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In this paper, we study the topological properties of a 3D lattice dimer model. We demonstrate that the dimer
model on a bipartite lattice possesses topological defects, which are exactly characterized by the Hopf invariant.
We derive its explicit algebraic expression in terms of the effective magnetic field of a dimer configuration. Thus
we solve the problem of topological classification of possible states in a 3D lattice dimer model. Furthermore,
since the lattice dimer model is known to be dual to spin ice, our work can be viewed as a proposal to search for
hopfions in classical, as well as artificial spin ice and related materials.
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I. INTRODUCTION

A lattice dimer model has a very long history in condensed
matter physics. Its idea is that a lattice can be viewed as a
graph with its edges, connecting nearest-neighboring sites,
being either empty or filled with dimers, so that every vertex
is connected to exactly one dimer. The lattice dimer model
was first proposed back in 1960s as a tool to solve the 2D
Ising model [1]—it was found that the partition function of
the latter is related to the number of dimer coverings in a
dual dimer model, which on a planar lattice can be computed
exactly. The lattice dimer model was extensively used in
an attempt to describe high-temperature superconductivity:
it was used to represent resonant valence bond state, where
electrons occupying neighboring sites form pairwise singlets
[2]. In this context, the lattice dimer model was generalized to
the quantum dimer model [3], where a quantum-mechanical
state can be viewed as a superposition of dimer coverings,
and quantum evolution consists of local dimer flips. It was
found that such a model possesses several nontrivial phases: in
different regimes, its ground state can form either a classical
trivial, or staggered phase, or a quantum RVB phase, which
may be a gapless U(1) phase on a bipartite lattice, or a gapped
Z2 phase, if the underlying lattice is nonbipartite.

The fact that the quantum dimer model on a bipartite lattice
hosts a U(1) phase is not accidental. As was shown in Ref. [4],
dimer configurations on a bipartite lattice can be described
using an effective magnetic field, which, in turn, can be
represented in terms of an effective vector potential, similarly
to the conventional U(1) gauge field. In the two-dimensional
case, such vector potential is reduced to, the so-called height
representation (see Ref. [5] for a review), but in the three-
dimensional case, the vector potential is an actual vector, as
in the case of a physical electromagnetic field.

Since the classical lattice dimer model can be viewed as an
appropriate limit of the quantum model, its evolution occurs
due to local flips of dimers along a plaquette. Thus a natural
question to ask is, whether the classical lattice dimer model
hosts different topological sectors, which cannot be connected
to each other through local flips. This question was consid-
ered, e.g., in Ref. [6], where, using exact diagonalization, it

was shown that the dimer model on a diamond lattice contains
different topological sectors. In addition, possible topological
sectors in the 3D dimer model on a cubic lattice were also
explored in Ref. [7]: it was shown that, in the continuum limit,
the dimer model behaves as an O(n) field, which has topolog-
ically nontrivial configurations called hopfions. Furthermore,
in Ref. [7], an explicit dimer configuration was presented,
which, in the continuum limit, becomes a hopfion.

In continuum field theory, hopfions exist because a three-
dimensional vector field may have different topological sec-
tors characterized by a Hopf invariant (see Ref. [8], and also
Refs. [9,10]). Such an invariant can, for example, describe
skyrmions in the O(3) vector model [11]. The Hopf invariant
was first proposed to describe topological defects in liquid
helium [12], but it attracted a lot of attention more recently,
e.g., it was found that the Hopf invariant can be responsible for
constraints on plasma relaxation [13], and, more interestingly,
it can lead to new kinds of topological phases of matter
[14–17].

In this paper, we demonstrate the presence of topological
defects with a nontrivial Hopf number in a dimer model on
a cubic lattice. Specifically, we consider the topologically
nontrivial dimer configurations presented in Ref. [7], which
were proven to become hopfions in the continuum limit, and
claim, that they carry an exact Hopf number on a lattice. The
latter can be evaluated by considering the effective magnetic
field of the corresponding lattice, and computing a discretized
expression for its Chern-Simons integral similarly to the case
of skyrmions [11].

This paper is organized as follows. In Sec. II, we revisit the
concept of an effective magnetic field on a dimer lattice and
introduce its new definition suitable for describing topological
defects. In Sec. III, we introduce our Hopf invariant and
describe its main properties. In Sec. IV, we summarize our
results and discuss their possible applications. A few technical
details are discussed in the Appendix.

II. EFFECTIVE MAGNETIC FIELD

We start from a revision of the basic properties of the
lattice dimer model. We consider a 3D cubic lattice whose
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FIG. 1. A local dimer flip in the lattice dimer model.

nearest-neighboring vortices are connected with an edge. Ev-
ery edge can be either empty or occupied with a dimer in such
a way that every vertex is connected to exactly one dimer.
Evolution of a dimer configurations can be realized through
local flips: if a plaquette has two aligned dimers, they can
simultaneously change their directions, as shown in Fig. 1.

Let us revisit the construction of an effective magnetic
field on a general bipartite dimer lattice. As we mentioned
previously, we have a constraint that every vertex is attached
to exactly one dimer. In other words, we say that the sum of
occupation numbers over all edges attached to a given vertex
is equal to one:

∑
i-fixed

ni j = 1. (1)

The idea of an effective magnetic field is that constraint (1)
can be rewritten as a zero divergence of a vector field, which
can be referred as a magnetic field. If we define the magnetic
field along each edge as a linear function of the occupation
number (which precise form is determined later) and denote
by Bi(x, y, z) its ith component in the positive direction from
the vertex located at the point with coordinates x, y, z, its
discretized divergence will be written as

Bx(x, y, z) − Bx(x − 1, y, z)

+ By(x, y, z) − By(x, y − 1, z)

+ Bz(x, y, z) − Bz(x, y, z − 1) = 0. (2)

Since the last equation contains terms with positive signs
at the point with the coordinates x, y, z, and terms with
negative signs at its neighboring points, whereas Eq. (1)
contains only terms with positive signs, we have to use the
fact that our lattice is bipartite and to introduce the fac-
tors σ = ±1 on odd/even sublattices. More specifically, we
assume that the magnetic field B(x, y, z) is obtained from
the corresponding occupation number through multiplication
by σ . Finally, we need to use the fact that the total sum
in Eq. (2) is equal to zero, whereas, in Eq. (1), the sum
is equal to one. In the previous works (e.g., Ref. [4]), this
fact was accounted by subtracting the inverse coordination
number of the lattice z, and hence the magnetic field was
defined as

Bi(�r) = σ
(
nr,r+ei − 1/z

)
. (3)

However, the last equation has a drawback: the magnetic field
does not decay on an infinite trivial lattice, and hence it is
hard to use it to compute integral quantities, i.e., the ones that
would become space integrals in the continuum limit, such
as, e.g., the Chern-Simons integral. Therefore we would like
to modify Eq. (3) to resolve these difficulties. Specifically,
we would like to define B in such a way that if the dimer

configuration is nontrivial only at a finite region of the lattice,
the magnetic field would be nontrivial only within that region,
and zero away from it.

We can start from considering a finite lattice, and gener-
alizing Eq. (3) to make it applicable to it. It is easy to see
that on a finite lattice, Eq. (3) with the coordination numbers
taken from the infinite lattice, will not lead to zero divergence
at the points located on the boundary points of the lattice.
Therefore we would like to find new quantities instead of the
inverse coordination number 1/z, such that the divergence of
the new magnetic field is zero everywhere. It is easy to denote
them by unknown quantities wk , write the new magnetic field
expression as

Bi(�r) = σ
(
nr,r+ei − wr,r+ei

)
, (4)

and determine the unknown quantities wr,r+ei . It is possible to
fix the values of wr,r+ei by applying a few conditions. The first
condition is that the divergence of the magnetic field is zero at
all points including corners and wedges, and it results in the
following constraint: ∑

i

wr,r±ei = 1. (5)

This equation does not fix the weights wr,r+ei uniquely. There-
fore, without loss of generality, we can impose the addi-
tional constraint that the “average” weight over a plaquette
is zero:

wr, r+ex − wr+ey, r+ey+ex

−wr+ez, r+ez+ex + wr+ey+ez, r+ey+ez+ex = 0

and its cyclic permutations. (6)

We will discuss the precise meaning of these constraints later,
but for now, we note that they have a simple interpretation: in
a trivially aligned configuration of dimers, the magnetic flux
over each plaquette is zero. In fact, even in the presence of
constraints (5) and (6), the weights are still not unique, but we
can select just one arbitrary configuration of wr,r±ei satisfying
all the equations. A possible example for a finite lattice is
presented in Fig. 2. We note that by fixing wr,r±ei near the
corner of the lattice, we can fix them at all other edges of the
finite lattice.

In the case of an infinite lattice, we can view our model
in the following way. Suppose that dimers are allowed to
form nontrivial configurations only within a finite subregion
(we can assume that it has even number of sites in each
direction), whereas in the rest of the lattice, dimers are fixed
in a trivial configuration. Also, suppose that within the finite
sublattice, the weights are fixed as we discussed previously,
e.g., as shown in Fig. 2, whereas at the rest of the lattice,
the weights are fixed simply as wr,r±ei = nr,r±ei —this is an
allowed choice because we are assuming now that the dimer
configuration does not evolve outside the finite subregion. We
also note that our configuration does not violate Eqs. (5) and
(6) because dimers reside either within the finite sublattice or
away from it, and therefore at the interface we have wr,r±ei =
nr,r±ei = 0—this does not affect Eqs. (5) and (6). In this con-
figuration, the lattice magnetic field is nontrivial only within
the finite sublattice, and zero outside of it, particularly at
infinity.
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FIG. 2. A possible configuration of effective coordination num-
bers wr,r±ei in a lattice dimer model on a cubic lattice. Numerical
values of wr,r±ei , which satisfy the Eqs. (5) and (6), are shown for
each bond.

III. LATTICE HOPF NUMBER

Once we have defined the lattice magnetic field [see
Eq. (4)] and fixed the weights, we can also define a lattice
vector potential. Since the magnetic field is defined along each
edge, the corresponding vector potential will be defined at
each plaquette (see Fig. 3), through the equations

Bx(x, y, z) = Az(x, y, z) − Az(x, y − 1, z)

− Ay(x, y, z) + Ay(x, y, z − 1), (7)

By,z are defined through cyclic permutations.

Az

Ay

Ax

FIG. 3. Each component of the vector potential in the lat-
tice dimer model is defined perpendicularly to the corresponding
plaquette.

Using these equations together with gauge-fixing condi-
tions, we can find the vector potential for a given configuration
of the magnetic field. For example, if we fix the gauge Az = 0,
we can write the vector potential as

Ax(x, y, z) =
z∑

k=1

By(x, y, k),

Ay(x, y, z) = −
z∑

k=1

Bx(x, y, k). (8)

From Eq. (7), it is easy to see that a local dimer
flip, shown in Fig. 1 can be written as a change of
vector potential at the plaquette, where the flip occurs.
Indeed, the change of the vector potential at one plaquette
results in a change of the magnetic field only within the bonds
surrounding such plaquette, and it is straightforward to check
that if the bonds contain two parallel dimers, then a unit
change of the vector potential corresponds to a unit change
of the effective magnetic fields around the plaquette, which is
equivalent to a dimer flip.

Once we have defined the vector potential, we can use it
to define the Hopf number. It is known, that in a continuum
theory, the Hopf invariant can be written as a Chern-Simons
integral, i.e., an integral of a vector field A and its rotor B
[11,12]:

χ =
∫

d3x �A �B, (9)

We would like to demonstrate that in the lattice dimer model,
we can define a similar expression in terms of the effec-
tive vector potential and magnetic field, which is equal to
an integer number, and remains invariant under any local
plaquette flip.

First, we have to discretize Eq. (9) properly. We do it by
replacing the integral with a sum over the values of vector
potential over each plaquette, multiplied by the magnetic field
averaged over all edges, attached to the plaquette:

χ =
∑
x,y,z

Ax(x, y, z)

8
{Bx(x, y, z) + Bx(x, y + 1, z)

+ Bx(x, y, z + 1) + Bx(x, y + 1, z + 1)

+ Bx(x − 1, y, z) + Bx(x − 1, y + 1, z)

+ Bx(x − 1, y, z + 1) + Bx(x − 1, y + 1, z + 1)}
+ (cyclic permutations). (10)

Next, we would like to check if the last equation satisfies
the same properties as the continuum Hopf number, defined
by Eq. (9). For example, expression (9) is known to be gauge
invariant. Indeed, it is easy to see that in the case of an infinite
space with decreasing field at infinity, its variation is equal
to the integral of divergence of the magnetic field, i.e., zero.
We demonstrate in Appendix A 1 that the same statement
holds for the discrete Hopf number, defined by Eq. (10). We
note that to prove it, we use the fact that the magnetic field
is decreasing at infinity. Furthermore, we note that the same
statement holds for a finite lattice, provided that the magnetic
field satisfies Eq. (2) at all points.
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Now, let us consider the transformation of Hopf number (9)
under an infinitesimal change of the vector potential. Indeed,
in continuum field theory, Hopf number transforms as

δχ

δAi
= 2Bi. (11)

In the case of the lattice model, we can obtain a similar
expression (see Appendix A 2 for the derivation):

�χ (�Ax(x, y, z))= 1
4×�Ax(x, y, z){Bx (x, y, z)+Bx(x, y+1, z)

+ Bx (x, y, z + 1) + Bx(x, y + 1, z + 1)

+ Bx (x − 1, y, z) + Bx(x − 1, y + 1, z)

+ Bx (x−1, y, z+1)+Bx(x−1, y+1, z+1)},
(cyclic permutations for Ay,z). (12)

This equation tells us that if we change the vector potential at
one plaquette, the corresponding transformation of the Hopf
number �χ will be expressed as a variation of the vector
potential, multiplied by the average magnetic field at the
edges, emerging perpendicularly to the plaquette. If we use
the fact that a local dimer flip, shown in Fig. 1, corresponds to
a local change of the vector potential, we can conclude that the
variation of χ under a plaquette flip is proportional to the aver-
age magnetic field perpendicular to the plaquette. Since in this
configuration, the dimer occupation numbers are nonzero only
along the plaquette, we can conclude that �χ is proportional
to the averaged weights of edges emerging perpendicularly to
the plaquette, i.e., precisely the combinations entering Eq. (6).
Thus we arrive to the conclusion: constraint (6) results in
the Hopf number χ being invariant under any local dimer
flips.

Once we have established that the Hopf number (10) is
an invariant, we are interested in computing it explicitly. The
simplest field configuration, where it can be computed, is a
trivial dimer configuration where all dimers are aligned in one
direction, forming a maximally flippable state. In this case,
after fixing the gauge Az = 0, straightforward application of
constraint (6) to each plaquette leads to the conclusion that
χ = 0.

From Ref. [7], we know the simplest topologically nontriv-
ial configuration of dimers (hopfion), which we show in Fig. 4.
In Ref. [7], it was shown that such configuration is topologi-
cally nontrivial because the Pfaffian of its Kasteleyn matrix is
equal to −1, in contrast to +1 for the trivial, maximally flip-
pable state, and it does not change under local flips. It is easy
to demonstrate (see Appendix A 3 for details) that such non-
trivial configuration has, indeed, χ = 1. It is also easy to see
that the Hopf number remains invariant if the hopfion is placed
on a larger lattice with trivially aligned dimers. Furthermore,
if several hopfions are placed on a large lattice filled with triv-
ially aligned dimers, their total Hopf number is given by the
sum of Hopf numbers for each hopfion. These facts confirm an
idea that the configuration shown in Fig. 4 has all properties
of conventional topological defects. At the same time, it is
distinguished by the fact that its topological properties are
exact on the lattice, i.e., do not require taking the continuum
limit.

FIG. 4. Dimer configuration forming a hopfion—the simplest
topologically nontrivial configuration.

In conclusion, we have demonstrated that the 3D cubic lat-
tice dimer model possesses topological defects characterized
by an integer Hopf number. The precise meaning of the word
“topological” is that the Hopf number remains invariant under
local flips, as we showed in Fig. 3.

IV. DISCUSSION

In this paper, we have demonstrated that configurations in
3D bipartite lattice dimer model can be classified according
to their Hopf numbers, which are expressed in terms of the
effective magnetic field of the dimer model. These Hopf
numbers are preserved under local dimer flips (Fig. 3), and
therefore configurations with different Hopf numbers cannot
be transformed into each other.

Throughout the paper, we were assuming that the lattice
is cubic, but we would like to emphasize that our reasoning
works for any 3D bipartite lattice. Indeed, the only necessary
property of the lattice we used is the existence of an effec-
tive magnetic field, which can be defined on any bipartite
lattice.

Furthermore, we assume that the dimers are constrained
by a condition [see Eq. (1)]: exactly one dimer is attached
to each vertex. However, in a similar way, the Hopf number
can be defined for a lattice dimer model in which the number
of dimers attached to each vertex is fixed to be two. Indeed,
the “conventional” definition of an effective magnetic field
[similarly to Eq. (3)] will become

Bi(�r) = σ
(
nr,r+ei − 2/z

)
,

and to find the weights, we will have to replace Eq. (5) with a
new constraint: ∑

i

wr,r±ei = 2.

The rest of the derivation will remain the same.
Our results may have a wide range of applications. It is

known that dimer models on bipartite lattices are dual to spin
systems, and, particularly, a dimer model on a diamond lattice
is dual to spins on pyrochlore lattice, i.e., spin ice [18–20].
Thus, it might be of interest to search for hopfions in various
spin systems. Furthermore, since classical spin ice has been
proven to exist in such materials as Dy2Ti2O7 and Ho2Ti2O7
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[20,21], it would be interesting to search for hopfions experi-
mentally. We note that in realistic spin ice materials, one can
consider two possible regimes. Without an external magnetic
field, the spins form 2-in, 2-out magnetic order, which is dual
to a lattice dimer model with two dimers “touching” each
vertex. However, in the presence of an external magnetic field
in [111] direction, the spins may form 3-in, 1-out magnetic
order [22], which is dual to the lattice dimer model with
one dimer “touching” each vertex considered here. In the
future, we are interested in studying this question more deeply,
e.g., by computing relevant physical observables affected
by hopfions.

Experimental discovery of hopfions may lead to plenty
of novel phenomena. Indeed, topological defects described
by a Hopf number have been studied in various physical
contexts, and cores of hopfions were predicted, for instance,
to host non-Abelian anyons [7,23], which are interesting in
the context of quantum computing [24]. For this reason, it is
of interest to explore possible implications of hopfions in our
context. For instance, it is of interest to explore if hopfions
in spin ice can host non-Abelian anyons or other kinds of
localized states.

During the recent years, there have been ongoing attempts
to study magnetic frustration in artificial spin ice [25–27],
where the dimers are simulated by nanomagnets. Indeed, in
Ref. [26], a successful creation of frustrated artificial spin
ice on quadratic lattice was reported. Since, in this model,
the nanomagnets obey the same ice rule as in classical spin
ice, it seems plausible to use artificial spin ice for realizing
hopfions. Strictly speaking, in this case, there appears an issue,
such that the dynamics of nanomagnets does not necessar-
ily gets reduced to local dimer flips. Instead, configurations
in ASI evolve through creation/annihilation of monopole-
antimonopole pairs. However, this problem does not make
the realization of hopfions impossible: ASI dynamics would
get reduced to local dimer flips if monopoles are allowed
to travel only within one plaquette, which may happen if
the monopole-antimonopole pairs quickly annihilate after cre-
ation. Furthermore, in Ref. [28], simultaneous switching of
magnetization directions around a hexagon in kagome spin
ice was reported, which is exactly equivalent to local dimer
flips around a hexagonal plaquette. We believe that further
steps in this direction, e.g., realizing ASI on a cubic lattice
with simultaneous magnetization flips around each square
plaquette, may result in realizing ASI, whose dynamics is
the same as considered in this paper. Finally, we mention
that in recent years, there were numerous efforts to create
3D artificial spin ice [29–31], and we emphasize that creating
hopfions requires a lattice with just two layers.

In conclusion, we believe that it should be possible to
realize hopfions in artificial spin ice, once it will become
possible to realize dynamics through local flips on a 3D lattice.
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APPENDIX

In this Appendix, we present a derivation of the properties
of the discrete Hopf number, defined according to Eq. (10) of
the main text. For shortness of notations, we find it convenient
to represent the sum of products of magnetic fields and
vector potentials (10) graphically. Particularly, we assume that
summation is taken over all plaquettes, and denote the vector
potential in each of them by red squares. We also denote
magnetic fields, which are multiplied by the vector potential,
by green lines. If we view a red square with attached green
lines as a corresponding vector potential multiplied by the
adjacent magnetic field, we can represent our Hopf number,
defined by Eq. (10), graphically as

In the following sections, we use these graphical notations
to derive its gauge invariance, and transformation under
smooth variations of the vector potential, i.e., Eq. (12) of the
main text.

1. Gauge invariance

In this section, we demonstrate, that the discrete Hopf
number, defined by Eq. (10) of the main text is invariant
under gauge transformations of the vector potential, i.e., trans-
formations that leave the magnetic field invariant. Indeed,
similarly to conventional electrodynamics, the lattice mag-
netic field remains invariant, if the vector potential is transfor-
med as

Ai(�r) → Ai(�r) + θ (�r) − θ (�r − �ei ). (A1)

On the lattice, the gauge function θ can be defined in every
cube formed by the lattice sites, is such a way that the vector
potential on a given plaquette is added by a difference between
the gauge functions at cubes adjacent to the plaquette. In other
words, if we denote the gauge function at each lattice unit by a
yellow cube, we can represent the gauge transformation (A1)
graphically as

In these notations, variation of the discrete Hopf number under
gauge transformations of the vector potential (which is a sum
of products between gauge functions and magnetic fields) can
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be represented graphically as

(A2)

Now we have to use the fact that our lattice magnetic fields are
nonzero only within the finite region of the total lattice, which
implies that the terms entering Eq. (A2) are nonzero only
within the finite sublattice. The fact that the terms entering
sum (A2) are zero away from the finite sublattice implies that
we can shift the sum in such a way that in each bracket of
Eq. (A2) the gauge function is taken at one point. Therefore
we can rewrite the gauge transformation as

which is just a sum of divergences of magnetic fields at all cor-
ners of the cube entering each bracket. Since the divergence of
magnetic field is zero, we can conclude that �χ is zero, and
thus the discrete Hopf number χ is gauge invariant.

2. Local transformations of the vector potential

In this section, we derive the transformation of the discrete
Hopf number under local change of the vector potential,
i.e., change of Az(x, y, z) at one plaquette. The latter results
in change of By,z at the edges, adjacent to the plaquette.
If we denote by dashed lines the bonds, where the vector
potential or magnetic field is varied, we can represent the
terms contributing to the change of Hopf number as

Here, the first two graphs show the plaquettes whose vector
potential we have to include, and variations of magnetic fields
by which they have to be multiplied. The last graph shows
the plaquette with varying vector potential multiplied by the
adjacent magnetic fields.

In the last equation, we can express the variations of the
magnetic field in terms of variations of the vector poten-
tial. If we do it with the first two terms, we can rewrite

it as

If we similarly express the magnetic field in the last term,
the variation of the discrete Hopf number will be simplified as

This equation is rewritten without graphic notations precisely
as Eq. (12) from the main text.

3. Explicit calculation of the Hopf number

In this section, we present an explicit calculation of the
Hopf number [Eq. (10) from the main text] for the hopfion
configuration shown in Fig. 4. We assume that the hopfion
is placed on a lattice, where all other dimers are aligned in
z direction. Without loss of generality, we can fix the gauge
as Az = 0. Since the weights satisfy the condition (6), it is
easy to see that the aligned dimers result in zero average
magnetic field over the plaquette, and thus the Hopf number
gets contributions only by plaquettes and edges “touching”
the hopfion. Explicitly, the relevant edges have the values of
magnetic field shown in Fig. 5.

In this section, we choose indices in the following way:
three numbers refer to coordinates of the lattice site, from
which the edge starts in the positive direction, and xyz refer
to the edge’s direction. After fixing the gauge Az, we can
express the values of the vector potential at arbitrary z in terms
of the values of the vector potential “below” the hopfion, i.e.,
at z = 0. The resulting values of the vector potential at the
plaquettes, contributing to the Hopf invariant, are shown in
Fig. 6.

Once we have the values of �A and �B, application of Eq. (10)
is straightforward. It is simplified by the fact that when we
compute a sum of magnetic fields “piercing” a plaquette, the
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FIG. 5. Values of the effective magnetic field along the bonds
forming the hopfion.

coordination numbers cancel out, and, as a result, such sum is
equal to the number of “horizontal” dimers in a hopfion taken
with the appropriate sign. Explicitly, the sum of magnetic
fields “piercing” each plaquette is shown in Fig. 7.

We assume here that the hopfion is placed in a space with
trivially aligned dimers, but the result would not change if
two hopfions “touch” each other. One can check that, in the
latter case, the contribution from plaquettes lying between
the hopfions can be split between them, so that each hopfion
acquires the same contribution, as if it were in a vacuum.

After we multiply each component of the vector poten-
tial by the corresponding sum of magnetic fields, we can
see that all terms contributing to the Hopf invariant can be
split into two groups: terms arising from the vector potential
“below” the hopfion, i.e., proportional to Ai j0,x,y, and terms
arising from coordination numbers at its edges. We represent
all of these terms graphically in Fig. 8. More specifically,
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FIG. 6. Values of the effective vector potential on the plaquettes
forming the hopfion. Since we fixed the gauge Az = 0, we show only
the vector potentials on the vertical plaquettes (i.e., only Ax,y).
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FIG. 7. Values of the sum of magnetic fields over bonds adjacent
to each plaquette. In other words, a number at each plaquette repre-
sents the sum

∑
Bx,y over each plaquette, as it enters Eq. (10) from

the main text. These numbers have to be multiplied by the compo-
nents of the vector potential at the same plaquettes and summarized
in order to obtain the Hopf invariant.

FIG. 8. The Hopf invariant can be expressed as one-eighth of
the total sum of the terms shown in (a) and (b): χ = 1

8 × ∑
[terms

from Fig. 8(a)] + 1
8 × ∑

[terms from Fig. 8(b)]. We presented these
terms graphically in order to demonstrate the most convenient way
of summarizing them.
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FIG. 9. Hopf invariant is equal to a superposition of the
terms shown here: χ = 1

8 × [sum of terms from Fig. 9(a)] + 1
4 ×

[sum of terms from Fig. 9(b)] + 1
8 × [sum of terms from Fig. 9(c)].

In particular, (a) shows all terms obtained by summing the terms
from Fig. 8(a). (b) shows all terms obtained by summing the terms
from the top layer of Fig. 8(b). (c) shows all terms obtained by
summing the terms from the bottom layer of Fig. 8(b).

Fig. 8(a) shows all terms arising from the vector potential
Ai j0,x,y, which can be obtained from the corresponding con-
tributions to the total vector potential (shown in Fig. 6) by
multiplying over the sum of magnetic fields (see Fig. 7) and
summing over the planes. In contrast, Fig. 8(b) shows all terms
arising from the coordination numbers—the corresponding
contributions to the total vector potential from Fig. 6 also
multiplied by the sum of magnetic fields. Thus the total Hopf
invariant is equal to one-eighth of the total sum of terms
shown in Figs. 8(a) and 8(b).

From Fig. 8(a), one can see that the components of Ax,y

sum up in such a way that they give magnetic fields “below”
the hopfion, as we show in Fig. 9(a). The contributions
from weights in the top layer of the hopfion [see the top
layer Fig. 8(b)] cancel out due to Eq. (6). Therefore the
total contribution from the top layer of Fig. 8(b) gives just
four ones coming from different vortices, as we show in
Fig. 9(b). On the other hand, the weights from the bottom
layer in Fig. 8(b) can be transformed by applying the condition
of zero divergence (5), thus resulting in the terms shown
in Fig. 9(c). The total Hopf number can be rewritten as
a sum:

χ = 1
8 × [

sum of terms from Fig. 9(a)
]

+ 1
4 × [

sum of terms from Fig. 9(b)
]

+ 1
8 × [

sum of terms from Fig. 9(c)
]
.

One can check that, since the bonds “below” the hopfion
do not contain dimers, the magnetic field components shown
in Fig. 9(a) cancel out due to the constraint (6). Similarly, the
weights shown in Fig. 9(c) cancel as well. Thus we arrive to
the final answer for the Hopf invariant:

χ = 1. (A3)

[1] P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).
[2] P. W. Anderson, Science 235, 1196 (1987).
[3] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
[4] D. A. Huse, W. Krauth, R. Moessner, and S. L. Sondhi, Phys.

Rev. Lett. 91, 167004 (2003).
[5] R. Moessner and K. S. Raman, Quantum dimer models, in

Introduction to Frustrated Magnetism, edited by C. Lacroix, P.
Mendels, and F. Mila, Springer Series in Solid-State Sciences,
Vol. 164 (Springer, Berlin, Heidelberg, 2011).

[6] O. Sikora, N. Shannon, F. Pollmann, K. Penc, and P. Fulde,
Phys. Rev. B 84, 115129 (2011).

[7] M. Freedman, M. B. Hastings, C. Nayak, and X.-L. Qi, Phys.
Rev. B 84, 245119 (2011).

[8] V. Arnold and B. Khesin, Topological properties of magnetic
and vorticity fields, in Topological Methods in Hydrodynamics,
Applied Mathematical Sciences, Vol. 125 (Springer, New York,
2013).

[9] G. E. Marsh, Force-Free Magnetic Fields: Solutions, Topol-
ogy And Applications (World Scientific Publishing Company,
Singapore, 1996).

[10] T. W. Barrett and D. M. Grimes, Advanced Electromagnetism:
Foundations, Theory and Applications (World Scientific, Singa-
pore, 1995).

[11] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[12] G. Volovik and V. P. Mineev, Zh. Éksp. Teor. Fiz. 73, 767 (1977)

[Sov. Phys. JETP 46, 401 (1977)].
[13] S. Candelaresi, J. Phys.: Conf. Ser. 544, 012006 (2014).
[14] D.-L. Deng, S.-T. Wang, C. Shen, and L.-M. Duan, Phys. Rev.

B 88, 201105(R) (2013).
[15] C. Liu, F. Vafa, and C. Xu, Phys. Rev. B 95, 161116(R) (2017).
[16] R. Kennedy, Phys. Rev. B 94, 035137 (2016).
[17] Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Phys.

Rev. B 96, 041103(R) (2017).
[18] D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents, Phys.

Rev. Lett. 96, 097207 (2006).
[19] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69,

064404 (2004).
[20] M. J. P. Gingras and P. A. McClarty, Rep. Prog. Phys. 77,

056501 (2014).
[21] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod.

Phys. 82, 53 (2010).

024420-8

https://doi.org/10.1063/1.1703953
https://doi.org/10.1063/1.1703953
https://doi.org/10.1063/1.1703953
https://doi.org/10.1063/1.1703953
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevB.84.115129
https://doi.org/10.1103/PhysRevB.84.115129
https://doi.org/10.1103/PhysRevB.84.115129
https://doi.org/10.1103/PhysRevB.84.115129
https://doi.org/10.1103/PhysRevB.84.245119
https://doi.org/10.1103/PhysRevB.84.245119
https://doi.org/10.1103/PhysRevB.84.245119
https://doi.org/10.1103/PhysRevB.84.245119
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1088/1742-6596/544/1/012006
https://doi.org/10.1088/1742-6596/544/1/012006
https://doi.org/10.1088/1742-6596/544/1/012006
https://doi.org/10.1088/1742-6596/544/1/012006
https://doi.org/10.1103/PhysRevB.88.201105
https://doi.org/10.1103/PhysRevB.88.201105
https://doi.org/10.1103/PhysRevB.88.201105
https://doi.org/10.1103/PhysRevB.88.201105
https://doi.org/10.1103/PhysRevB.95.161116
https://doi.org/10.1103/PhysRevB.95.161116
https://doi.org/10.1103/PhysRevB.95.161116
https://doi.org/10.1103/PhysRevB.95.161116
https://doi.org/10.1103/PhysRevB.94.035137
https://doi.org/10.1103/PhysRevB.94.035137
https://doi.org/10.1103/PhysRevB.94.035137
https://doi.org/10.1103/PhysRevB.94.035137
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevLett.96.097207
https://doi.org/10.1103/PhysRevLett.96.097207
https://doi.org/10.1103/PhysRevLett.96.097207
https://doi.org/10.1103/PhysRevLett.96.097207
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1103/RevModPhys.82.53


HOPFIONS IN A LATTICE DIMER MODEL PHYSICAL REVIEW B 100, 024420 (2019)

[22] B. Yee, Magnetic ordering of dipolar spin ice in moderate [111]
field, M.Sc. thesis, University of Waterloo, Ontario, 2016, https:
//uwspace.uwaterloo.ca/handle/10012/10803.

[23] Y. Ran, P. Hosur, and A. Vishwanath, Phys. Rev. B 84, 184501
(2011).

[24] J. K. Pachos, Introduction to Topological Quantum Computation
(Cambridge University Press, Cambridge, 2012).

[25] C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85,
1473 (2013).

[26] Y. Perrin, B. Canals, and N. Rougemaille, Nature (London) 540,
410 (2016).

[27] Y. Lao, F. Caravelli, M. Sheikh, J. Sklenar, D.
Gardeazabal, J. D. Watts, A. M. Albrecht, A. Scholl, K.

Dahmen, C. Nisoli, and P. Schiffer, Nat. Phys. 14, 723
(2018).

[28] A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar,
M. Wyss, L. Anghinolfi, F. Nolting, and L. J. Heyderman, Nat.
Phys. 9, 375 (2013).

[29] G.-W. Chern, C. Reichhardt, and C. Nisoli, Appl. Phys. Lett.
104, 013101 (2014) .

[30] A. Ferngundez-Pacheco, R. Streubel, O. Fruchart, R. Hertel,
P. Fischer, and R. P. Cowburn, Nat. Commun. 8, 15756
(2017).

[31] L. Keller, M. K. I. Al Mamoori, J. Pieper, C. Gspan, I. Stockem,
C. Schröder, S. Barth, R. Winkler, H. Plank, M. Pohlit, J.
Müller, and M. Huth, Sci. Rep. 8, 6160 (2018).

024420-9

https://uwspace.uwaterloo.ca/handle/10012/10803
https://doi.org/10.1103/PhysRevB.84.184501
https://doi.org/10.1103/PhysRevB.84.184501
https://doi.org/10.1103/PhysRevB.84.184501
https://doi.org/10.1103/PhysRevB.84.184501
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1038/nature20155
https://doi.org/10.1038/nature20155
https://doi.org/10.1038/nature20155
https://doi.org/10.1038/nature20155
https://doi.org/10.1038/s41567-018-0077-0
https://doi.org/10.1038/s41567-018-0077-0
https://doi.org/10.1038/s41567-018-0077-0
https://doi.org/10.1038/s41567-018-0077-0
https://doi.org/10.1038/nphys2613
https://doi.org/10.1038/nphys2613
https://doi.org/10.1038/nphys2613
https://doi.org/10.1038/nphys2613
https://doi.org/10.1063/1.4861118
https://doi.org/10.1063/1.4861118
https://doi.org/10.1063/1.4861118
https://doi.org/10.1063/1.4861118
https://doi.org/10.1038/ncomms15756
https://doi.org/10.1038/ncomms15756
https://doi.org/10.1038/ncomms15756
https://doi.org/10.1038/ncomms15756
https://doi.org/10.1038/s41598-018-24431-x
https://doi.org/10.1038/s41598-018-24431-x
https://doi.org/10.1038/s41598-018-24431-x
https://doi.org/10.1038/s41598-018-24431-x

