherwise.

The exchange stiffness constant Aex was obtained from the
spin wave stiffness constant D using Eq. (2). The saturation
magnetization Ms was determined as the magnetic moment
per unit cell (always including the contributions of all atomic
types). The Landé factor was taken as g = 2.1 [16,17].

B. Computational method

The calculations were performed within the ab initio
framework of the spin-density functional theory, relying on
the generalized gradient approximation (GGA) using the
Perdew, Burke, and Ernzerhof (PBE) functional. The elec-
tronic structure was calculated in a scalar-relativistic mode us-
ing the spin-polarized multiple-scattering or Korringa-Kohn-
Rostoker (KKR) Green function formalism [18] as imple-
mented in the SPRKKR code [19]. For the multipole expansion
of the Green function, an angular momentum cutoff �max = 3
was used. The disorder was treated within the coherent poten-
tial approximation (CPA). The potentials were subject to the
atomic sphere approximation (ASA). Identical atomic radii
were used for all atomic species on a given site, as is common
in CPA calculations. By doing this we neglect effects of local
lattice relaxations and may effectively introduce some artifi-
cial charge transfer [20]. We do not expect that this affects our
conclusions significantly. In principle, these constraints could
be bypassed by employing unequal constituent atoms radii
[21]. For each dopant concentration, the equilibrium lattice
constant a0 was determined by minimizing the total energy.
The exchange coupling constants J (αβ )

0 j were evaluated from
the electronic structure using the prescription of Liechtenstein
et al. [8].

Taking the limit limη→0 D(η) in Eq. (6) is a delicate issue.
To avoid errors in extrapolating D(η) to η = 0, one should
evaluate D(η) down to as low η as possible. However, low
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η implies that the sum Eq. (8) converges slowly with the
distance R0 j . One should, therefore, extend the sum

∑
j to

large distances. Evaluating the exchange coupling constants
J (αβ )

0 j for large R0 j requires a very dense mesh in the k space
to avoid numerical errors for the structure constants. In our
case the situation is not so critical because we are dealing with
alloys, meaning that the requirements on the extent of the

∑
j

sum in Eq. (8) and on the density of the k mesh in evaluating
the J (αβ )

0 j constants are not so demanding. Nevertheless, to be
on the safe side, the k-space integration was carried out via
sampling on a regular mesh corresponding to 62 × 62 × 62
points in the full Brillouin zone and the

∑
j sum in Eq. (8)

covered interatomic distances up to 20.5 a0 (corresponding to
about 136 000 atomic sites). With these settings numerically
accurate values of D(η) were obtained for η ranging from 0.2
to 1. The extrapolation to η = 0 was done using a fifth-degree
polynomial.

A proper description of magnetism of Gd requires going
beyond the GGA. Many aspects of magnetism of rare earth
metals can be described within the open-core formalism,
where the f electrons are treated as tightly bound core elec-
trons and their number is kept fixed to an integer number
during the self-consistency loop [22]. In particular it was
shown that the exchange coupling of Gd and its compounds
can be described by the open core formalism quite well
[23–25]. Therefore we employ it here when discussing the
impact of doping by Gd atoms. More specifically, we used
a mixed approach where we first calculate the electronic
structure of Gd-doped Py via the open core formalism and
then we use the self-consistent potential obtained thereby to
evaluate the exchange coupling constants in a standard way,
i.e., treating the Gd f electrons as valence electrons. To check
whether this approach is justified, we compared the density
of states (DOS) obtained via both approaches. We found that
the positions of the Gd f states practically do not depend on
whether they are provided by the open core calculation itself
or whether they are derived from the peaks in the density
of the Gd f states obtained by a “standard” calculation for
the potential generated by the open-core formalism (data not
shown). It turns out in the end that use of the open core
formalism is not crucial, the stiffness constants obtained in
this way are very close to the constants obtained by relying
solely on the bandlike description of the f electrons. The
equilibrium lattice constant a0 was evaluated always within
the GGA, for all dopant types.

III. RESULTS

A. Comparing calculated values for D and Aex with experiment

Results obtained for the equilibrium lattice constant a0,
magnetization per unit cell Ms, and spin wave stiffness D for
V-doped Py are shown in Table I. As discussed in Sec. II A, we
show D obtained when treating the moments of the V atoms
as supporting, i.e., omitting them in the

∑
α sum in Eq. (7)

but keeping them in the
∑

β sum in Eq. (8). The magnetic
moments of the V atoms are oriented antiparallel to the
moments at the Fe and Ni atoms, therefore the magnetization
Ms decreases rapidly with increasing concentration of the V
atoms.

TABLE I. Equilibrium lattice constant a0, magnetic moment per
unit cell Ms, and spin waves stiffness constant D for V-doped Py.

conc. a0 Ms D

(%) (a.u.) (μB/cell) (meV Å
2
)

0.0 6.658 1.017 576
1.0 6.662 0.982 534
2.5 6.666 0.926 478
3.5 6.670 0.888 444
6.0 6.676 0.799 369
10.0 6.695 0.671 273

Analogous results for Gd-doped Py are shown in Table II.
We present here D calculated by three different methods:
(i) ignoring the moments at Gd atoms altogether [omitting
them both in the

∑
α sum and in the

∑
β sum in Eqs. (7) and

(8)], (ii) treating them as supporting [omitting them in the
∑

α

sum in Eq. (7) but keeping them in the
∑

β sum in Eq. (8)],
and (iii) treating the Gd moments equally as the Fe and Ni
moments (including them in the

∑
α sum and in the

∑
β sum).

It is obvious from Table II that the way the Gd moments are
treated does not really matter for the spin wave stiffness of
Gd-doped Py.

The influence of using the open core formalism for Gd-
doped Py is shown in Table III. It contains the magnetization
Ms and the spin wave stiffness D calculated for the potential
obtained using the open core formalism and for the potential
obtained via the GGA. One can see that the difference be-
tween both procedures is not significant in this regard.

Results for Pt-doped Py are shown in Table IV. Here
we show additionally the experimental results for D at zero
temperature obtained by Yin et al. [26]. The experimentally
observed decrease of D with increasing Pt concentration is
similar to the decrease obtained by theory.

Our focus is on comparing the trends of D and Aex with
the dopant concentration for different dopant types. This is
inspected in Fig. 1. One can see that the spin wave stiffness
D for V-doped Py and Gd-doped Py is practically the same.
The difference appears only for the exchange stiffness Aex

and stems from the differences in the magnetization for these
two systems (cf. the third columns of Tables I and II). The
experimental data are shown in the bottom graph of Fig. 1.
Both experiment and theory suggest that the decrease of the
exchange stiffness Aex with increasing dopant concentration

TABLE II. Equilibrium lattice constant a0, magnetic moment per
unit cell Ms, and spin waves stiffness constant D for Gd-doped Py.

The unit for D is meV Å
2
.

stiffness constant D

conc. a0 Ms dopants dopants dopants
(%) (a.u.) (μB/cell) ignored supporting as equal

0.0 6.658 1.017 576 576 576
1.0 6.693 1.067 531 531 530
5.0 6.803 1.244 380 381 381
10.0 6.952 1.477 242 243 243
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TABLE III. Magnetic moments per unit cell Ms and spin waves
stiffness constant D for Gd-doped Py obtained by taking the potential
from the open-core calculations and from the GGA-based band
structure calculations.

open-core potential GGA potential

conc. Ms D Ms D

(%) (μB/cell) (meV Å
2
) (μB/cell) (meV Å

2
)

1.0 1.067 531 1.066 532
5.0 1.244 381 1.239 387
10.0 1.477 243 1.463 250

is approximately linear and that this decrease is quickest for
the V dopant and slowest for the Pt dopant.

Concerning the absolute values of Aex, part of the differ-
ence between theory and experiment is due to the temper-
ature effects. The theoretical data are for zero temperature.
The experimental data were obtained by fitting the tempera-
ture dependence of the magnetization to the Bloch law while
assuming implicitly that the stiffness itself does not depend
on temperature [5–7]. This is, however, not the case [26–29]
meaning that the experimental values for Aex in Fig. 1 corre-
spond to an unknown effective temperature. Presumably the
effect of this will not be very large: Temperature-dependent
measurements of the spin wave stiffness of doped Py indicate
that at room temperature the constant D decreases to about
90 % of its zero-temperature value [26]. Therefore we assume
that most of the difference in the absolute values of Aex as
given by theory and by experiment comes from the spin
wave stiffness constant D. Further comments are given at the
beginning of Sec. IV below.

One of the intensively studied fundamental questions in
connection with the spin dynamics of doped ferromagnets
has been about the role of the magnetism of dopant atoms
on the exchange and spin wave stiffness [3,7]. We have
shown already that the difference in the exchange stiffness
Aex between V-doped and Gd-doped Py is because of the
difference in the magnetization of these systems, which in
turn stems from different magnetic moments at Gd and V

TABLE IV. Equilibrium lattice constant a0, magnetic moment
per unit cell Ms, and spin waves stiffness constant D calculated for
Pt-doped Py. Experimental values for D of Yin et al. [26] are shown
in the last column.

conc. a0 Ms D calc. D exper.

(%) (a.u.) (μB/cell) (meV Å
2
) (meV Å

2
)

0.0 6.658 1.017 576 442
2.5 6.708 1.015 564
5.0 6.755 1.014 549
7.5 6.798 1.013 533
10.0 6.837 1.007 519
13.0 6.876 0.997 504
15.0 6.905 0.992 493 388
20.0 6.972 0.972 469
30.0 7.078 0.923 420 329
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FIG. 1. Theoretical spin wave stiffness D (upper panel) and
exchange stiffness Aex (central panel) for Py doped with V, Gd,
and Pt. Experimental values for Aex are shown in the lowermost
panel, with the data from Ref. [5] for V-doped Py, from Ref. [6] for
Gd-doped Py, and from Ref. [7] (circles) and Ref. [3] (circles with
crosses) for Pt-doped Py.

atoms. We have also shown that for Gd doping it does not
matter for D whether the Gd moments are included in Eqs. (7)
and (8) or not (Table II). Let us now turn to the spin wave
stiffness for Py doped with V and Pt, both of which are
easy to polarize, and compare D evaluated via two extreme
approaches: (i) by treating the dopants equally as the host
atoms concerning the coupling, i.e., both sums

∑
α in Eq. (7)

and
∑

β in Eq. (8) include also the dopant atoms, and (ii) by
ignoring the coupling for the dopants altogether, i.e., neither
of the sums

∑
α and

∑
β includes the dopants. The difference

between both approaches can be seen in Fig. 2, where we
display the results for Pt- and V-doping only; the data for
Gd-doped Py are very similar to V-doped Py (cf. the upper
panel of Fig. 1). One can see that even though ignoring the
coupling for the dopants decreases the values of D by up to
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FIG. 2. Spin wave stiffness D for Py doped with V and Pt
calculated by considering the coupling constants J (αβ )

i j in Eqs. (7)
and (8) for all atoms on the same footing (full lines), by completely
ignoring the coupling constants for the dopants (dashed lines), and by
additionally suppressing the exchange field B for the dopant atoms
(circles).

20% (depending on the concentration), the overall trend and
especially the difference between the effect of both dopants
does not change. To proceed further, we performed another
calculation where the effective local exchange field B was
suppressed for the Pt and V dopants. The results (depicted by
the circles in Fig. 2) are nearly identical to the situation when
the exchange coupling involving the dopant atoms is ignored.

We conclude from this that the polarizability of the dopants
does not have a significant influence on the spin wave stiffness
D of doped permalloy. The reason why different dopants lead
to different results for D must be elsewhere, presumably in the
details of the electronic structure and the related hybridization
(see Sec. III C below).

B. Influence of dopants on the exchange coupling

In the following we consider the mechanism through which
different dopants affect the stiffness of permalloy. The first
information concerns the size of the region which effectively
determines the spin wave stiffness constant D. We mentioned
already that to get good numerical stability, the sum over the
sites

∑
j in Eq. (8) has to include sites at very large distances

R0 j [9]. For a deeper insight, the dependence of the stiffness
constant D on the maximum distance R(max)

0 j up to which the
sum

∑
j in Eq. (8) extends is presented in Fig. 3. No damping

has been considered for simplicity (η = 0). The constant D
oscillates with R(max)

0 j and the amplitude of these oscillations
decays very slowly. This is why the sum in Eq. (8) has to cover
large distances R0 j and why the damping factor η has been
introduced [9].

It is evident from Fig. 3 that significant variations of
the spin wave stiffness constant D only occur within a few
nearest shells—up to about 2a0 (a0 is the lattice constant).
Afterwards, D just oscillates around the mean value. If the
difference in D for two dopant concentrations is big for large
R(max)

0 j , it is big also for small R(max)
0 j and vice versa. The

difference between V and Pt concerning the rate how D
decreases with increasing dopant concentration (see Fig. 1)
is evident for small values of R(max)

0 j already. Including large
distances R0 j when evaluating Eq. (8) is thus necessary just
for technical reasons—to ensure the numerical stability.
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FIG. 3. Dependence of the stiffness constant D on the maximum
distance R(max)

0 j accounted for when evaluating Eq. (8) for undoped
permalloy and for permalloy doped by 2.5% and 10% of V (left) and
Pt (right).

Further information about how the nearest neighborhood
affects the spin wave stiffness comes from the exchange
coupling constants. Figure 4 shows them for the (Fe-Fe), (Fe-
Ni), and (Ni-Ni) pairs if they form the nearest neighbors and
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FIG. 4. Exchange coupling constants for Fe-Fe, Fe-Ni, and Ni-
Ni atomic pairs if they are first nearest neighbors (upper panels) or
second nearest neighbors (lower panels). Data for V-doped Py are
shown by triangles, for Gd-doped Py by squares, and for Pt-doped
Py by circles.
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the next-nearest neighbors. Even though the stiffness constant
D has to be evaluated including also pairs whose members
are much further apart, the main feature can be seen from
J01 and J02 already: For the (Fe-Ni) and (Ni-Ni) pairs, the
coupling constants for V-doped and Gd-doped Py are very
similar whereas for Pt-doped Py they differ. As Ni has by far
the highest concentration in our systems, this explains why
the spin wave stiffness constant D is similar for the V and Gd
dopants and different for the Pt dopant.

Based on this, one can speculate that even though a formal
evaluation of D requires performing the sum

∑
j in Eq. (8)

up to a large distance R(max)
0 j , the bare influence of the doping

might be accounted for by a more simple quantity. Let us first
focus on the effective total coupling J0 defined as

J0 =
∑

j

J0 j, (9)

or, more specifically for our alloy system [cf. Eqs. (7) and (8)],

J0 =
∑

α

cα

∑
j

∑
β

cβJ (αβ )
0 j . (10)

This quantity is related to the mean-field Curie temperature
via

T (MFA)
C = 2

3

1

kB
J0.

Note that for a translationally-periodic system, one does not
need to perform the

∑
j sum in Eq. (10) explicitly, the J0

constant can be evaluated from the scattering paths operators
in a similar way as the individual Ji j constants [8].

The spin wave stiffness constant D is plotted as a function
of the effective total coupling J0 (or, equivalently, T (MFA)

C )
in the upper left panel of Fig. 5. One can see that for Py
doped with various impurities of different concentrations the
dependence of D on J0 is nearly linear. Quantitatively it can
be described by

D = 79.6 J0 − 95 (11)

if J0 is in meV and D in meV Å
2
. Using this universal fit,

we can recover the dependence of D on the concentration of
the impurities by first evaluating J0 for each system and then
getting appropriate D via Eq. (11). The outcome is shown in
the lower left panel of Fig. 5. One can see that this model
correctly separates the trends for the Pt impurity on one side
and for the V and Gd impurities on the other side and that
the slope of the dependency of D on the concentration is also
reproduced quite well.

To simplify matters even more, one can ask whether the
influence of impurities could be possibly described just by
focusing on the nearest neighbors. Therefore we inspect the
dependence of the stiffness constant D on the effective cou-
pling originating from the nearest neighbors only,

J1 =
∑

α

cα 12
∑

β

cβJ (αβ )
01 . (12)

The constant J (αβ )
01 characterizes the exchange coupling be-

tween the central atom of type α and an atom of type β in the
first coordination shell and the factor 12 stands for the number
of nearest neighbor sites for the fcc lattice. The resulting
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FIG. 5. Upper panels: Dependence of the theoretical spin wave
stiffness D on the effective exchange coupling parameter J0 (left)
and on the nearest-neighbor coupling J1 (right). The markers de-
note calculated values of D, J0, and J1 for different dopants and
concentrations, the straight lines show the linear fits. Lower panels:
Calculated spin wave stiffness D (markers) together with D obtained
from respective J0 values relying on the linear D(J0 ) fit (left) and
from respective J1 values relying on the D(J1) fit (right).

dependence of D on J1 is shown in the upper right panel of
Fig. 5. The spread around the linear fit

D = 109.4 J1 − 118 (13)

is now bigger than in the case of the D(J0) dependence but
still quite small. Indeed, by relying on Eq. (13), one can
get the dependence of D on the impurity concentration with
a similar accuracy as by relying on Eq. (11)—compare the
lower right panel of Fig. 5 with the lower left panel of the
same figure. One could thus say that the trend of the spin wave
stiffness with the dopant concentration is, to a decisive degree,
determined by the coupling between the nearest neighbors. As
concerns the value of the stiffness constant D, it depends on
the interaction within few nearest shells—see Fig. 3 and the
related text at the beginning of Sec. III B.

C. Influence of dopants on the electronic structure

The next step is to inspect the electronic structure. The
changes in the DOS for the Fe and Ni atoms caused by the
doping can be seen in Fig. 6, where we show in the same
graphs the data for undoped Py and for Py doped by 10% of
V, Gd, and Pt. For the V dopant the changes are minimal: The
corresponding DOS curves are hardly distinguishable from
each other. For the Pt dopant, the changes are more significant.
Still larger but as a whole similar changes can be observed also
for the Gd dopant. Based on Fig. 6, one would infer that the
hybridization between the electronic states of the host and of
the dopant is largest for the Gd dopant and smallest for the V
dopant.

Reckoning the results discussed so far, there seems to
be a difference in the picture offered by inspecting the Ji j

constants in Fig. 4 and by inspecting the DOS in Fig. 6. The
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FIG. 6. Upper panels: Comparison of the DOS for Fe atoms in undoped Py and in Py doped by 10% of V (left), Gd (center), and Pt (right).
Lower panels: As in the upper panels but for Ni atoms.

analysis of the coupling constants suggests that the V and
Gd dopants have a similar effect on the electronic structure
(which determines the Ji j’s) whereas the influence of the Pt
dopant is different. This follows also from spin wave stiffness
D shown in Fig. 1. On the other hand, the analysis of the
DOS suggests that qualitatively similar effects should follow
from introducing the Gd and Pt dopants whereas it is the V
dopant which differs in its effect on the electronic structure of
permalloy.

A more thorough view on the electronic structure of alloys
is provided by the Bloch spectral function A(k, E ), which can
be viewed as a k-resolved DOS. The effect of introducing
10% of V, Gd, and Pt into Py is shown in Fig. 7. Left panels
show A(k, E ) when the k vector is varied along straight lines
connecting high-symmetry points in the first Brillouin zone,
right panels show the Bloch spectral function at the Fermi
level A(k, EF ) when the k vector spans a two-dimensional
section of the k space (keeping kz = 0). By observing the E −
k scans, one cannot say unambiguously which dopant intro-
duces largest changes to the electronic structure of permalloy.
E.g., around the � point the smallest changes to A(k, E ) are
for the Pt dopant while changes introduced by V or Gd doping
are larger. On the other hand, if one focuses on the region
around the N point, doping by Gd has the largest impact
whereas by V the smallest impact. However, when discussing
the spin wave stiffness, one has to keep in mind that it is
associated with changes of electron energy caused by spin
wave excitations characterized by small wave vector q and
therefore contributed mainly by the electronic states close
to the Fermi level EF . As a result, the spin wave stiffness
is sensitive first of all to the electronic structure around EF .
The impact of doping on the states around EF is illustrated in

the right panels of Fig. 7. Here one can see that the changes
introduced by doping by Pt are significantly smaller than
changes introduced by doping by V or Gd.

The influence of the doping on the electronic structure
around EF can be quantified by integrating the difference
of Bloch spectral functions for a doped system and for an
undoped system. We evaluated the integral

∫
dk

∣∣AX(k, EF ) − Aundoped(k, EF )
∣∣, (14)

where AX(k, EF ) and Aundoped(k, EF ) are the Bloch spec-
tral functions for doped and undoped systems, respec-
tively, and the integration is carried along the path
X -	-�-
-L-Q-W -N-K-�-� outlined at the horizontal axes
of the left graphs in Fig. 7. The results are shown in Table V
for two dopant concentrations. The largest changes in the
electronic structure are introduced by Gd doping followed by
still considerable changes introduced by V doping, while the
changes introduced by Pt are small.

TABLE V. Integrals of the differences of Bloch spectral func-
tions at EF for doped and undoped systems, as defined in Eq. (14).
The units are arbitrary.

dopant concentration concentration
type 1% 10%

V 4.49 20.18
Gd 6.07 26.52
Pt 1.38 7.62

024435-7



O. ŠIPR, S. MANKOVSKY, AND H. EBERT PHYSICAL REVIEW B 100, 024435 (2019)

-4

-3

-2

-1

0

1

2

3

E
-E
F

(e
V

)

X L Q W N K
0

50

100

150

200

undoped
Py

-4

-3

-2

-1

0

1

2

3

E
-E
F

(e
V

)

X L Q W N K
0

50

100

150

200

10 %
of V

-4

-3

-2

-1

0

1

2

3

E
-E
F

(e
V

)

X L Q W N K
0

50

100

150

200

10 %
of Gd

-4

-3

-2

-1

0

1

2

3

E
-E
F

(e
V

)

X L Q W N K
0

50

100

150

200

10 %
of Pt

0.0

0.2

0.4

0.6

0.8

1.0

k y
(2
/a
0)

0.0 0.2 0.4 0.6 0.8 1.0

kx (2 /a0)

0

20

40

60

80

100

0.0

0.2

0.4

0.6

0.8

1.0

k y
(2
/a
0)

0.0 0.2 0.4 0.6 0.8 1.0

kx (2 /a0)

0

20

40

60

80

100

0.0

0.2

0.4

0.6

0.8

1.0

k y
(2
/a
0)

0.0 0.2 0.4 0.6 0.8 1.0

kx (2 /a0)

0

20

40

60

80

100

0.0

0.2

0.4

0.6

0.8

1.0

k y
(2
/a
0)

0.0 0.2 0.4 0.6 0.8 1.0

kx (2 /a0)

0

20

40

60

80

100

FIG. 7. Comparison of Bloch spectral functions for undoped Py and for Py doped by 10% of V, Gd, and Pt.

The picture emerging from analyzing Bloch spectra func-
tion is thus different from the picture offered by the DOS.
The smallest changes in A(k, E ) with respect to undoped
Py are clearly for the Pt dopant. The changes introduced by
V or Gd doping are bigger. Based on Fig. 7 and Table V
one would assess that the changes in the electronic structure
introduced by doping Py with Pt are significantly smaller than
the changes introduced by doping Py with V or Gd. Intuitively,
this implies that for the Pt dopant the changes in the values
of D will be smaller than for the V or Gd dopants—in
agreement with the results presented in Sec. III A. The Bloch

spectral function thus offers a more reliable picture than the
DOS.

IV. DISCUSSION

Ab initio calculations reproduce the experiment both as
concerns the dependence of Aex on the chemical type of
the dopant and as concerns the dependence of Aex on the
dopant concentration. Regarding the absolute numbers, there
are some differences, both between our theory and experiment
and between our theory and earlier calculations. In particular

024435-8



SPIN WAVE STIFFNESS AND EXCHANGE STIFFNESS OF … PHYSICAL REVIEW B 100, 024435 (2019)

our value of the spin wave stiffness D for undoped permalloy

Fe19Ni81 of 576 meV Å
2

is higher than 515 meV Å
2

obtained
by Yu et al. [30] via the tight-binding linear muffin-tin

orbital method or 522 meV Å
2

obtained by Pan et al. [4]
via the KKR-Green’s function method. The reason for this
is unclear, let us just note that several convergence issues
have to be addressed when evaluating D; our settings are
given in Sec. II B. Recent experimental values for D of Py

are 390 meV Å
2

[31] and 440 meV Å
2

[26], i.e., less than
the theoretical values. This is probably linked to problems
with describing the exchange coupling of Ni in terms of the
coupling constants Ji j—there is an even larger difference be-
tween theory and experiment for D of fcc Ni [9,30]. Besides,
the difference between our values for Aex and the experiment
is probably affected also by the temperature dependence of
D, which affects the interpretation of some experiments (as
mentioned in Sec. III A). Another factor not accounted for
by our calculations and possibly affecting the comparison
between theory and experiment is the polycrystallinity of
the experimental samples that were prepared by sputtering
[3,5–7]. One should acknowledge that there may be problems
also at the experimental side as the spread of values available
in the literature is quite large. A critical assessment would
require a standalone study. We just note for illustration that,
e.g., in the case of Fe the available experimental data for D

include 270 meV Å
2

[32] as well as 307 meV Å
2

[33], in the
case of Ni 398 meV Å

2
[34] as well as 530 meV Å

2
[31], and

in the case of Py 335 meV Å
2

[35] as well as 390 meV Å
2

[31]. The differences between experimental values of Aex for
Pt-doped permalloy reported by Hrabec et al. [7] and by Yin
et al. [3] (cf. Fig. 1) are thus not unusual. Let us summarize
that discrepancies between theory and experiment are often
observed for the spin wave and/or exchange stiffness and, so
far, they are not fully understood.

The fact that the spin wave stiffness D and the exchange
stiffness Aex are related through magnetization [see Eq. (2)]
which itself is affected by the doping means that there may be
situations where doping by two different materials will lead
to a similar D but a different Aex (or vice versa). In particular
we found that the spin wave stiffness D for V-doped Py and
Gd-doped Py is very similar but there is a difference in the
exchange stiffness Aex which arises just from the difference in
the magnetization (cf. Fig. 1).

The influence of doping on the stiffness D can be discussed
just by considering the influence of the atoms in the first
coordination shell (Fig. 5). This might appear as surprising
reckoning the slow convergence of the sums in Eqs. (5)
or (8) [9]. The explanation might be that what we investi-
gate in Fig. 5 is just the variation of D with the doping.
Equation (13), which we used for our analysis, was derived
by fitting the D(J1) dependence relying on the values of
D evaluated by extending the

∑
j sum to the interatomic

distance as large as 20.5 a0. However, once the fit according
to Eq. (13) has been established, one can predict how the
doping will influence the stiffness D just by considering the
nearest-neighbors coupling. Our fit has been verified for three
quite different dopants so presumably it can be used to assess
the effect of doping by other elements as well. This can be

helpful in current efforts to manipulate spin-driven properties
of materials.

Our results indicate that it does not really matter whether
the exchange coupling between the host atoms and the dopant
atoms is included in the stiffness calculation or not; the values
of D are by about 5% smaller in the latter case but the trends
are very similar (see Table II and Fig. 2). This indicates
that neither the polarizability of the dopant nor the exchange
coupling between the dopant atoms and the host atoms are
decisive factors for the spin wave stiffness D (unlike what
was conjectured before, see for example Refs. [3,7]). The
hybridization between the host states and the dopant states (or
lack of it) is more important than the dopant polarizability.
Interestingly, this hybridization has to be assessed not from
the DOS—which contains only a limited information—but
from the Bloch spectral function (cf. Figs. 6 and 7). The
fact that inspecting the Bloch spectra function provides a
better insight than inspecting the DOS alone can be seen as a
demonstration that the exchange coupling constants Ji j reflect
the full electronic structure, including its k dependence.

Earlier studies indicated that the exchange coupling in
4 f -electron systems cannot be properly described within the
local density approximation or the GGA. Employing the open
core formalism was suggested and tested for this purpose
[23]. In our case we found, nevertheless, that the stiffness of
Gd-doped Py calculated within the open-core formalism and
within the GGA is very similar. The reason for this might be
that as the Gd atoms are here just impurities, their f electrons
are localized “naturally,” by the lack of their hybridization
with the host states. A further reduction of the hybridization of
the Gd f states via the open core formalism is thus not needed.

Like most other calculations of the spin wave and exchange
stiffness we rely on the ASA [2–4,9]. For close-packed metal-
lic systems such as those we are studying here this is not a
serious limitation. This was demonstrated, e.g., on a study
of magnetic properties of disordered FePt where the CPA
was applied both within the ASA and within a full-potential
scheme [36].

V. CONCLUSIONS

Ab initio calculations for doped permalloy indicate that
the exchange stiffness constant Aex decreases with increasing
dopant concentration. This decrease is most rapid for the V
dopant followed by the Gd dopant, the slowest decrease is for
the Pt dopant—in agreement with experiment. The influence
of the V doping and the Gd doping on the spin wave stiffness
D is very similar; the difference in the influence of the doping
on the exchange stiffness Aex comes from the differences in
the magnetization Ms for V-doped and Gd-doped Py. The rate
of change of the spin wave stiffness upon introducing the
dopants can be discussed by just considering the influence
of the atoms in the first coordination shell. The hybridization
between impurity and host states is more important for the
stiffness than the polarizability of the impurity.
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APPENDIX: ACCURACY OF limη→0 D(η)
EXTRAPOLATION

The values of the spin wave stiffness D presented in
this paper rely on extrapolating data evaluated according to
Eqs. (7) and (8) for finite values of the damping parameter η

down to η = 0. This may be a tricky procedure. To present
an analysis of all its aspects would be beyond the scope of
this paper but the accuracy of our data can be illustrated
on the case of undoped Py. Figure 8 displays original D(η)
data points together with the fifth-degree polynomial used
for the η → 0 extrapolation. The D constant obtained with-
out any damping (η = 0) is shown as well. The error bars
depict errors caused by not yet fully damped D(R) oscil-
lations; they are discernible only for η > 0.1 at this scale.
The extrapolating polynomial was found by a least-squares
fit within the interval η ∈ [0.15; 1.00]. One can see that the
fit describes very well also the data points for η = 0.10,
η = 0.05, and η = 0.00 (within the numerical accuracy given
by the D(R) oscillations which are damped more and more
as η increases). If the V, Gd, or Pt dopants are introduced,
the procedure becomes even more robust: Namely, further
increase of the disorder increases the damping of the D(R) os-
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FIG. 8. Spin wave stiffness constant D(η) for undoped Py eval-
uated by performing the summation in Eq. (8) up to R(max)

0 j = 20.5a0

(a0 is the lattice constant) for several values of the damping param-
eter η together with the fifth-degree polynomial used to extrapolate
the data to zero damping.

cillations and the values of D thus become numerically more
stable.

The extrapolation is not an unambiguous procedure. One
can always speculate about using a polynomial of a different
degree for the fit or about varying a bit the interval of the
η values for which the polynomial is fitted. Within these
limits, the numerical accuracy of our values of D is a few

units of meV Å
2
. This is sufficient for our purpose, especially

given the fact that our focus is on the trends of the D values
evaluated always according to the same recipe.
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