
PHYSICAL REVIEW B 100, 024423 (2019)

Criticality and factorization in the Heisenberg chain with Dzyaloshinskii-Moriya interaction
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In this work, we address the ground-state properties of the anisotropic spin-1/2 Heisenberg XYZ chain
under the interplay of magnetic fields and the Dzyaloshinskii-Moriya (DM) interaction which we interpret as
an electric field. The identification of the regions of enhanced sensitivity determines criticality in this model. We
calculate the Wigner-Yanase skew information (WYSI) as a coherence witness of an arbitrary two-qubit state
under specific measurement bases. The WYSI is demonstrated to be a good indicator for detecting the quantum
phase transitions. The finite-size scaling of coherence susceptibility is investigated. We find that the factorization
line in the antiferromagnetic phase becomes the factorization volume in the gapless chiral phase induced by DM
interactions, implied by the vanishing concurrence for a wide range of field. We also present the phase diagram
of the model with three phases—antiferromagnetic, paramagnetic, and chiral—and point out a few common
mistakes in deriving the correlation functions for the systems with broken reflection symmetry.
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I. INTRODUCTION

Quantum phase transitions (QPTs) that deal with dramatic
changes of the ground-state and low-excitation properties
induced by small variations of driving parameters are one of
the very active fields of research in several contexts of modern
statistical mechanics, quantum information, and condensed
matter physics. QPTs are believed to take place exclusively
in many-body systems [1], while it has been recently realized
that a few-body system may also develop a QPT [2–6].
Quantum fluctuations accumulated by the noncommutativity
between the driving term and the rest are responsible for
the sudden change of the correlations among the system’s
constituents.

In view of the central role played in interdisciplinary fields,
it is of crucial importance to devise suitable tools for a proper
characterization of the changes of a quantum system at a
QPT. To this purpose, different quantum-information-based
concepts have been put forward over recent years, in order
to identify ground-state variations across QPTs. Quantum
coherence and quantum entanglement are two characteristic
properties of a quantum system. Both of them are consid-
ered to be valuable resources in most quantum information
processing tasks [7–11]. Quantum entanglement indicates
that a quantum state is nonseparable and was first pointed
out by Schrödinger in 1935 for constituent subsystems [12].
Furthermore, the entanglement spectrum is very useful in
recognizing certain QPTs in spin systems [13]. In contrast,
quantum coherence concerns the set of states and is usually
defined in a given basis by measuring the distance between the
quantum state ρ and its closest incoherent state for the system

*youwenlong@gmail.com

as a whole [14]. Although these two quantum mechanical
properties have completely different origins, indications exist
that they are equivalent by computing [15].

It is known that the correlation length tends to be infinite
in the critical regime although the interactions are short-
ranged, which can lead to diverging susceptibilities signaling
a QPT. The sensitivity is greatly enhanced especially for
the system at quantum criticality comparing with that away
from the critical region. In this respect, quantum-enhanced
measurements open the path to many new forms of enhanced
sensitivity across quantum criticality [16]. Taking external
fields as probes, the sensitivity given by the entanglement
susceptibility, coherence susceptibility [17,18], and fidelity
susceptibility [19,20] infers the signatures of quantum critical
points and scaling behaviors. Such strategy is very useful in
Hamiltonian engineering, when one can evaluate the effect of
added terms in the Hamiltonian.

To investigate quantum criticality, we consider a specific
quasiclassical ground state that can be modulated in the
anisotropic quantum antiferromagnetic (AFM) chain under
external fields, as pointed out by the pioneering work of
Kurmann, Thomas, and Müller [21]. The separable states are
namely the free states in the resource theory of entangle-
ment [22]. The possible engineering of a completely separable
state is nontrivial and particularly significant in the presence
of strong interactions for information processes [23] and
quantum simulation [24]. Over recent years, several physical
quantities and experimental methods have been developed for
identification and exploration of QPTs. In the last decade,
quantum information measures, such as in the form of en-
tanglement and coherence, were found to be an effective
tool for characterizing QPTs and ground-state factorization.
Exploring both criticality and factorization using the tools
of quantum information has proven fruitful in a number of
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contexts, e.g., low-dimensional spin models, fermionic sys-
tems, cold-atom system, and open quantum systems.

In this work, we focus on the one-dimensional (1D)
Heisenberg model with nearest-neighbor exchange coupling,
which has long served as an archetype for the study of
quantum magnetism in low dimensions. Strong fluctuations
of interacting spins are of particular importance at low dimen-
sion, where the Mermin-Wagner theorem states that thermal
fluctuations prevent long-range order at any finite temperature
when the Hamiltonian obeys a continuous rotational sym-
metry in spin space. Even at absolute zero temperature, the
zero-point fluctuations may also prevent long-range order by
incorporating additional interactions. The effects induced by
external electric and magnetic fields have been of particular
interest since the magnetic state can be qualitatively different
depending on the magnitude and direction of the external
fields. This has led to interest in the study of QPTs at finite
fields [25–27].

Recently, Radhakrishnan, Ermakov, and Byrnes [28]
studied the quantum coherence in the XY chain with
Dzyaloshinskii-Moriya (DM) interaction and indicated that
quantum Jensen-Shannon divergence can efficiently probe the
second-order QPT. Moreover, the local and intrinsic ingre-
dient among the total quantum coherence can be discrim-
inated to characterize the first-order QPTs in the spin-1/2
XXZ chain [29] and the topological QPTs in the extended
XY model [30]. The QPTs and the quantum coherence in
Heisenberg XYZ systems were not investigated carefully until
now. While most studies consider the ground-state factoriza-
tion in symmetric spin systems, the knowledge is lacking in
considering the existence of factorized ground states in more
complex multipartite systems. The primary motivation of the
present work is to try to elucidate the role of DM interaction
in the Heisenberg XYZ model, and explore whether quantum
criticality and factorization can be captured by emerging
coherence. Exploiting favorable figures of merit of quantum
information measures allows extracting the full ground-state
phase diagram of the spin-1/2 Heisenberg XYZ chain. We
remark that especially two-qubit reduced density matrices
adopted in Ref. [28] are improper.

The remainder of this paper is organized as follows. We
introduce the 1D anisotropic Heisenberg model with DM
interactions in Sec. II. In Sec. III, we present the analytical
approach and calculate quantum entanglement and quantum
coherence. In Sec. IV, we discuss the scaling behavior of the
local quantum coherence in the XY model, and the factoriza-
tion phenomena under the interplay of DM interactions and
magnetic field. Finally, in Sec. V we give the summary and
conclusion.

II. THE MODEL

We consider the anisotropic Heisenberg chain described by
the following Hamiltonian:

H = J
N∑

j=1

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1

)

+
N∑

j=1

�D · (�σ j × �σ j+1) − h
N∑

j=1

σ z
j , (1)

where N is the number of the spins in the chain, and the
periodic boundary condition is assumed, i.e., �σN+ j = �σ j , and
�σ j = {σ x

j , σ
y
j , σ

z
j }. The model has AFM exchange coupling

(J � 0), anisotropy �, DM vector �D, and uniform magnetic
field strength h acting on {σ z

j }. Here we presume that the �D
vector is along the direction perpendicular to the plane, i.e.,
�D = Dẑ, and we take D as the magnitude of �D. The parameter
γ � 0 measures the anisotropy of spin-spin interactions in the
xy plane which typically varies from 0 (isotropic XY model)
to 1 (Ising model).

Several types of model interactions are currently being
explored for simulating effective spin systems like Ising, XY,
and XYZ, which may stand for systems of trapped ions [31]
or polaritons [32]. An important extension of the effective
models is the DM interaction which can be interpreted as
an electric field. The DM interaction was introduced by
Dzyaloshinskii and Moriya in a phenomenological model [33]
and a microscopic model [34], respectively. The DM inter-
actions exist in solids, such as the ferrimagnetic insulator
Cu2OSeO3 [35–37] or multiferroic BiFeO3 [38], and are
synthesized in optical lattices for both fermions [39,40] and
bosons [41,42].

A microscopic mechanism arises from the fact that
the electric polarization generated by the displacement of
oppositely charged ions is driven by noncollinear spi-
ral magnetic structures with a cycloidal component [43],
�P ∝ êi j × (�σi × �σ j ), where êi j is the unit vector connect-
ing the neighboring spins �σi and �σ j . The coupling coeffi-
cient of macroscopic polarization is material-dependent [44],
and the sign depends on the vector spin chirality. In this
respect, an energy shift, − �D · �P, by applying an electric
field �D prevails over the Heisenberg exchange and the QPT
occurs in this system. The supplemented DM interaction
can be gauged away by performing a spin rotation with
respect to a twist phase φ = tan−1(D/J ) of spin operators
σ+

j σ−
j+1 → σ+

j σ−
j+1eiφ for γ = 0 [45]. So, in this way the

XXZ model with DM interaction has been changed to the
pristine XXZ model with twisted boundary condition after
rotation. Note that the absence of inversion symmetry in the
DM interaction introduces anisotropy to the system.

III. THE INFORMATION MEASURES

For general parameters, Hamiltonian (1) is not integrable
except at specific points in parameter space. In the case of
γ = 0, D = 0, h = 0, one finds that the XXZ spin chain
with nearest-neighbor interaction is integrable, and it can be
analytically solved using the Bethe ansatz [46,47]. Here we
use the Jordan-Wigner transformation to represent the spin
operators σ±

j = (σ x ± iσ y)/2 by fermion operators:

σ+
j = exp

[
iπ

j−1∑
i=1

c†
i ci

]
c j =

j−1∏
i=1

σ z
i c j, (2)

σ−
j = exp

[
−iπ

j−1∑
i=1

c†
i ci

]
c†

j =
j−1∏
i=1

σ z
i c†

j , (3)

σ z
j = 1 − 2c†

j c j . (4)

For � �= 0, we approximate the model (1) by mean-field
decoupling [48]. In this approximation, the Ising coupling
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(four-fermion interaction) is decomposed into three mean-
field channels using Wick’s theorem, which are determined
self-consistently in the noninteracting system:

c+
j c jc

+
j+1c j+1

≈ 〈c+
j c j〉c+

j+1c j+1 + 〈c+
j+1c j+1〉c+

j c j − 〈c+
j c j〉〈c+

j+1c j+1〉
− 〈c+

j c+
j+1〉c jc j+1−〈c jc j+1〉c+

j c+
j+1 + 〈c+

j c+
j+1〉〈c jc j+1〉

+ 〈c+
j c j+1〉c jc

+
j+1 + 〈c jc

+
j+1〉c+

j c j+1−〈c+
j c j+1〉〈c jc

+
j+1〉.

(5)

We mainly use the mean-field approximation of the
translation-invariant Hamiltonian to get the three self-
consistent parameters {μ, t, δ} (see below),

H =
N∑

j=1

{[Jc+
j+1c j + Jγ c+

j+1c+
j + H.c.]

+ J�(1 − 2c+
j c j )(1 − 2c+

j+1c j+1) − h(1 − 2c+
j c j )}

≈
N∑

j=1

{[(t + 2iD)c+
j+1c j + δc+

j c+
j+1 + H.c.] + μc+

j c j}

+ const., (6)

i.e., μ = 4J�(2〈c+
j c j〉 − 1) + 2h, t = J (1 − 4�〈c+

j c j+1〉),
and δ = J (γ − 4�〈c jc j+1〉). The values of {μ, t, δ} can be
determined self-consistently (see Appendix B).

First, we discuss the model Eq. (1) at � = 0, where it re-
duces to the XY chain. The XY model is an archetypal model
of quantum physics, encapsulating the physics underlying
universal phenomena in the equilibrium phase transition, and
used in looking for exotic phases through machine learning
[49–56]. On one hand, the linear XY chain in the presence
of transverse fields plays a central role in condensed matter
theory [57,58] and is a good candidate for building blocks
in quantum computers [59,60] and quantum information ap-
plications [61]. On the other hand, and maybe even more
importantly, the XY model is one of the few exactly solvable
models in strongly correlated systems, and thus provides the
benchmark for other approximate techniques implemented in
more realistic models, especially for the accurate calculation
of various dynamic quantities.

While being relatively simple, the XY model exhibits a rich
phase diagram. Applying the transverse field induces an Ising
transition at hc = 1 from the AFM phase to the paramagnetic
(PM) phase. Moreover, a completely factorized ground state
may occur at a specific value of the field,

h f = J

√(
1 + γ

2
+ �

)(
1 − γ

2
+ �

)
, (7)

in the absence of the DM interaction [62].
We are now in a position to explore the quantum coherence

and entanglement measures based on the reduced density
matrix. They can be determined without a full tomography
of the state under consideration. The studies of quantum
entanglement and coherence are crucial for both fundamen-
tal issues and niche technological applications. We consider
the representation spanned by the two-qubit product states:

|1〉 ≡ |↑〉i ⊗ |↑〉 j , |2〉 ≡ |↑〉i ⊗ |↓〉 j , |3〉 ≡ |↓〉i ⊗ |↑〉 j , and
|4〉 ≡ |↓〉i ⊗ |↓〉 j . Here |↑〉 (|↓〉) stands for the spin up (down)
state, and the reduced density matrix for selected two auxiliary
qubits can be expressed in the following form:

ρi j =

⎛
⎜⎝

u+ 0 0 z1

0 w1 z2 0
0 z∗

2 w2 0
z∗

1 0 0 u−

⎞
⎟⎠, (8)

with

u± = 1
4

(
1 ± 2

〈
σ z

i

〉 + 〈
σ z

i σ z
j

〉)
, (9)

z1 = 1
4

(〈
σ x

i σ x
j

〉 − 〈
σ

y
i σ

y
j

〉 − i
〈
σ x

i σ
y
j

〉 − i
〈
σ

y
i σ x

j

〉)
, (10)

z2 = 1
4

(〈
σ x

i σ x
j

〉 + 〈
σ

y
i σ

y
j

〉 + i
〈
σ x

i σ
y
j

〉 − i
〈
σ

y
i σ x

j

〉)
, (11)

ω1 = ω2 = 1
4

(
1 − 〈

σ z
i σ z

j

〉)
. (12)

A representative state X stands for a five-parameter family of
states of two qubits. Be aware that the reflection symmetry
is broken in Hamiltonian (1) thanks to the existence of DM
terms. In this case, 〈σ x

i σ
y
j 〉 and 〈σ y

i σ x
j 〉 in Eqs. (10) and (11)

are not necessarily vanishing; see Fig. 1(a). Nevertheless,
a simplification that 〈σ x

i σ
y
j 〉 = 0 and 〈σ y

i σ x
j 〉 = 0 was com-

monly used in the past [28,63–65]. Also, such negligence in
calculating Eqs. (9) and (12) frequently occurs in terms of the
relation [28,63–65]〈

σ z
j σ

z
j+1

〉 = 〈
σ z

j

〉〈
σ z

j+1

〉 − 〈
σ x

j σ
x
j+1

〉〈
σ

y
j σ

y
j+1

〉
+ 〈

σ x
j σ

y
j+1

〉〈
σ

y
j σ

x
j+1

〉
. (13)

As shown in Fig. 1(b), the inclusion of the last term in Eq. (13)
brings a prominent difference. For instance, the first derivative
of nearest-neighbor correlation accurately discriminates the
criticality. A two-qubit state tomography can be implemented
on the system qubits [66], and holds the advantage that a full
tomography of the state is not necessary.

Quantum coherence is a kind of quantification of quantum
superposition, which is one of the most significant properties
of quantum states separate from classical ones. As the core of
quantum physics and quantum information, there are many
important applications in various quantum tasks, such as
quantum computation and quantum communication. There
are many related studies [18,28,64,67,68]. A well-defined and
frequently used coherence measure is Wigner-Yanase skew in-
formation (WYSI), which has some clear physical meanings,
such as it is equal to the optimal distillation rate for standard
coherence distillation, and can also be interpreted as the
minimal amount of noise required to achieve full decoherence
of the state under discussion. WYSI mainly quantifies the
information encapsulated in a quantum state with respect to
an observable K [69,70], which has implemental value in both
theoretical and experimental schemes in view of the current
technology:

I (ρ, K ) = − 1
2 Tr[

√
ρ, K]2, (14)

where [.,.] stands for the commutator. The WYSI was inter-
preted as a measure quantifying the noncommutativity be-
tween ρ and K [71], and thus captures the genuine quantum
uncertainty of a given observable in a certain quantum state.
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FIG. 1. Short-range correlations for increasing field h: (a) two-
qubit correlations 〈σ x

j σ
y
j+r〉 for different distance with γ = 0.2, and

(b) the nearest-neighbor correlation, 〈σ z
j σ

z
j+1〉 with γ = 0.2. The

solid line is plotted according to Eq. (13), while the dashed line
is obtained by assuming 〈σ x

j σ
y
j+1〉 = 0. Inset shows the correspond-

ing first derivative. (c) The absolute value of the correlation func-
tion, |〈σ x

j σ
x
j+r〉| with γ = 0.6, for increasing r. Other parameters:

D = 0.2, � = 0, J = 1.

Very recently it has been proven by Girolami [70] that I (ρ, K )
given by Eq. (14) satisfies all the criteria for coherence mono-
tones [14] and consequently can be used as a reliable measure
of coherence.

We find that the QPT and factorization phenomenon
are both associated with the local quantum coherence

FIG. 2. Magnetic phase diagram of the 1D XY model with three
(black solid) lines separating the phases I, II, and III. In the special
case of D = 0, the chiral phase vanishes. The color map represents
the strength of the LQCx, I(ρ j, j+1, σ

x
j ). The white zone in the

AFM phase and the chiral phase delegates the factorization line and
the factorization region, respectively. Other parameters: D = 0.2,

� = 0, and J = 1.

(LQC) [30,72], as quantified by WYSI, in single-spin and
two-spin reduced density matrices of the ground state of
the spin chain. For a bipartite system, the LQC describes
the observable that acts only on one of the subsystems, as
I (ρAB, KA ⊗ IB). Here we choose KA as σ x or σ z. Karpat,
Cakmak, and Franchini found that the WYSI remains non-
increasing under classical mixing of quantum states [72]. It
filters out the pure quantum uncertainty in a measurement.

The absence of the WYSI implies that no quantum uncer-
tainty can be observed, and statistical errors are due to clas-
sical ignorance. Analogously, the concurrence is a pairwise
entanglement measure for any bipartite system that relates to
the two-site reduced density matrix ρ [73]. The concurrence
for a two-qubit state ρi j is defined as C = 2 max{0,
1,
2},
where 
1 = |z1| − √

ω1ω2 and 
2 = |z2| − √
u+u− [74].

IV. RESULTS

To understand better the ground state in different regimes
of parameters it is natural to utilize diverse quantum informa-
tion measures to unfold the landscape of the criticality and
factorization under the effect of DM interactions and �. In or-
der to fully appreciate the diversity of solutions, it is sufficient
to study the special cases with the spin-spin interactions in
the xy plane. For � = 0, the diagonalization procedure of the
left flip-flop couplings can be achieved by the well-established
techniques including Jordan-Wigner, Fourier, and Bogoliubov
transformations (see Appendix A). Using the exact solutions,
the correlation functions could be obtained, and the magnetic
phase diagram presented in Fig. 2 was found.

The phase diagram consists of three phases: AFM phase
I, PM phase II, and gapless Chiral phase III. The phase
boundaries are determined by three lines: h = 1, γ = 2D, and
h =

√
4D2 − γ 2 + 1, respectively [75]. As shown in Fig. 1(c),
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FIG. 3. The concurrence, LQCx and LQCz with respect to h at
D = 0.2, and for (a) γ = 0.6, (b) γ = 0.2. Inset in (a) shows the first
derivative of the concurrence, LQCx and LQCz. Inset in (b) shows
the magnified factorized zone. Other parameters: � = 0, J = 1.

in the AFM phase, the correlation function 〈σ x
i σ x

i+r〉 becomes
a constant quickly, although there is a small decrease for
r � 2 comparing with the nearest-neighbor correlation. At
the critical point, i.e., at h = 1.0, the correlation function
has an algebraic decay, namely, 〈σ x

i σ x
i+r〉 ∼ r−1/4. On the

contrary, the correlation function decays exponentially with
the increase of r in the PM phase.

Figure 3 examines the local quantum σ x coherence (LQCx)
and the local quantum σ z coherence (LQCz) along γ = 0.6
and γ = 0.2, respectively, with D = 0.2, which corresponds
to AFM-PM and chiral-PM transitions. The LQCx is mono-
tonically increasing with h, in contrast to the monotonic decay
of LQCz. The LQCx is indeed large for large h, especially
for γ = 0, where LQCx dramatically increases to unity when
h approaches hc. Instead, the concurrence shows the non-
monotonic characteristics of entanglement. As h increases,
the concurrence first decreases to zero and then increases
with h. Although the entanglement and coherence measures
do not exhibit any divergences, the divergences of their first
derivatives with respect to h may be used to identify the crit-
ical points. Indeed, the derivative of the quantum information
measures has been proven to be a powerful tool to detect the
location of the quantum critical points [76–82].

h
0.8 0.9 1 1.1 1.2

∂
 I(

ρ
j,j

+
1
,σ

z j)/
∂
 h

0

10

20

30

40

50
N=10000
N=20000
N=30000
N=40000

(b)

h
0.8 0.9 1 1.1 1.2

∂
 I(

ρ
j,j

+
1
,σ

z j)/
∂
 h

-4

-3

-2

-1

0
N=100
N=200
N=300
N=400

log
2
N

6 8 10[∂
 I(

ρ
j,j

+
1
,σ

z j)/
∂
 h

] m
ax

-5

-4

-3

-2

γ
0 0.5 1

k I

-3

-2

-1

0

(a)

FIG. 4. The first derivative of LQCz with respect to h for dif-
ferent system sizes with (a) γ = 0.6 and (b) γ = 0.2. In the left
inset of (a), the maxima of the peaks (dots) follow a logarithmic
scaling ( ∂I

∂h )
max

= 0.382 log2 N − 0.056 (solid line). The right inset
shows the dependence of k1 in Eq. (15) on γ . Other parameters:
D = 0.2, � = 0, and J = 1.

In the inset of Fig. 3(a), one observes that the first deriva-
tives of both LQCx and LQCz show a cusp singularity at hm,
which marks the point of the QPT. It is even more evident
in Fig. 3(b) that the critical points can be identified by kink
behavior in these information measures. In this case, their first
derivatives are discontinuous. Note that the quantum Jensen-
Shannon divergence was adopted to inspect the quantum
coherence of the 1D XY model with DM interactions [28].
However, an incomplete phase diagram is identified due to the
forbidden results of 〈σ x

i σ
y
j 〉, 〈σ y

i σ x
j 〉, 〈σ z

i σ z
j 〉 in the presence

of DM interactions, as is clearly demonstrated in Figs. 1(a)
and 1(b). We remark that 〈σ x

i σ
y
j 〉 = 0 and 〈σ y

i σ x
j 〉 = 0 should

not be taken for granted in general for a system with broken
reflection symmetry.

Along with the location of quantum critical points, the
critical exponents can also be extracted by the scaling of
quantum information measures. The first-order derivatives
of the two-spin local σ z coherence with respect to h are
shown in Fig. 4(a). We notice that the first-order derivative
around the critical point becomes sharper and sharper as
the system size increases, and it is expected to diverge in
the thermodynamic limit. The first-order derivative of the
LQCz follows a logarithmic divergence across the critical
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TABLE I. Fitting parameters {k1, k2, ν} of the slope in loga-
rithmic scaling across the critical points with D = 0.2, � = 0, and
J = 1.

γ Parameter C I(ρ j, j+1, σ
z
j )

0.6 k1 0.33813 0.45847
k2 −0.33893 0.44162
ν 0.99764 1.03815

1.0 k1 0.18655 0.28532
k2 −0.18548 0.30575
ν 0.99426 1.07160

point, (
∂I
∂h

)
max

∝ k1 log2 N, (15)

as is disclosed in the inset of Fig. 4(a). Here k1 is a constant
and is monotonically decreasing with γ .

We analyze the relative entropy, the concurrence, and the
logarithmic negativity, and find that their first-order deriva-
tives obey similar logarithmic scalings with different k1,
which are consistent with the results in Refs. [57,78]. How-
ever, for the QPT between the gapless chiral phase and gapped
PM phase, the derivatives of the LQC have pronounced peaks
[see Fig. 4(b)] which appear independent of system size. The
location of the pseudocritical field hm approaches the true crit-
ical point hc as N → ∞. Due to the relevance of the driving
Hamiltonian under the renormalization group transformation,
the leading term in the expansion of the pseudocritical point
for sufficiently large systems obeys such scaling behavior as
in Refs. [57,78],

|hm − hc| ∼ N−α. (16)

By applying linear regression to the raw data obtained from
I (ρi,i+1, σ

z
i ) on various system sizes, one obtains α = 1.6642

for γ = 1.
Alternately, slightly away from the critical point in the

thermodynamic limit, the first field derivative of I satisfies(
∂I
∂h

)
∼ k2 log2 |h − hc|. (17)

According to the scaling ansatz for logarithmic scaling [83],
the ratio of |k1/k2| gives rise to the correlation length exponent
ν. Similar results were obtained as well by the earlier stud-
ies [57,78,84]. The values resulting from different measures
are consistent with each other up to two digits [85]. The results
for γ = 0.6 and 1.0, with D = 0.2, are listed in Table I, which
suggests ν � 1 for the Ising transition.

A close inspection of Fig. 3(a) reveals there is an inter-
esting phenomenon simultaneously at h f = 0.8, where the
concurrence becomes zero and the LQC has a jump discon-
tinuity. The null point of the concurrence implies the ground
state is disentangled at this point, where the ground state
simplifies into simple product states, i.e., |ψ0〉 = ∏N

i=1 ⊗|ψi〉,
where |ψi〉 are the states of the spins on the ith site. Such
product states lie exactly on a classical line γ 2 + h2 = 1 in the
absence of the interaction ∝D [21,86,87], where the intersite
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0

0.2

0.4

0.6

0.8

C

I(ρ
j,j+1

,σx
j
)

I(ρ
j,j+1

,σz
j
)
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st
-o
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FIG. 5. The concurrence LQCx and LQCz with respect to
h. Inset shows their first derivative. Other parameters: γ = 0.6,

D = 0.2, � = 0.2, and J = 1.

correlations are independent of the distance r of two qubits;
see Fig. 1(c).

As such, we find that the logarithmic negativity is also able
to mark the classical feature while the von Neumann entropy
fails to spot vanishing entanglement. Notice that ground states
of interacting spin systems in the presence of an external mag-
netic field are typically entangled and a completely separable
ground state emerges only under strict conditions. The excep-
tional phenomenon of separable ground state has been thor-
oughly investigated in spin systems immersed in a uniform
transverse field [62,88,89] and in a nonuniform field [90,91].
It was recognized that the factorization is a consequence of
the ground-state parity transition. Moreover, the behavior of
the correlation functions changes from monotonic decay to
an oscillatory tail across the factorization point [92]. On this
line, by examining the ground state of finite-size systems, the
coherence and entanglement witness remain constant for all
values of r at h f in the thermodynamic limit, when the system
is actually in the Néel phase [86].

In the chiral phase, shown in Fig. 3(b), the concurrence
also exhibits a similar trend with the increase of h. It is odd
to find that in this case the concurrence is vanishing for a
finite range of h. In addition, the range gets narrower as
γ decreases. The factorization volume in the chiral phase
is connected with the factorization line in the AFM phase
across the critical boundary γ = 2D, as displayed in the inset
of Fig. 2. Also, the correlation functions are not constant
anymore, and instead, the amplitude of correlation functions,
including 〈σ x

i σ x
i+r〉, 〈σ x

i σ
y
i+r〉, shows oscillating decrease. Sur-

prisingly, the coherence measures, including I (ρi,i+r, σ
x
i ) and

I (ρi,i+r, σ
z
i ), exhibit a smooth decay. The first derivative of

the local coherence I (ρi j, σ
x
i ) correctly spotlights the location

of the second-order QPT at hc =
√

4D2 − γ 2 + 1 through a
divergence, but no sign of the nontrivial factorization region
can be observed.

To proceed, we examine the relation between the quan-
tum information quantifier with QPTs in the presence of
the anisotropy term �. For axial regime � � 1 (� � −1),
the system effectively stays in the Néel (ferromagnetic)
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FIG. 6. Self-consistent mean-field parameters μ, t , and δ as a
function of h for � = 0.2, D = 0.2, γ = 0.2, and J = 1. The solid
lines correspond to the real parts, while the dotted lines represent the
imaginary parts.

phase [26]. In the following, we concentrate on the planar
regime (|�| < 1). Figure 5 shows the corresponding behavior
of the entanglement and the quantum coherence with γ = 0.6,
� = 0.2, and D = 0.2. One observes that comparing with
Fig. 3, the presence of the term ∝� merely increases the
values of the field at the critical point hc and the factorized
point h f . Meanwhile, the hopping parameters μ and t are
found to be complex, but the pairing parameter δ remains a
real number, as is disclosed in Fig. 6.

The first-order derivative of the LQCz still follows a log-
arithmic divergence across the critical point, as is shown in
the inset of Fig. 7. The calculations are summarized by the
ground-state phase diagram shown in Fig. 8(a). One finds that
〈σ x

i σ
y
i+1〉 = 0 in the gapped phase [see Fig. 8(b)], and these

three self-consistent parameters are found to be real numbers
as a function of h. On the other hand, when the system is in the
gapless phase, 〈σ x

i σ
y
i+1〉 becomes finite. Such a feature implies

that 〈σ x
i σ

y
i+1〉 is an order parameter to identify the chiral phase

for the general Heisenberg XYZ model.
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FIG. 7. The first derivative of LQCz with respect to h for different
system sizes with γ = 0.6, D = 0.2, � = 0.2, and J = 1. Inset
shows the relation between maxima of the peaks and the logarithm
of system size N .

FIG. 8. Different parameter regimes of the 1D Heisenberg model
in the (h, γ ) plane obtained: (a) phase diagram; the color map
represents the strength of the LQCx I(ρi,i+1, σ

x
i ); (b) two-qubit

correlation function 〈σ x
i σ

y
i+1〉; the color map represents the strength

of the correlation function. The white zone in the AFM phase
and the chiral phase delegates the factorization line and the factor-
ization region, respectively. Other parameters: D = 0.2, � = 0.2,
and J = 1.

V. CONCLUSION AND SUMMARY

In this article, we studied the one-dimensional XYZ model
with the Dzyaloshinskii-Moriya interaction, which induces a
gapless chiral phase. We point out a few differences in deriv-
ing the exact correlation functions in this chiral phase and the
associated density matrix in systems with broken reflection
symmetry, which then give rise to a misleading message about
quantum criticality. We first scrutinize the limiting situation,
where the XY chain is rigorously solvable by applying the
Jordan-Wigner transformation. Knowledge of exact solutions
endowed with precisely determined properties of separability
or criticality can be of great relevance in the study of gen-
eral cases, which are not exactly solvable. For models not
admitting exact general solutions, we carry on an analytical
approach that combines a Jordan-Wigner transformation with
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a mean-field approximation. We find the Wigner-Yanase skew
information as a quantum coherence witness which may well
identify the quantum phase transitions.

In addition, the logarithmic scaling behavior for the infor-
mation measures is found around quantum criticality. Quan-
tum coherence arising from the quantum superposition acts as
a perspective on a kaleidoscope of quantum correlations, and
it is the key resource for applications of quantum technology
besides entanglement and other types of quantum correlations.
We have seen that the ground states of complex quantum sys-
tems are typically entangled. Nevertheless, for some specific
values of the parameters, a ground state may be completely
separable.

We also discussed the occurrence of the separable ground
state in the antiferromagnetic phase, which is marked by the
vanishing of the concurrence. Such factorization points can be
also sensed by the discontinuous jump of the first derivative of
the Wigner-Yanase skew information measure. In the gapless
chiral phase, the factorization line becomes the factorization
volume, which is implied by the extinguishing of ground-state
pairwise concurrence. A merit of the concurrence and local
quantum coherence is that the property emerges for a finite
chain, in contrast to the signal of global entanglement can
be observed in the thermodynamics limit after taking the
phase-flip symmetry breaking into account [57]. While most
multipartite measures are exhaustively expensive to obtain,
the bipartite measures are comparably easy to calculate, and
especially can be determined without a full tomography of the
state. Nevertheless, the vanishing concurrence is a necessary
condition for the occurrence of a completely separable state,
and hence a confirmative conclusion requires further investi-
gations.
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APPENDIX A: EXACT SOLUTION OF XY CHAIN AND
CORRELATIONS

For � = 0, the diagonalization procedure of the Heisen-
berg model (1) includes the well-established techniques of the
Jordan-Wigner and Bogoliubov transformations. We use the
Jordan-Wigner transformation, i.e.,

σ+
j ≡ 1

2 (σ x + iσ y) = eiπ
∑

n< j c+
n cn c j, (A1)

to covert the spin operators to fermion operators. As a result,
the Hamiltonian (1) can be written as the quadratic form of
the creation operator and the annihilation operator of spinless
fermions (J = 1 is assumed in the following),

H =
N∑

j=1

[(1 + 2iD)c+
j+1c j + (1 − 2iD)c+

j c j+1

+ γ (c j+1c j + c+
j c+

j+1) − h(1 − 2c+
j c j )]. (A2)

In the next step we adopt the Fourier transformation to ex-
press Eq. (A2) in the momentum space. Then by successive
application of the Bogoliubov transformation, this Hamilto-
nian can be reduced to a diagonal form:

H =
π∑

k=−π

εk

(
f †
k fk − 1

2

)
, (A3)

where

εk = −4D sin k + 2
√

(cos k + h)2 + (γ sin k)2. (A4)

The ground state |�0〉 follows the total filling of the Fermi-
Dirac statistics, and the lowest energy is obtained when all the
states with negative energies (εk < 0) are filled by fermions
and the ones with positive energies (εk � 0) are empty. With
Eq. (A4), the gap � ≡ mink εk closes at the critical mode kc

and the critical field hc, and then we have

h = − cos k + i
√

γ 2 − 4D2 sin k, for γ > 2D,

h = − cos k +
√

4D2 − γ 2 sin k, for γ � 2D.

The reality of hc requires that hc = 1 and kc = π are the
solutions for γ > 2D, while for γ � 2D there are solutions
with arbitrary k, suggesting the system is always gapless for
h <

√
4D2 − γ 2 + 1. The analysis suggests the critical lines

are h = 1, γ = 2D, and h =
√

4D2 − γ 2 + 1, respectively.
The phase diagram at the finite DM interaction and finite

magnetic field consists of three phases: the AFM phase,
PM phase, and the gapless chiral phase. The transition from
the AFM phase to PM phase for γ > 2D is similar to the
conventional order-disorder transition in the transverse Ising
model for γ = 1 and D = 0. They are in the same universality
class. The AFM phase disappears only when γ = 0. With
D getting smaller, the chiral phase shrinks. When the DM
interaction is large (γ < 2D), part of the spectrum becomes
negative and the energy gap disappears, with two Fermi points
kL and kR given by

kL,R = cos−1

[
−h ±

√
(4D2 − γ 2)(4D2 − γ 2 + 1 − h2)

4D2 − γ 2 + 1

]
.

(A5)

For kL � k � kR, the excitation spectrum εk becomes nega-
tive, and these modes in the ground state |ψ0〉 are occupied
by electrons, namely f †

k |ψ0〉 = 0 [93]. The system enters the
gapless chiral phase. As the magnetic field h increases, the
system changes from the chiral phase to the PM phase.

In order to identify different phases, we choose the cor-
relation function between two lattice sites as the order pa-
rameter, which can be used to describe the nature of the
ground state. The correlation function can be defined as
Gαβ

i, j ≡ 〈σα
i σ

β
j 〉 − 〈σα

i 〉〈σβ
j 〉; here α, β = x, y, z. Since the

system is translation-invariant, the value of the correlation
function is only related to the relative distance between the
position of the two sites (such as i and j), so Gαβ

i, j can be abbre-
viated as Gαβ

r ; here r = i − j. For general 〈σ x
i σ x

j 〉, 〈σ y
i σ

y
j 〉, the

expanded form can be expressed as a form of the Pfaffian [94].
In other words, it can be written as the determinant of the
2n × 2n (n ≡ | j − i|) dimension antisymmetric matrix.
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It is illuminating to discuss the asymptotic behavior of the
correlation functions in the exact case. Barouch and McCoy
studied the magnetization and the correlation function of the
XY chain in a transverse field [92,94]. The nonzero temper-
ature correlations of the horizontal-field XX model [95] have
also been considered. The research shows that the asymptotic
behavior of the correlation function(r → ∞) can be written in
Ornstein-Zernike form especially in the context of 1D systems
significantly away from the critical points [96,97],

Gxx
r ∼ Ar1−ηx exp(−r/ξ ), (A6)

where A is a form factor, 〈σ x
i 〉 is the magnetization in the x

direction, and ξ is the correlation length. ηx is the Tomonaga-
Luttinger exponents for the x spin component [98], which in
the algebraic behavior is equal to 1/2 for such an asymptotic
behavior of the correlation function [99]. In all cases (−1)rGxx

r
vanishes exponentially rapidly as r → ∞ for all h and γ .

However, the rate of this exponential vanishing
depends on h, and this dependence is qualitatively
different in different regions. When |h| > 1, the system
is in the paramagnetic state and the magnetization
in the x direction disappears, namely, 〈σ x

i 〉 = 0, and
at this time limr→∞Gxx

r ∼ (−1)rr−1/2 exp(−r/ξ ),
limr→∞Gyy

r ∼ (−1)rr−3/2 exp(−r/ξ ). When |h| � 1,
limr→∞Gxx

r = (−1)r2[γ 2(1 − h2)]1/4(1 + γ )−1. This means
that when γ �= 0, there is a long-range order. When γ = 0,
the long-range order does not exist. In the Ising limit,
limr→0Gxx

r = (−1)r (1 − h2)1/4. This implies that the critical
exponent β is 1/8 for the Ising transition (approaching the
transition as a ferromagnet) and 1/4 for the anisotropic
transition. Gxx

r decreases to zero rapidly with the increasing
of r in the paramagnetic phase, while Gxx

r remains a constant
with the change of r in the AFM phase.

At the critical point of Ising transition (h = 1),
Gxx

r ∼ r−1/4, the critical exponent ηx = 5/4. Gyy
r ∼ r−9/4

with ηy = 13/4. At the anisotropic phase transition line when
h = 0 and γ = 0, Gxx

r ∼ r−1/2 [98]. The DM interactions
cause the correlation function Gxy

r to decrease in an oscillatory
way with the increase of the distance r. When γ = 0, the

correlation function Gxy
r oscillates more violently than γ = 1

with the increase of the distance r.
For specific values of the anisotropy parameter and the rel-

ative strengths of the uniform transverse magnetic fields, the
ground state of this model is known to be doubly degenerate
and factorizable along two hyperbolic lines, known as the
factorization lines. For the factorization points h2 + γ 2 = 1
with D = 0, we can obtain an explicit form for all
r: 〈σ x

j σ
x
j+r〉=(−1)r2γ /(1+γ ), 〈σ y

j σ
y
j+r〉=0, 〈σ z

j σ
z
j+r〉=〈σ z

j 〉2.

APPENDIX B: FERMIONIC MEAN-FIELD
APPROXIMATION

According to the mean-field decomposition in Eq. (5), the
order parameters are defined as

β1 = 〈c+
j c j〉, (B1)

β2 = 〈c+
j c j+1〉, (B2)

β3 = 〈c jc j+1〉. (B3)
The energy spectrum (A4) can be rewritten as

ε(k) = −4D sin(k) + 2
√

τ (k)2 + ϕ(k)2, (B4)

where τ (k) = J[(1 − 4�β2) cos(k) + 2�(2β1 − 1)] + h and
ϕ(k) = J (γ − 4�β3) sin(k). To this end, one finds the so-
lutions could be retrieved by self-consistently solving the
following equations:

β1 =
π∑

k=−π

ϕ(k)2θ (−εk ) + ς (k)2θ (ε−k )

ϕ(k)2 + ς (k)2
, (B5)

β2 =
π∑

k=−π

ϕ(k)2θ (−εk ) + ς (k)2θ (ε−k )

ϕ(k)2 + ς (k)2
e−ik, (B6)

β3 =
π∑

k=−π

−θ (−εk ) + θ (ε−k )

ϕ(k)2 + ς (k)2
[iϕ(k)ς (k)]eik, (B7)

with ς (k) = τ (k) +
√

τ (k)2 + ϕ(k)2.
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