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Fermionic quantum spin liquids: Exact results for parametric pumping
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The time dependence of the response of the quantum spin liquid with fermionic excitations to parametric
pumping has been calculated exactly for the special case of periodic pumping, the steplike periodic field, without
using the resonance approximation, and for any value of the pumping magnitude. In the closed regime each mode
(related to each eigenstate of the system) oscillates with time. The oscillations persist about the steady-state
values, which are determined by the parameters of the pumping. The magnitude of the oscillations is finite for
any value of the magnitude of the pumping. Those features drastically differ from the well-known resonance
parametric pumping of magnons in magnetically ordered system, where the number of resonance magnons
grows exponentially in time. The interference of infinitely many modes generically yields only decaying-in-time
modulated oscillations of the total number of quasiparticles per mode even in the closed regime. For the fermionic
system only one mode is in resonance, while others are out of resonance. It is totally different from the bosonic
behavior of magnons under parametric pumping, where all modes can exist in resonance. The inclusion of the
linear relaxation in the open regime for that quantum spin liquid produces the decay of oscillations to the initial
state.
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I. INTRODUCTION

Parametric excitation of the simple harmonic oscillator
(parametric oscillator) without relaxation [1] is usually stud-
ied using the Mathieu equation [2]

d2y

dt2
+ [a − ν cos(ωt )]y = 0 (1)

[notice that the Mathieu equation is the single-harmonic case
of the Hill differential equation (d2y/dt2) + f (t )y = 0 with
the periodic function f (t )]. The parametric pumping of the
oscillator by the harmonic field is usually performed using
Floquet’s theorem [3] (see also Bloch’s theorem [4]). The
latter states that for fixed values of a and ν the Mathieu
equation admits the complex solution. For those regions of
the plane a-ν, which asymptotically (at |a| + |ν| � 1) are the
regions of unstable solutions, the increment is asymptotically
proportional to the magnitude of the pumping. Hence, in that
case the system becomes parametrically unstable even in the
presence of linear damping if the magnitude of the pumping
is large enough. It is believed that the parametric instability is
the property of not only a single-harmonic case but also any
periodic-in-time function f (t ) for the Hill equation.

For many-body systems the complete analogy is known
between the behavior of the parametric oscillator and the
behavior of the magnon (bosonic) system, e.g., under the
action of the ac magnetic field, parallel to the dc one.
The low-temperature behavior of a magnetically ordered sys-
tem can be described by the gas of weakly interacting bosonic
quasiparticles, known as magnons. The Hamiltonian Hm of
the magnon system of the magnetically ordered system (up

to an independent operator term) under the action of the ac
magnetic field, parallel to the dc one, has the form [5]

Hm =
∑

k

([εk + ht (Ak/εk )]c†
kck + (htBk/2εk )

× [ckc−k + H.c.]), (2)

where εk =
√
A2

k − B2
k is the energy of a magnon, ck and c†

k
destroy and create the magnon, and ht is the ac field. The coef-
ficient Ak is determined by the dc field and the exchange inter-
action, while the one for Bk , which does not conserve the num-
ber of magnons, is usually of a relativistic nature. Suppose
ht = h cos(ωt ). Within the so-called resonance approximation
[6], one can consider exactly terms, explicitly dependent on
time, which produce the nonzero contribution to the linear re-
sponse. The remaining terms with an explicit time dependence
can be omitted due to the smallness of the magnitude of the ac
magnetic field h � εk, ω. (Their contribution can be, in prin-
ciple, calculated in the framework of the perturbation theory.)
For the Hamiltonian Hm the resonance approximation means
that only terms like [exp(iωt )ckc−k + H.c.] are kept. Then,
after well-known algebra [5], the increment (decrement) of the
time dependence of ck and c†

−k (and therefore of the average
of the number of magnons 〈c†

kck〉 with the density matrix
or with the ground-state wave function) depends on whether
the value −[εk − (ω/2)]2 + |hBk/εk|2 is larger (smaller) than
(γk )2, where γk is the linear relaxation rate. Here and below
we use units in which h̄ = 1 for simplicity. In resonance we
can neglect the term [εk − (ω/2)]2. Then for any γk there
exists a threshold value of the magnitude of the ac field hc: For
a magnitude of the ac field larger than that threshold value,
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h > hc, the number of magnons in the system grows with
time exponentially (and the linear relaxation cannot limit that
growth). Such a parametric instability [5] is observed in many
magnetic systems [7].

In quantum spin liquids the magnetic order is suppressed
down to the lowest temperatures due to the frustration of spin-
spin interactions and/or enhanced quantum fluctuations in
low-dimensional systems [8,9]. In many quantum spin liquids
emergent magnetic excitations are fermions (as a rule they
carry fractionalized spin) instead of magnons (bosons, which
carry spin 1) for ordered magnetic systems. The problem of
parametric pumping in several quantum spin liquids was stud-
ied [10]. It was shown that instead of parametric instability,
i.e., instead of exponential growth with time of the number of
magnons, parametric pumping in those quantum spin liquid
systems yields an oscillation of the number of (fermionic)
emergent magnetic excitations. However, in Refs. [10] the
resonance approximation was used. Therefore, the question
remains whether the dropped nonresonance terms, which
depend on time explicitly, can produce the parametric insta-
bility for quantum spin liquids. It constitutes the aim of the
present work: to study the effect of parametric pumping in
the fermionic model of the quantum spin liquid exactly. In
what follows we solve the problem for periodic parametric
pumping. It has a periodic steplike structure. For such periodic
pumping the problem of the dynamics of the considered quan-
tum system can be solved exactly, without any approximations
(for noninteracting fermions).

On the other hand, theoretical investigations of sharp
changes in applied fields are very important in the context of
experiments in high magnetic pulse fields [11], with ultrafast
(e.g., terahertz) pulses [12] performed in solids [13] and in
ultracold gases in optical traps [14]. High magnetic fields
imply that the condition that the magnitude of the ac field
is smaller than the characteristic energies of the considered
system, h � εk , is not satisfied. Hence, the other goal of the
present work is to study the response of the considered system
to parametric pumping, for which the magnitude is unlimited
by the applied method of consideration.

II. RESPONSE TO THE PERIODIC STEPLIKE PUMPING

Let us consider the Hamiltonian of the studied system is
the quadratic form of spinless Fermi operators:

H0 =
∑

k

[
Aka†

kak + 1

2
(Bkaka−k + B∗

k a†
−ka†

k )

]
, (3)

where a†
k (ak) creates (destroys) the fermion of mode k.

We can present the complex value Bk = |Bk| exp(iψk ). Then,
going to the new operators ak → ak exp(−iψk/2), etc., we get
the Hamiltonian (3) with the real |Bk|. In what follows we
will use the notation |Bk| → Bk for simplicity. With the help
of the standard Bogoliubov transformation the Hamiltonian
H0 can be diagonalized; that is, it takes the form H0 =∑

k>0 εk (b†
kbk − 1/2), where b†

k (bk) are Fermi operators for
creating (destroying) the true excitations of the considered
system and εk =

√
A2

k + B2
k is the energy of those excitations.

Let us study the dynamics of the system with the Hamil-
tonian H0 under the action of periodic pumping H = H0 +

ht
∑

k a†
kak , where ht is the periodic-in-time t function.

Rewriting the Hamiltonian in terms of Fermi operators for true
eigenstates, we obtain

H = E0 +
∑

k

[(
εk + ht

Ak

εk

)
b†

kbk + ht Bk

2εk
(bkb−k + b†

−kb†
k )

]
,

(4)

where E0 does not contain operators. The time dependence of
the operators bk and b†

k can be written via the solution of the
Heisenberg equations of motion:

i

(
∂

∂t
+ γk

)
b†

−k = −
(

εk + ht
Ak

εk

)
b†

−k + ht Bk

εk
bk,

i

(
∂

∂t
+ γk

)
bk =

(
εk + ht

Ak

εk

)
bk + ht Bk

εk
b†

−k, (5)

where we have introduced the linear relaxation for each mode
k with the rate γk . For t = 0 we suppose that the Heisenberg
operators coincide with the Schrödinger ones. For the spinors
f †
k ≡ (b†

k b−k ) we can rewrite Eqs. (5) as

i

(
∂

∂t
+ γk

)
fk = Lk fk, (6)

where Lk = [εk + ht (Ak/εk )]σ z + ht (Bk/εk )σ x, with the Pauli
matrices σ x,y,z. Introducing f̃k = exp(−γkt ) fk , we can remove
the relaxation terms from the equations of motion.

Let us consider the periodic function ht = h for n(τ1 +
τ2) � t � n(τ1 + τ2) + τ1, where n is a non-negative integer
and ht = 0 for n(τ1 + τ2) + τ1 � t � (n + 1)(τ1 + τ2); that
is, we consider the pumping with the magnitude h � 0 and
the period τ1 + τ2. We can introduce the angular frequency
of the pumping ω = 2π/(τ1 + τ2). The pumping is periodic,
and it can be written as a series of harmonic modes. In what
follows we consider t = n(τ1 + τ2), which is reasonable for
large values of n � 1. Using the piecewise constancy of the
pumping, the solution for the equations can be written as
f̃k (t ) = Rn

k f̃k (0), where

Rk = exp(−iLk2τ2) exp(−iLk1τ1). (7)

We can write

e−iLk jτ j = cos(εk, jτ j ) − i
Ak, jσ

z + Bk, jσ
x

εk, j
sin(εk, jτ j ), (8)

where j = 1, 2, Ak, j = εk + h j (Ak/εk ), Bk, j = h j (Bk/εk ),

εk, j =
√

A2
k, j + B2

k, j , with h1 = h and h2 = 0. We see that
Ak,1 = εk + h(Ak/εk ), Ak,2 = εk and Bk.1 = h(Bk/εk ), Bk,2 =
0, with εk,1 =

√
ε2

k + 2Akh + h2 and εk,2 = εk for our choice
of the periodic pumping. The operator Rk can be written as

Rk = ρ + ρxσ
x + ρyσ

y + ρzσ
z, (9)

with

ρ = cos(εkτ2) cos(εk,1τ1) − ε2
k + hAk

εkεk,1
sin(εkτ2) sin(εk,1τ1),

ρz = −i

[
sin(εkτ2) cos(εk,1τ1) + ε2

k + hAk

εkεk,1
cos(εkτ2)

× sin(εk,1τ1)

]
, (10)
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ρx = −i
hBk

εkεk,1
cos(εkτ2) sin(εk,1τ1),

ρy = i
hBk

εkεk,1
sin(εkτ2) sin(εk,1τ1). (11)

We can see that

ρ2 − ρ2
z = cos2(ε1τ1) +

(
ε2

k + hAk
)2

ε2
kε

2
k,1

sin2(εk,1τ1),

ρ2
x + ρ2

y = − h2B2
k

ε2
kε

2
k,1

sin2(εk,1τ1); (12)

that is, those combinations do not depend on τ2. We also
see that ρ2

x + ρ2
y + ρ2

z = ρ2 − 1. Let us define ρ = cos(φk ),
so that ρ2

x + ρ2
y + ρ2

z = − sin2 φk . It is possible because
|ρ| � 1. To check the latter, we can use the following
property: [(εk + hAk )/εkεk,1] � 1 for any h 
= 0 and Bk 
=
0. Then Rk = �D�−1, where D = exp(iφkσ

z ), and � =
exp(−iθσ z/2) exp(−iθ ′σ x/2), with cos θ = ρx/

√
ρ2

x + ρ2
y

and cos(θ ′) = ρz/
√

ρ2 − 1. The solution of the Heisenberg
equations of motion is then

f̃k (t ) = �Dn�−1 f̃k (0). (13)

Combining all expressions, we obtain, after some algebra, for
nk (t ) ≡ (1/2)〈[b†

k (t )bk (t ) + b†
−k (t )b−k (t )]〉,

nk (t ) exp(2γkt ) = nk (0) + sin2 θ ′ sin2(nφk ) tanh(εk/2T ),

(14)

where T is the temperature in energy units, nk (0) =
[exp(εk/T ) + 1]−1 is the Fermi distribution function, and we
use the property 1 − 2nk (0) = tanh(εk/2T ). We can use the
definition of θ ′, obtaining

nk (t )e2γkt = nk (0) + tanh(εk/2T )
h2B2

k

ε2
kε

2
k,1

sin2(εk,1τ1)

× sin2[tφk/(τ1 + τ2)]

sin2 φk
. (15)

Notice that due to the diagonalization of the Hamil-
tonian H0 the pumping is coupled to the combination
of operators (Ak/2εk )[b†

k (t )bk (t ) + b†
−k (t )b−k (t )] + (Bk/2εk )

[bk (t )b−k (t ) + b†
−k (t )b†

k (t )]. Hence, let us define αk (t ) =
(1/2)〈[bk (t )b−k (t ) + b†

−k (t )b†
k (t )]〉. The solution for αk (t ) is

αk (t )e2γkt = 1
2 tanh(εk/2T )[cos θ sin 2θ ′ sin2(nφk )

− sin θ sin θ ′ sin(2nφk )]. (16)

Using the definitions of θ and θ ′, we obtain

αk (t )e2γkt = tanh(εk/2T )
hBk

εkεk,1
sin(εk,1τ1)

sin[tφk/(τ1 + τ2)]

sin φk

{
sin[tφk/(τ1 + τ2)]

sin φk

[
1

2
cos(εk,1τ1) sin(2εkτ2)

+ ε2
k + hAk

εkεk,1
sin(εk,1τ1) cos2(εkτ2)

]
− sin(εkτ2) cos[tφk/(τ1 + τ2)]

}
. (17)

It turns out that it is, probably, physically more appropriate to
consider the relaxation to the state, defined by the Hamiltonian
H0. (In general, the relaxation can exist, e.g., for a zero value
of nk or for some other value [15]). It implies that only the
second term on the right-hand side of Eq. (15) has to have
the damping multiplier exp(−2γkt ). For the closed system
(in which there are no relaxation processes) the results are
formally obtained by taking the limit γk → 0 in Eqs. (15)
and (17).

Equations (15) and (17) are the main result of our paper.
It must be pointed out that those results are exact; that is, we
do not drop any terms and do not consider any parameter to
be small when studying the dynamics of the system with the
Hamiltonian H0 under the action of pumping.

III. ANALYSIS OF THE RESULTS

Let us analyze the obtained results. First, we can check
that for Bk = 0, as well as for h = 0, or for τ1 = 0 we get
nk (t ) = nk (0), as it must be. (For Bk = 0 the pumping term
commutes with H0.) The temperature dependence is totally
determined by the initial state with the Hamiltonian H0. In
the ground state we can replace tanh(εk/2T ) → εk/|εk|, as
usual. Hence, the dynamical renormalization is maximal in
the ground state, and it decreases with the growth of the

temperature. The time-dependent oscillating parts of nk (t )
and αk (t ) can be written as a function of ωtφk/2π . We also
see that the renormalization of nk and αk is finite with the
growth of h for both the open and closed systems, as it must
be. For general values of the magnitude of the pumping,
the correlation functions oscillate with h as well as with τ1

and τ2. For small values of the magnitude of the pumping,
h � Ak, Bk , the main contribution comes from the anomalous
correlation function αk (t ), namely,

αk (t ) ≈ − tanh(εk/2T )e−2γkt hBk

ε2
k

sin(εkτ1)

×
{

sin2(εkt ) cos(εkτ2)

sin2[εk (τ1 + τ2)]
[cos(εkτ1) sin(εkτ2)

+ sin(εkτ1)] − sin(2εkt ) sin(εkτ2)

2 sin[εk (τ1 + τ2)]

}
, (18)

while for small h the value of nk (t ) is proportional to h2,
namely,

nk (t ) ≈ nk (0) + tanh(εk/2T )e−2γkt h2B2
k

ε4
k

sin2(εkτ1)

sin2[εk (τ1 + τ2)]

× sin2(εkt ). (19)
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The resonance condition corresponds to sin φk = 0, i.e.,
ρ = ±1. One can check that it corresponds to εkτ2 = πm
and εk,1τ1 = πm, i.e., εkτ2 + εk,1τ1 = 2πm, where m � 0 is
a non-negative integer. For small h and m = 1 it implies
εk = ω/2, i.e., the standard condition of the parametric res-
onance for many-body systems [5,10].

In resonance the terms proportional to sin[tφk/(τ1 +
τ2)]/ sin φk grow linearly with t [notice that the main con-
tribution to nk (t ) and αk (t ) for the closed system grows as
t2]. It happens for a single mode k, defined by the resonance
condition. Other modes are out of resonance due to the
fermionic nature of eigenstates. However, the linear relaxation
for the open system limits that growth because in resonance
the relaxation rate γk for systems with stable eigenstates is
much less than ω ∼ 2εk . This means that unlike the usual
situation for the parametric resonance, e.g., for the linear
oscillator, the growth of the deviations from the steady state
in resonance is nonexponential in time in our case and can be
limited by the inclusion of the linear relaxation.

For τ1 = τ2 = τ the angular frequency is ω = π/τ . For
small h we get

αk (t ) ≈ − tanh(εk/2T )e−2γkt hBk

ε2
k

{
sin2(εkt )

4 cos[πεk/ω]

× [cos(πεk/ω) + 1] − sin(2εkt )

4
tan[πεk/ω]

}
(20)

and

nk (t ) ≈ nk (0) + tanh(εk/2T )e−2γkt h2B2
k

ε4
k

1

4 cos2[πεk/ω]

× sin2(εkt ). (21)

For the resonance mode we have εk = ω/2; hence,

αres
k (t ) ≈ − tanh(ω/4T )e−2γkt 2hBk

ω2
sin2(ωt/2), (22)

and

nres
k (t ) ≈ nk (0) + tanh(ω/4T )e−2γkt 4h2B2

k

ω4
sin2(ωt/2). (23)

We can write the expressions for the quantities which
can be measured in experiments with parametric pumping.
First, the expression for the time dependence of the aver-
age total number of quasiparticles per site coupled to the
pumping is

nav (t ) = 1

L

∑
k>0

[
nk (t )

Ak

εk
+ αk (t )

Bk

εk

]
≡ nav (0) + �nav (t ),

(24)

where L is the number of sites of the system. In the ther-
modynamic limit L → ∞ the summation can be replaced by
the integration. The average total number of quasiparticles
per site oscillates with time. Naturally, those oscillations
decay with time due to nonzero γk in the open regime.
In the closed regime in our many-body system each mode
produces an oscillation with its own frequency; hence, the
average total number must manifest the complicated inter-
ference of (infinitely) many oscillating modes. The inter-
ference generically causes the decay of the magnitude of
those oscillations to some steady-state value even for the
closed regime. According to the Riemann-Lebesque lemma
if

∫ b
a f (x)dx exists and f (x) has a limited total variation in

the range (a, b), then one has limy→∞
∫ b

a f (x) sin(yx)dx =
limy→∞

∫ b
a f (x) cos(yx)dx = 0. This means that in the closed

regime the average total number of quasiparticles oscillates
about the steady-state value determined from

�nav (st ) = − 1

L

∑
k>0

tanh(εk/2T )
hB2

k

ε2
kεk,1 sin2 φk

×
(

1

2
cos(εk,1τ1) sin(2εkτ2) + sin(εk,1τ1)

εkεk,1

× {
ε2

k cos2(εkτ2) + hAk[sin(εk,1τ1)

+ cos2(εkτ2)]
} )

. (25)

FIG. 1. Left: The time dependence of �mk for the honeycomb Kitaev model in the gapless case Jx = Jz = 1, Jy = 0.5 for h = 0.01 in
resonance τ1 = π/εk,1 and τ2 = π/εk in the closed regime. The solid black line shows kx = 0, ky = π/2; the dotted blue line shows kx = π/2
and ky = 0, and the dashed red line shows kx = ky = π/2. Right: The same as in the left panel, but for the gapped case Jx = 1, Jy = 0.5, and
Jz = 2.
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FIG. 2. The time dependence of nav for the finite honeycomb
Kitaev model in the gapless case out of resonance in the closed
regime.

We see that in the closed regime the steady-state value is
determined not only by the initial value nk (0)(Ak/εk ) but also
by the parameters of the pumping. Obviously, for the open
regime, the relaxation yields the damping of the oscillating
total number of quasiparticles to its initial value. The average
value oscillates with τ1 and τ2 and also with the magnitude of
the pumping h via εk,1.

The expression for the quantum work, associated with
the considered time-dependent pumping, can be written as
W = (1/L)〈H − H0〉; that is, it is equal to ht�nav (t ). For
small h that work is proportional to h2, as it must be. The
averaged-in-time quantum work in the open regime, according
to the Riemann-Lebesque lemma, is equal to h�nav (st ). On
the other hand, in the closed regime the quantum work tends
to zero.

IV. APPLICATION TO SOME QUANTUM SPIN LIQUIDS

Let us consider the realization of the Hamiltonian H0 in
quantum spin liquids. First, for the XY spin-1/2 chain we
have Ak = H − (Jx + Jy) cos k/2 and Bk = (Jx − Jy) sin k/2
[9,16]. Here, Jx,y are exchange integrals, and H (we use units
in which the effective magneton is equal to 1) is the dc external
magnetic field, directed transverse to the spin-spin couplings.
Notice that the well-known Ising chain in the transverse mag-
netic field [17] corresponds to either Jx = 0 or Jy = 0. The
other example of the quantum spin liquid is the honeycomb
Kitaev spin-1/2 model [18], for which one uses Ak = ±Jz +
Jx cos kx + Jy cos ky and Bk = Jx sin kx + Jy sin ky, where Jx,y,z

are exchange integrals. Notice that for the Kitaev model our
consideration is limited by the ground state (where fluxes,
characteristic for the Kitaev model, are absent [19]). One
more realization of the Hamiltonian H0 is the mean-field
spinon Hamiltonian [20], used to describe the properties of
the highly frustrated YbMgGaO4. The latter is believed to
be a quantum spin liquid; for example, the inelastic neutron
scattering experiments manifested the broad continuum of
spin excitations associated with the fractionalized quantum
spin liquid with the Fermi surface of spinons [21]. In all of the
above-mentioned examples ht describes the periodic magnetic
field [10,20]. Other realizations of the systems described by
the Hamiltonian H0 are the Kitaev chain [22], the edge states
of topological insulators [23], and the quantum wires situated
in the vicinity of a conventional superconductor [24]. For
the last two examples, parametric pumping in the resonance
approximation was studied in [25]. For those realizations ht

describes the periodic applied potential. Our results can also
be applied to type-I inversion-symmetric Weyl semimetals
[26], which can also be described by the Hamiltonian H0.
Notice that the interaction between fermions can be taken
into account within the applied model, too (the interaction can
be taken into account in the mean-field-like or random-phase
approximation, leading to the same quadratic Hamiltonian for
the fermions) [27].

FIG. 3. Left: The time dependence of the renormalization of the z component of the averaged per site total spin of the Ising chain (with
Jx = 2) per site in the transverse field ht at T = 0.1 in resonance (with τ1 = τ2 = π ) for h = 0.1. Right: The same as in the left panel, but for
h = 1.5.
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Let us start with the case of the Kitaev honeycomb spin
model. Notice that our approach is different from the one
considered in [28]. There dynamical structure factors [for
k = 0 related to the electron spin resonance (ESR)] were
obtained for the Kitaev model. However, the geometry of
[28] is related to the ESR, in which the ac magnetic field is
polarized perpendicular to the ac field. It yields the conserva-
tion law for each elementary act of the pumping in resonance
ω = εk . In our work, instead, we consider parametric pumping
with ω = 2εk in resonance. The difference is drastic. For
magnetically ordered systems the standard ESR geometry
leads to the standard response caused by the periodic driving
force. The growth of the amplitude is limited by the linear
relaxation. On the other hand, in our approach the periodic
pumping is parametric, and for magnetically ordered systems
it causes the parametric instability (exponential growth of the
magnitude, which cannot be limited by the linear relaxation).
Here, we limit ourselves to the ground state (see above;
as shown in Ref. [29], disordered thermally excited fluxes
become important at a temperature of about 1% of the Kitaev
energy scale). Notice that the temperature is determined by
the initial state and does not depend on the pumping. It is also
important that homogeneous pumping (which is connected to
the projection of the total spin) can change all signs of flux
quantum numbers only homogeneously [10]. Define �mk ≡
〈a†

k (t )ak (t ) − a†
k (0)ak (0)〉. Consider the time dependence of

�mk for several values of kx and ky. Obviously, for kx = ky =
0 we have �mk = 0. Figure 1 shows the time dependence
of �mk for several values of kx and ky for the gapless case
in resonance and in the gapped case out of resonance (left
and right panels, respectively). We see that time-dependent
oscillations differ from each other for different modes. The
period of single-mode oscillation in resonance is smaller in
resonance than out of resonance (for both gapped and gapless
cases). Notice the different scales in the panels of Fig. 1.

Unfortunately, the integration of the total number of modes
cannot be performed explicitly. It is only possible to sum over
the finite number of modes, and the results of those summa-
tions support our conclusions. See, e.g., Fig. 2, where nav (t )
is shown as a function of time for the Kitaev honeycomb
model for the lattice 100 × 100 sites (similar behavior can
be seen, e.g., for the case 500 × 500 sites) in the gapless
case Jx = Jz = 1 and Jy = 0.5 for h = 0.01 out of resonance
τ1 = π/2.501, and τ2 = π/2.5 for the finite closed system.
One can see modulated decaying oscillations of the average
number of fermions.

The case of the Ising chain in the transverse field permits
us to obtain all integral values explicitly, i.e., to observe
the interference of infinitely many modes. For example, the
renormalization of the z component of total spin per site of
the Ising chain in the transverse field ht is related to �nav via
�Sz ≡ (1/L)

∑
n[Sz

n(t ) − Sz
n(0)] = −�nav . Figure 3 shows

the behavior of that renormalization as a function of time
for the Ising chain Jx = 2 for H = 0 at T = 0.1 in resonance
(for τ1 = τ2 = π ) for several values of the magnitude of the
pumping h in the closed regime. We see that the average spin
projection oscillates with time, decaying to some steady-state
value, determined by the parameters of the spin chain and
the pumping. When the magnitude of the pumping h grows,
the oscillations persist (however, with different magnitudes

and frequencies), also decaying to the steady-state values.
That case h = 0.01 is shown in Fig. 4 (top panel), where the
decaying oscillations of the z projection of the averaged per
site total spin are also clearly seen. Figure 4 (bottom panel)
shows the above-mentioned oscillations for the same Ising
chain out of resonance with τ1 = π/4 and τ2 = π . We see that
the decaying oscillations persist, however with smaller period
and with modulations characteristic of the closed regime of
the parametric pumping (see [10]).

In Fig. 5 for comparison, the resonance (τ1 = τ2 = π ) and
nonresonance (τ1 = π/2 and τ2 = π ) oscillations are shown.

FIG. 4. Top: The time dependence of the renormalization of the z
component of the averaged per site total spin of the Ising chain (with
Jx = 2) per site in the transverse field ht at T = 0.1 in resonance
(with τ1 = τ2 = π ) at h = 0.01. Bottom: The same as in the top
panel, but out of resonance (with τ1 = π/4 and τ2 = π ) at h = 0.01.
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FIG. 5. The time dependence of the renormalization of the z
component of the averaged per site total spin of the Ising chain (with
Jx = 2) per site in the transverse field ht at T = 0.1 in resonance
(black line, τ1 = π and τ2 = π ) and out of resonance (red line, with
τ1 = π/2 and τ2 = π ) at h = 0.01.

We see that in resonance the frequency of the oscillations
becomes much smaller.

Then, Fig. 6 shows the time dependence of the quantum
work associated with the considered time-dependent pumping
for the Ising chain (with the same parameters as in Figs. 3–5)
out of resonance (in the left panel, τ1 = π/2 and τ2 = π ) and
in resonance (in the right panel, τ1 = τ2 = π ). In resonance
the area under the curve is almost filled by lines because
of the time dependence of ht with the period τ1 + τ2, much
smaller than for �nav (we show those oscillations in this
scale to manifest the modulations). On the other hand, out of
resonance one can distinguish separate peaks related to the
periodic steplike form of the pumping.

Finally, Fig. 7 (showing the in-resonance and out-of-
resonance behaviors in the left and right panels, respectively)
manifests the normalized by h2 power Q = W/th2, associated
with the quantum work. In Fig. 7 in the right panel separate
peaks are clearly seen in resonance, too.

The solution is obtained for the steplike periodic pumping.
For the purpose of this work (whether the nonresonance terms
can yield the parametric instability) the most important fact is
the periodic modulation of the parameter of the Hamiltonian;
that is, the presence of parametric pumping does not matter
regardless of the form of the periodic field. However, it is
important to understand whether that form can also be essen-
tial. Generally speaking, the answer to that question is very
complicated and deserves special consideration. It is possible
to answer that question only in some limiting case [30]. In
brief, the answer is that following [31], we can consider the
solution for harmonic parametric pumping, e.g., for the case
Bk � Ak . In [31] a similar model (the quadratic form of the
creation and destruction operators) with harmonic paramet-
ric pumping (ht = h[1 − cos(ωt )]) was studied, however for
bosons. Adapting the results of [31] for the fermionic case, it
is possible to obtain the expression describing the dynamics
of spinors fk for harmonic pumping in the second order
with respect to the small parameter Bk/Ak . For that case the
operator Rk in the diagonal form can also be written as Rk =
ρ ± i

√
1 − ρ2 (i.e., similar to the steplike shape of the pump-

ing), with the different definition of ρ = cos[2π (αk + δ)] −
(|βk|2/2){κ exp[2π (αk + δ)] + c.c.}, where αk = Ak/ω, βk =
Bk/ω, δ = h/ω, and κk = ∫ 2π

0 dx
∫ x

0 dy exp(2i{δ[sin(x) −
sin(y)] − (αk + δ)(y − x)}). Then it is possible to prove that
ρ � 1 for fermions for any δ. Hence, the fermionic system is
stable with respect to the parametric action of the harmonic
periodic field, too, for the case Bk � AK without using the
resonance approximation. For general values of Bk/Ak it is
impossible to obtain the solution (it is similar to the prob-
lem of obtaining the general solution for the Hill equation).
Numerical solutions are, unfortunately, limited to the used
choice of parameters.

FIG. 6. Left: The quantum work associated with the considered time-dependent pumping for the Ising chain as a function of time out of
resonance τ1 = π/2 and τ2 = π . Right: The same as in the left panel, but in resonance τ1 = τ2 = π .
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FIG. 7. Left: The normalized power associated with the considered time-dependent pumping for the Ising chain as a function of time out
of resonance τ1 = π/2 and τ2 = π . Right: The same as in the left panel, but in resonance τ1 = τ2 = π .

V. SUMMARY

In summary, the time dependence of the response of the
quantum spin liquid with fermionic excitations on the para-
metric periodic-in-time pumping of the steplike form has been
calculated exactly. The result has been obtained without using
the resonance approximation and for any value of the pumping
magnitude. In the closed regime each mode (related to each
eigenstate of the system) oscillates with time. The oscillations
persist about the steady-state values. The latter is determined
not only by the initial state but also by the parameters of the
pumping (the magnitude and the frequency). The magnitude
of the oscillations is finite for any value of the magnitude
of the pumping. It is very different from the well-known
exponential-in-time growth of the magnitude of the paramet-
ric oscillator in resonance and from the resonance parametric
pumping of magnons in magnetically ordered systems, where
the number of resonance magnons grows exponentially with
time. The interference of infinitely many modes (in the ther-
modynamic limit) generically yields only decaying-in-time
modulated oscillations of the total number of quasiparticles
per mode even in the closed regime. For the fermionic system
only one mode is in resonance, while the others are out of
resonance. It is totally different from the bosonic behavior

of magnons under parametric pumping, where all modes can
exist in resonance. The inclusion of the linear relaxation in the
open regime for the quantum spin liquid produces the decay of
oscillations to the initial state. In resonance the frequency of
the oscillations of the total number of quasiparticles becomes
much smaller than out of resonance. Other characteristics,
like the quantum work associated with parametric pumping,
have also been calculated. The obtained results can be ap-
plied directly to many models of quantum spin liquids with
fermionic excitations (mostly with gapped excitations), like
the Kitaev honeycomb spin model, the spin XY or Ising
chains in the transverse field, and the mean-field spinon
liquid, used to describe the properties of the highly frustrated
YbMgGaO4. On the other hand, the results can be applied to
other fermionic systems, like the Kitaev chain, edge states
of topological insulators, and quantum wires in the vicinity
of a superconductor, and to type-I inversion-symmetric Weyl
semimetals.
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