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We consider the random-field O(N) spin model with long-range exchange interactions which decay with
distance r between spins as r−d−σ and/or random fields which correlate with distance r as r−d+ρ , and reexamine
the critical phenomena near the lower critical dimension by use of the perturbative functional renormalization
group. We compute the analytic fixed points in the one-loop beta functions, and study their stability. We also
calculate the critical exponents at the analytical fixed points. We show that the analytic fixed point which governs
the phase transition in the system with the long-range correlations of random fields can be destabilized by the
nonanalytic perturbation in both cases where the exchange interactions between spins are short ranged and long
ranged. For the system with the long-range exchange interactions and uncorrelated random fields, we show
that the d → d − σ dimensional reduction at the leading order of the d − 2σ expansion holds only for N >

2(4 + 3
√

3) � 18.3923 . . . . Our investigation into the system with the long-range exchange interactions and
uncorrelated random fields also gives the value of the boundary between critical behaviors in systems with
long-range and short-range exchange interactions, which is identical to that predicted by Sak [Phys. Rev. B 8,
281 (1973)]. For the system with the long-range exchange interactions and the long-range correlated random
fields, we show that the d → d − σ − ρ dimensional reduction does not hold within the present framework, as
far as N is finite.
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I. INTRODUCTION

The random-field O(N ) spin model is the model in which
nonrandom exchange interactions between spins are ferro-
magnetic and external magnetic fields are random. To clarify
the critical phenomena in this model is one of the fundamental
problems in the disordered spin system, and there are a lot of
intensive studies on this [1,2]. The d → d − θ dimensional
reduction gives an important clue to clarify the nature of
this model. The d → d − θ dimensional reduction means that
the effect of random fields reduces the spatial dimension by
θ ; namely, the critical phenomena in d-dimensional random-
field system is equivalent to that in the (d − θ )-dimensional
corresponding pure system. Here θ denotes the exponent
describing that the flow of the renormalized temperature goes
to zero under the renormalization-group iteration. If the d →
d − θ dimensional-reduction prediction is correct, all critical
exponents in the d-dimensional random-field system should
be the same as those in the corresponding pure system in θ

dimensions less.
In the spin system with the short-range ferromagnetic ex-

change interactions and the uncorrelated random fields (SR),
the d → d − 2 dimensional reduction and its breakdown
are one of the central issues. This conjecture was obtained
by the perturbation theory [3–5] and the supersymmetry
argument [6]. Rigorous proofs have shown that the d →
d − 2 dimensional-reduction prediction is incorrect below
four dimensions in the case of the random-field Ising model
(N = 1 case) [7,8]. The d → d − 2 dimensional reduction
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and its breakdown for the random-field O(N ) spin model
above four dimensions have been intensively studied. Fisher
studied the critical phenomena in 4 + ε dimensions by use
of the O(N ) nonlinear-sigma model [9]. He showed that
all possible higher-rank random anisotropies which are all
relevant operators are generated by the perturbative functional
renormalization-group iteration of the O(N ) nonlinear-sigma
model with only the random field term. Then he treated the
O(N ) nonlinear-sigma model including the random-field and
all the random-anisotropy terms, and derived the one-loop
beta function in 4 + ε dimensions. He showed that there is no
singly unstable fixed point corresponding to the d → d − 2
dimensional reduction at O(ε), and concluded that the d →
d − 2 dimensional-reduction prediction is incorrect near four
dimensions. The one-loop beta function obtained by Fisher
and the two-loop beta function extended by Le Doussal and
Wiese [10] and Tissier and Tarjus [11] have been examined
carefully [10–15]. The breakdown of the dimensional reduc-
tion is characterized by a nonanalyticity which emerges in the
first derivative of the function including the random-field and
all the random-anisotropy terms. Namely, the nonanalyticity
forms a cusp in the first derivative of the function including
the random-field and all the random-anisotropy terms, which
causes the breakdown of the dimensional reduction. The
singly unstable fixed point corresponding to the d → d − 2
dimensional reduction exists for N > 18 − (49/5)ε, although
it has the weak nonanalyticity which does not change the value
of the fixed point. However, it is unstable with respect to
the perturbation with nonanalyticity for N < 2(4 + 3

√
3) −

[3(2 + 3
√

3)/2]ε. Thus, the d → d − 2 dimensional reduc-
tion holds for N > 2(4 + 3

√
3) − [3(2 + 3

√
3)/2]ε, and the

critical exponents of the connected and the disconnected
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correlation functions η and η̄ satisfy η̄ = η. Whereas in
N < 2(4 + 3

√
3) − [3(2 + 3

√
3)/2]ε, the critical phenomena

is governed by the fixed point with the nonanalyticity, and
thus the d → d − 2 dimensional reduction is broken. More-
over, a complete theoretical explanation of the d → d − 2
dimensional reduction and its breakdown has been provided
through the nonperturbative functional renormalization group
[16–19].

In the case where the ferromagnetic exchange interactions
are short ranged and the random fields are correlated over
the distance r as r−d+ρ (LRF), the d → d − 2 − ρ dimen-
sional reduction and its breakdown are still under debate.
The symbol ρ denotes the exponent which characterizes the
range of the random-field correlations. To study the long-
range effect of the random-field correlations in the system,
we consider the case 0 � ρ < d − 2dp, where dp is the lower
critical dimension of the corresponding pure system. Kardar,
McClain, and Taylor performed the renormalization-group
calculation near the upper critical dimension du = 6 + ρ, and
concluded that the d → d − 2 − ρ dimensional reduction is
broken at O(ε2) in ε = du − d [20]. Bray pointed out an error
in Kardar, McClain, and Taylor’s result but their conclusion
still holds [21]. Chang and Abrahams carried out the one-loop
renormalization-group calculation for the O(N ) nonlinear-
sigma model near the lower critical dimension dl = 4 + ρ,
and showed that the d → d − 2 − ρ dimensional reduction is
broken at O(ε) in ε = d − dl and for N > 3 [22]. Fedorenko
and Kühnel [23] examined the one-loop beta functions of the
O(N ) nonlinear-sigma model including not only the uncor-
related and the long-range correlated random fields but also
all the uncorrelated and the long-range correlated random
anisotropies which are missed in the work by Chang and
Abrahams. They showed that the correlation length exponent
ν and the phase diagram obtained by Chang and Abrahams
are incorrect, and the exponents η and η̄ are correct only in a
region controlled by the singly unstable fixed point with the
weaker nonanalyticity.

In the case where the long-range ferromagnetic exchange
interactions decay with distance r between spins as r−d−σ

and random fields are uncorrelated (LRE), the d → d − σ di-
mensional reduction and its breakdown are still under debate.
The symbol σ denotes the exponent which controls the range
of the exchange interactions. It should be positive to ensure
that the energy density stays finite in the thermodynamic
limit. To study the long-range character of the exchange
interactions in the system, we consider the case 0 < σ < 2.
Young performed the renormalization-group calculation near
the upper critical dimension du = 3σ , and concluded that the
d → d − σ dimensional reduction is broken at O(ε2) in ε =
du − d [5]. Bray pointed out an error in Young’s result but the
conclusion still holds [21]. Chang and Abrahams carried out
the one-loop renormalization-group calculation for the O(N )
nonlinear-sigma model near the lower critical dimension dl =
2σ , and showed that the d → d − σ dimensional reduction
holds at O(ε) in ε = d − dl and for N > 1 [24]. However, the
O(N ) nonlinear-sigma model studied by Chang and Abrahams
does not contain an infinite number of relevant operators
which should be included in the model. Recently, Balog,
Tarjus, and Tissier studied the critical phenomena of a one-
dimensional random-field Ising model with the long-range
exchange interactions and uncorrelated random fields by use

of the nonperturbative renormalization group, and found that
there are two distinct regimes characterized by the presence
or absence of the nonanalyticity in the region of 1

3 � σ < 1
2

where the critical exponents take nonclassical values [25].
In the spin system with the long-range ferromagnetic

exchange interactions and the long-range correlated random
fields (LREF) with 0 < σ < 2 and 0 � ρ < d − 2dp, the
d → d − σ − ρ dimensional reduction and its breakdown
are still under debate. Bray used the renormalization-group
scaling theory, and showed η = 2 − σ , 2η − η̄ = ρ, and θ =
σ + ρ. Recently, we put ρ = 2 − σ , and studied the critical
phenomena in the three-dimensional long-range random-field
Ising model in the region of 1/2 < σ < 1 by using the
nonperturbative functional renormalization group combined
with the supersymmetric formalism [26]. We showed that
the d → d − 2 dimensional reduction holds for 1/2 < σ <

σDR ≈ 0.71, and its breakdown is observed in the exponent ν

for σDR < σ < 1.
In contrast to the case 0 < σ < 2 in which the long-range

feature of the exchange interactions is dominant, the phase
transition for large σ belongs to the short-range universality
class. As the exponent σ decreases from large σ , the univer-
sality class of the phase transition crosses over from the short-
range one to the long-range one at a critical value σ∗. In spite
of theoretical and numerical studies over 40 years, the critical
behavior in the vicinity of σ = σ∗ is still an ongoing problem.
There are a lot of studies on this problem in the pure system
[27–38]. In Refs. [27,29] it was shown that the exponent η

changes discontinuously from the value in the corresponding
short-range system to 2 − σ at σ = σ∗ = 2, as σ decreases
from large σ . In Refs. [28,30,31,34,36–38] it was shown that
the effect of the long-range exchange interactions is relevant
for σ < σ∗ = 2 − ηsr, where ηsr denotes the exponent of the
connected correlation function in the corresponding short-
range system. Then the exponent η is continuous at σ∗ =
2 − ηsr, whose value takes ηsr for σ � σ∗, and 2 − σ for σ <

σ∗. Moreover, the presence of a logarithmic correction to the
connected correlation function at σ∗ = 2 − ηsr was reported in
Ref. [35]. In Refs. [32,33] it was shown that the discontinuity
of the exponent η at σ = 2 does not occur, and the value of η is
interpolated smoothly from ηsr to 2 − σ , as σ decreases from
σ = 2. In the random-field spin system, Bray showed σ∗ =
2 − ηsr by using the renormalization-group scaling theory
[21].

As stated above, the phase transitions in this model are
classified into four universality classes (SR, LRF, LRE,
and LREF), according to whether the exchange interactions
and/or the random-field correlations in the system are short
ranged or long ranged. However, most studies of the critical
phenomena in the random-field O(N ) spin model have been
dedicated to the SR case. In this paper we consider all four
cases. We study the critical phenomena near the lower critical
dimension with the use of the O(N ) nonlinear-sigma model
combined with the replica formalism. The model treated
in this paper contains not only the uncorrelated and the
correlated random-field terms but also all the uncorrelated
and the correlated random-anisotropy terms. We employ the
perturbative functional renormalization group in order to ob-
tain the one-loop beta functions. We examine the properties
of the fixed point functions, and investigate the stability of
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the analytic fixed points on the basis of the argument by
Baczyk, Tarjus, Tissier, and Balog [15]. Then we calculate
the critical exponents η, η̄, and ν at each of four analytic
fixed points, and discuss the critical properties of the system
for each universality class. We show that the destabilization
of the analytic fixed point controlling the critical behavior
in the system with the long-range correlations of random
fields can be caused by the perturbation with nonanalyticity
in both cases where the exchange interactions between spins
are short ranged and long ranged. In the system with LRE,
we find that the analytic fixed point of O(ε) in ε = d − dl

which controls the critical behavior is singly unstable not for
N > 1 but for N > 2(4 + 3

√
3) � 18.3923 . . . . We show that

the validity of the d → d − σ dimensional reduction at the
leading order of the d − 2σ expansion is confirmed only for
N > 2(4 + 3

√
3) � 18.3923 . . . . Moreover, by investigating

the relation between the critical exponents η and η̄, we also
obtain the critical value σ∗ = 2 − ηsr, which is the same as
that obtained in Refs. [21,28,30,31,34,36–38]. In the system
with LREF, we find that the analytic fixed point which is
singly unstable exists under a certain condition. However, we
show that the d → d − ρ − σ dimensional reduction does not
hold within the present framework, as far as N is finite.

The organization of this paper is as follows. In Sec. II we
study the systems with the short-range exchange interactions,
namely the SR and LRF cases. We perform the one-loop
functional renormalization group analysis. We show that the
analytic fixed point which governs the phase transition in
the system with LRF can be destabilized by the perturbation
with nonanalyticity. In Sec. III we study the systems with the
long-range exchange interactions, namely the LRE and LREF
cases. We treat the one-loop beta functions, and carefully
analyze the properties of the analytic fixed points and their
stability. It is shown that the analytic fixed point controlling
the critical behavior in the system with LRE becomes unstable
against the perturbation with nonanalyticity for N < 2(4 +
3
√

3) � 18.3923 . . . , which is the same as the case of the
system with SR. We also show that the destabilization of
the analytic fixed point which governs the phase transition
in the system with LREF can occur due to the nonanalytic
perturbation. As a result, we obtain a certain region in the
plane of the parameters N and ρ where the analytic fixed
points are singly unstable. In Sec. IV we calculate the critical
exponents η, η̄, and ν at the analytic fixed point which controls
the critical behavior in the system with LRE. We reconsider
the validity of the d → d − σ dimensional reduction. We
also present the result for the critical value σ∗. In Sec. V we
calculate the critical exponents η, η̄, and ν at the analytic fixed
point which controls the critical behavior in the system with
LREF. We show that d → d − σ − ρ dimensional reduction
breaks down within the present framework, as far as N is
finite. Section VI summarizes our results.

II. CRITICAL PHENOMENA AT ZERO TEMPERATURE
OF LONG-RANGE CORRELATED RANDOM FIELD O(N)

SPIN MODEL WITH SHORT-RANGE EXCHANGE
INTERACTIONS IN 4 + ε DIMENSIONS

This section is intended as a reexamination of the critical
phenomena at zero temperature of the long-range correlated

random field O(N) spin model with short-range exchange
interactions in 4 + ε dimensions. We discuss the nature of
analytic fixed points and their stability. And we calculate the
critical exponents at the analytic fixed point which controls
the critical behavior in the system with SR and with LRF.

A. Model

Let us consider an N-component vector spin system where
an N-component vector spin S(x) with a fixed-length con-
straint S(x)2 = 1 couples to a random field. In order to carry
out the average over the random field, we use the replica
method. The critical phenomena of the long-range correlated
random field O(N) spin model with the short-range exchange
interactions near lower critical dimension is described by the
O(N) nonlinear-sigma model of the following replica partition
function Z and effective action βHrep:

Z =
∫ n∏

α=1

DSαδ[Sα (x)2 − 1]e−βHrep ,

βHrep = a2−d

2T

∫
x

n∑
α=1

Sα (x) · (−∂2)Sα (x)

− a−d

2T 2

∫
x

n∑
α,β

R1[Sα (x) · Sβ (x)]

− a−d−ρ

2T 2

∫
x,x′

n∑
α,β

g(x − x′)R2[Sα (x) · Sβ (x′)], (1)

where a is the ultraviolet cutoff, and
∫

x := ∫
dd x. The replica

indices denoted by Greek indices take values α, β, . . . =
1, . . . , n. The first term in the action (1) is the kinetic term
which corresponds to the short-range exchange interactions
between spins. The parameter T is the dimensionless tempera-
ture. The function Ri(Sα · Sβ ) (i = 1, 2) represents the random
field and all the random anisotropies, and is given by

Ri(Sα · Sβ ) =
∞∑

r=1

�i,r (Sα · Sβ )r . (2)

Here �i,r denotes the strength of the random field and the rth
rank random anisotropy (r = 1 is the random field, and r =
2 is the random second-rank anisotropy). The subscript i =
1 corresponds to the uncorrelated random fields and random
anisotropies, and the subscript i = 2 corresponds to the long-
range correlated random fields and random anisotropies with
g(x − x′) ∼ |x − x′|−d+ρ . The lower critical dimension of this
model is dl = 4 + ρ. In the present study we consider the case
of 0 � ρ < ε.

B. One-loop beta functions and the
zero-temperature fixed points

To perform the renormalization group transformation, we
put each replicated vector spin Sα (x) as a combination of a
slow field nα

0 (x) of the unit length and fast fields ϕα
i (x), i =

1, . . . , N − 1 such that
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Sα (x) = nα
0 (x)

√
1 − ϕα (x)2 + ϕα (x) � nα

0 (x) − 1
2 [ϕα (x)2]nα

0 (x) + ϕα (x), (3)

ϕα (x) =
N−1∑
i=1

ϕα
i (x)eα

i (x), (4)

where the unit vectors eα
i (x) are perpendicular to each other and also to the vector nα

0 (x). Integrating out the fast fields ϕα
i (x),

and calculating the new replicated action βH ′
rep up to the second order of the perturbation expansion, we get the one-loop beta

functions for T , R1, and R2, which have been obtained by Fedorenko and Kühnel [23]. The one-loop beta function for the
temperature T is

∂t T = −(d − 2)T + (N − 2)T [T + R′
1(1) + R′

2(1)], (5)

where ∂t denotes a derivative with respect to t = log l with l being the length-scale parameter which increases toward the
infrared direction. Here we have rescaled T , R1, and R2 by 2/[(4π )d/2�(d/2)]. We find that T = 0 is the fixed point, at which
the parameter T is irrelevant for d > 2. The one-loop beta functions at T = 0 for R1 and R2 are

∂t R1(z) = −εR1(z) + 2(N − 2)[R′
1(1) + R′

2(1)]R1(z) − (N − 1)z[R′
1(1) + R′

2(1)]R′
1(z) + (1 − z2)[R′

1(1) + R′
2(1)]R′′

1 (z)

+ 1
2 (N − 2 + z2)[R′

1(z) + R′
2(z)]2 − z(1 − z2)[R′

1(z) + R′
2(z)][R′′

1 (z) + R′′
2 (z)] + 1

2 (1 − z2)2[R′′
1 (z) + R′′

2 (z)]2, (6)

∂t R2(ζ ) = −(ε − ρ)R2(ζ ) + 2(N − 2)[R′
1(1) + R′

2(1)]R2(ζ ) − (N − 1)ζ [R′
1(1)

+ R′
2(1)]R′

2(ζ ) + (1 − ζ 2)[R′
1(1) + R′

2(1)]R′′
2 (ζ ), (7)

where z = nα
0 (x) · nβ

0 (x), ζ = nα
0 (x) · nβ

0 (x′). Here we have put d = 4 + ε. Practically, the beta functions for the first and second
derivatives of R1 and R2 play a central role in the critical phenomena at zero temperature near the lower critical dimension. The
beta functions at T = 0 for R′

1, R′′
1, R′

2, and R′′
2 in d = 4 + ε are

∂t R
′
1(z) = −εR′

1(z) + (N − 3)[R′
1(1) + R′

2(1)]R′
1(z) − (N + 1)z[R′

1(1) + R′
2(1)]R′′

1 (z) + (1 − z2)[R′
1(1) + R′

2(1)]R′′′
1 (z)

+ z[R′
1(z) + R′

2(z)]2 + (N − 3 + 4z2)[R′
1(z) + R′

2(z)][R′′
1 (z) + R′′

2 (z)] − z(1 − z2)[R′
1(z) + R′

2(z)][R′′′
1 (z) + R′′′

2 (z)]

− 3z(1 − z2)[R′′
1 (z) + R′′

2 (z)]2 + (1 − z2)2[R′′
1 (z) + R′′

2 (z)][R′′′
1 (z) + R′′′

2 (z)], (8)

∂t R
′′
1 (z) = −εR′′

1 (z) − 4[R′
1(1) + R′

2(1)]R′′
1 (z) − (N + 3)z[R′

1(1) + R′
2(1)]R′′′

1 (z) + (1 − z2)[R′
1(1) + R′

2(1)]R(IV)
1 (z)

+ [R′
1(z) + R′

2(z)]2 + 10z[R′
1(z) + R′

2(z)][R′′
1 (z) + R′′

2 (z)] + (N − 4 + 7z2)[R′
1(z) + R′

2(z)][R′′′
1 (z) + R′′′

2 (z)]

− z(1 − z2)[R′
1(z) + R′

2(z)]
[
R(IV)

1 (z) + R(IV)
2 (z)

] + (N − 6 + 13z2)[R′′
1 (z) + R′′

2 (z)]2 − 11z(1 − z2)[R′′
1 (z)

+ R′′
2 (z)][R′′′

1 (z) + R′′′
2 (z)] + (1 − z2)2[R′′

1 (z) + R′′
2 (z)]

[
R(IV)

1 (z) + R(IV)
2 (z)

] + (1 − z2)2[R′′′
1 (z) + R′′′

2 (z)]2, (9)

∂t R
′
2(ζ ) = −(ε − ρ)R′

2(ζ ) + (N − 3)[R′
1(1) + R′

2(1)]R′
2(ζ ) − (N + 1)ζ [R′

1(1)

+ R′
2(1)]R′′

2 (ζ ) + (1 − ζ 2)[R′
1(1) + R′

2(1)]R′′′
2 (ζ ), (10)

∂t R
′′
2 (ζ ) = −(ε − ρ)R′′

2 (ζ ) − 4[R′
1(1) + R′

2(1)]R′′
2 (ζ ) − (N + 3)ζ [R′

1(1) + R′
2(1)]R′′′

2 (ζ ) + (1 − ζ 2)[R′
1(1) + R′

2(1)]R(IV)
1 (ζ ).

(11)

The properties of the fixed point solution [R′
1(z)∗, R′

2(ζ )∗] are determined under the condition that |R′
1(z)| and |R′

2(ζ )|
remain finite during the renormalization group flows. We discuss the properties of the fixed point solution [R′

1(z)∗, R′
2(ζ )∗].

Equation (10) is linear in the function R′
2(ζ ), which can be solved analytically. Solving the fixed point equation ∂t R′

2(ζ )∗ = 0,
we can find that the fixed point solution R′

2(ζ )∗ is analytic on ζ . Next, we assume that the functions R′
1(z) and R′

2(ζ ) take the
following form:

R′
1(z) = R′

1(1) − R′′
1 (1)(1 − z) + · · · + al (1 − z)α + · · · , (12)

R′
2(ζ ) = R′

2(1) − R′′
2 (1)(1 − ζ ) + R′′′

2 (1)

2
(1 − ζ )2 + · · · , (13)

with α > 0. To keep |R′
1(z)| and |R′

2(ζ )| finite, the following condition on the function (12) is required:

α = 1
2 or α � 1. (14)

Thus, the fixed point function R1(z)∗ also has the same behavior of (1 − z)α
∗

with α∗ = 1/2 or α∗ � 1. Only in the case of
α∗ = 1/2, R′′

1 (1)∗ diverges. We use the term “cuspy” on a function with (1 − z)1/2 and “cuspless” if the first and the second
derivatives of a function are finite.
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C. Stability of fixed points and critical exponents η, η̄, and ν

The critical exponents η and η̄ of the connected and disconnected correlation functions are expressed by use of R′
1(1)∗ and

R′
2(1)∗ which are the values of R′

1(1) and R′
2(1) at the fixed point:

η = R′
1(1)∗ + R′

2(1)∗, (15)

η̄ = (N − 1)[R′
1(1)∗ + R′

2(1)∗] − ε. (16)

The critical exponent ν of the correlation length is given by the inverse of the maximal eigenvalue of the scaling matrix at the
fixed point. Then we find the fixed points by solving ∂t R′

1(1)∗ = 0, ∂t R′′
1 (1)∗ = 0, ∂t R′

2(1)∗ = 0, and ∂t R′′
2 (1)∗ = 0, study their

stability, and calculate the critical exponents η, η̄, and ν in the following.
The fixed points are

[R′
1(1)∗, R′

2(1)∗, R′′
1+(1)∗, R′′

2 (1)∗] =
(

ε

N − 2
, 0,

ε[N − 8 + √
(N − 2)(N − 18)]

2(N + 7)(N − 2)
, 0

)
, (17)

[R′
1(1)∗, R′

2(1)∗, R′′
1−(1)∗, R′′

2 (1)∗] =
(

ε

N − 2
, 0,

ε[N − 8 − √
(N − 2)(N − 18)]

2(N + 7)(N − 2)
, 0

)
, (18)

[R′
1(1)∗, R′

2(1)∗, R′′
1+(1)∗, R′′

2 (1)∗] =
(

(ε − ρ)2

(N − 3)2ρ
,

(ε − ρ)2

(N − 3)2ρ
{(N − 3)ε̂ − (N − 2)},

(ε − ρ)[(N − 3)ε̂ − 6 +
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)]

2(N + 7)(N − 3)
, 0

)
, (19)

[R′
1(1)∗, R′

2(1)∗, R′′
1−(1)∗, R′′

2 (1)∗] =
(

(ε − ρ)2

(N − 3)2ρ
,

(ε − ρ)2

(N − 3)2ρ
{(N − 3)ε̂ − (N − 2)},

(ε − ρ)[(N − 3)ε̂ − 6 −
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)]

2(N + 7)(N − 3)
, 0

)
. (20)

Here we have introduced the reduced variable ε̂:

ε̂ = ε

ε − ρ
. (21)

The stability of the cuspless fixed points with respect to
the cuspless perturbation can be investigated by calculating
eigenvalues of the 4 × 4 scaling matrix whose elements are
the first derivatives of the beta functions ∂t R′

1(1), ∂t R′′
1 (1),

∂t R′
2(1), and ∂t R′′

2 (1) at the cuspless fixed points.
The cuspless fixed points (17) and (18) exist for N �

18. The eigenvalues λ1, . . . , λ4 of the scaling matrix at the
cuspless fixed points (17) and (18) are given by

λ1 = ε, (22)

λ2 = (ε − ρ)
(N − 3)ε̂ − (N − 2)

N − 2
, (23)

λ±
3 = ±ε

√
N − 18

N − 2
, (24)

λ4 = −
(

ε − ρ + 4ε

N − 2

)
. (25)

Thus, the cuspless fixed point (17) is multiply unstable. If
1 < ε̂ < (N − 2)/(N − 3), namely λ2 < 0, the cuspless fixed
point (18) is singly unstable. Due to R′

2(1)∗ = 0, the long-
range correlations of random fields and random anisotropies
are irrelevant, and thus the cuspless fixed point (18) governs
the phase transition in the system with SR. The critical expo-
nents ηSR of the connected correlation function and η̄SR of the

disconnected correlation function at the cuspless fixed point
(18) are

ηSR = ε

N − 2
, (26)

η̄SR = ε

N − 2
. (27)

And the critical exponent νSR which characterizes the diver-
gence of the correlation length in the vicinity of transition is

νSR = 1

ε
. (28)

Whereas in N � 18 the cuspless fixed points (17) and (18)
merge and annihilate, and thus the beta functions have no
cuspless fixed point of O(ε).

The cuspless fixed points (19) and (20) exist for N > 3 and

ε̂ � ε̂cuspless = 6 + 2
√

N + 7

N − 3
. (29)

The eigenvalues λ1, . . . , λ4 of the scaling matrix at the fixed
points (19) and (20) are given by

λ1 = (ε − ρ)
N − 2

N − 3
− ε

2
+ ε

2

√
1 + 4[N − 2 − ε̂(N − 3)]

ε̂2(N − 3)2
,

(30)

λ2 = (ε − ρ)
N − 2

N − 3
− ε

2
− ε

2

√
1 + 4[N − 2 − ε̂(N − 3)]

ε̂2(N − 3)2
,

(31)
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λ±
3 = ±(ε−ρ)

√
{(N − 3)ε̂ − 6}2 − 4(N + 7)

N − 3
, (32)

λ4 = −(ε − ρ)
N + 1

N − 3
. (33)

Thus, the cuspless fixed point (19) is multiply unstable.
If ε̂ > (N − 2)/(N − 3), namely λ2 < 0, the cuspless fixed
point (20) is singly unstable. Due to R′

2(1)∗ > 0, the effect
of the long-range correlation of random fields and random
anisotropies appears, and then the cuspless fixed point (20)
governs the phase transition in the system with LRF. Thus,
the critical exponents ηLRF and η̄LRF at the cuspless fixed point
(20) are

ηLRF = ε − ρ

N − 3
, (34)

η̄LRF = 2ε − (N − 1)ρ

N − 3
. (35)

These exponents satisfy the Schwartz-Soffer inequality
η̄LRF � 2ηLRF [39], and saturate the generalized Schwartz-
Soffer inequality η̄LRF � 2ηLRF − ρ [40]. And the inverse of
the exponent νLRF is

ν−1
LRF = (N − 2)(ε − ρ)

N − 3

[
1 − (N − 3)ε̂

2(N − 2)

+ (N − 3)ε̂

2(N − 2)

√
1 + 4[N − 2 − ε̂(N − 3)]

ε̂2(N − 3)2

]
. (36)

Whereas in ε̂ � (6 + 2
√

N + 7)/(N − 3) the cuspless fixed
points (19) and (20) merge and annihilate, and thus the beta
functions have no cuspless fixed point of O(ε).

As Tissier and Tarjus (TT) and co-workers argued in
Refs. [11,14–17], the cuspless fixed points (18) and (20) have
weaker nonanalyticities (1 − z)α

∗
with a noninteger α∗ � 1.

The weaker nonanalyticity is called “subcusp.” We refer to
the cuspless fixed points (18) and (20) as “SR TT FP” and
“LRF TT FP,” respectively. The weaker nonanalyticity does
not alter the flow equations for R′

1(1) and R′
2(1). The power α∗

is obtained as follows. Calculating the flow of al in Eq. (12),
we have

∂t al = al�α+1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗], (37)

�α+1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]

= 2{R′
1(1)∗ + R′

2(1)∗ + 3[R′′
1 (1)∗ + R′′

2 (1)∗]}α2

−{(N − 5)[R′
1(1)∗ + R′

2(1)∗]

− (N + 7)[R′′
1 (1)∗ + R′′

2 (1)∗]}α
+ (N − 1)[R′

1(1)∗ + R′
2(1)∗]

+ (N + 1)[R′′
1 (1)∗ + R′′

2 (1)∗] − ε. (38)

The power α∗ is determined from

�α∗+1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗] = 0. (39)

Substituting the SR TT FP (18) and the LRF TT FP (20)
into the above equation, we have explicit expressions for α∗,
respectively. Here we treat only the LRF case (see Ref. [14]

α∗

3/2

16 18

(i)
ˆ= 16/

15

(ii)
ˆ= 2(3

+
√ 23)

/13

(iii)
ˆ = 2(3

+
√ 15)

/5

FIG. 1. Exponent α∗ = α(N, ε̂)∗ characterizing the nonanalytic-
ity (1 − z)α

∗
of the LRF TT FP (20) for three values of ε̂. The ordi-

nate is α∗, and the abscissa is N . (i) For ε̂ = 16/15, the value N of the
lower boundary above which the LRF TT FP are singly unstable with
respect to the cuspless perturbation is N = 18. α(N ↘ 18, ε̂)∗ =
3/2. (ii) For ε̂ = 2(3 + √

23)/13, N = 16. α(N ↘ 16, ε̂)∗ = 1. (iii)
For ε̂ = 2(3 + √

15)/5, N = 8. α(N ↘ 8, ε̂)∗ = 1.

for the SR case). From Eqs. (38) and (39) we obtain the
following quadratic equation for α∗:(

2 + 3

N + 7
[(N − 3)ε̂ − 6

−
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)]

)
α∗2

−
(

N − 5 − 1

2
[(N − 3)ε̂ − 6

−
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)]

)
α∗

+ N − 1 − (N − 3)ε̂ + N + 1

2(N + 7)
[(N − 3)ε̂ − 6

−
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)] = 0. (40)

Solving the above quadratic equation, we obtain the solution
α∗ as a function of N and ε̂. It goes to N/2 + O(1) at large N .
The graphs of α∗ = α(N, ε̂)∗ for some values of ε̂ are depicted
in Fig. 1.

We proceed to investigate the stability of the cuspless fixed
points with respect to the cuspy perturbation, following the
work by Baczyk, Tarjus, Tissier, and Balog [15]. The eigen-
value λ relating to the cuspy deformation from the cuspless
fixed points is given by

λ = �3/2[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]. (41)

Substituting the SR TT FP (18) and the LRF TT FP (20)
into the above equation, we have explicit expressions for λ,
respectively. The eigenvalues λSR for the system with SR and
λLRF for the system with LRF are as follows:

λSR = − ε

4(N + 7)

[
3(N + 4)

√
N − 18

N − 2
− N + 8

]
, (42)

024412-6



ONE-LOOP FUNCTIONAL RENORMALIZATION GROUP … PHYSICAL REVIEW B 100, 024412 (2019)

λLRF = − ε − ρ

4(N − 3)(N + 7)

× [3(N + 4)
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)

+ (N+16){(N − 3)ε̂ − 6} − 2(N+7)(N − 8)]. (43)

In the case of the system with SR, we find that, below
N = Ncusp = 2(4 + 3

√
3) � 18.3923 . . ., the eigenvalue λSR

takes a positive value. Thus the cuspy perturbation becomes
relevant for N < Ncusp, where the SR TT FP (18) is multiply
unstable with respect to the cuspy perturbation. Whereas it
remains singly unstable with respect to the perturbation with
and without the cuspy behavior for N > Ncusp. As shown in
Ref. [15], there exists a singly unstable cuspy fixed point
below N = Ncusp. As N decreases from sufficiently large N ,
the fixed point which governs the phase transition in the
system continuously changes from the SR TT FP to the singly
unstable cuspy fixed point at N = Ncusp before N reaches to
N = 18. Accordingly, the values of the critical exponents ηSR

and η̄SR deviate from the dimensional-reduction results (26)
and (27) below N = Ncusp.

In the case of the system with LRF, the eigenvalue λLRF

takes a positive value below

ε̂ = ε̂cusp

= 3(N + 4)
√

N2 − 8N + 48 − (N + 4)(N − 20)

4(N − 2)(N − 3)
. (44)

Since ε̂cusp � ε̂cuspless for 4(1 + √
7) � N � 2(4 + 3

√
3), the

LRF TT FP (20) is destabilized by the cuspy perturbation
for 4(1 + √

7) � N � 2(4 + 3
√

3) and ε̂ < ε̂cusp. Even in this
case, a singly unstable cuspy fixed point which governs the
phase transition in the system is considered to exist for 4(1 +√

7) � N � 2(4 + 3
√

3) and ε̂ < ε̂cusp.
Finally, we calculate the eigenfunction which belongs to

the eigenvalue (41). Solving the eigenvalue equation, we
obtain two solutions. One takes the form of (1 − z)α−(λ) with
α−(λ) = 1/2 when z → 1, and the other takes the form of
(1 − z)α+(λ). Both solutions individually diverge in z = −1.
The physical eigenfunction is represented as a linear combi-
nation of two solutions of the eigenvalue equation, in which
the coefficients should be chosen to eliminate the singularities
at z = −1. The power α+(λ) of the function (1 − z)α+(λ) can
be obtained by imposing

�α++1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]

= �3/2[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]. (45)

In the case of the system with SR, substituting the SR TT
FP (18) into Eq. (45), we have

α+(λSR) = 1
4 (N − 10 +

√
(N − 2)(N − 18)). (46)

For N � 18, α+(λSR) takes α+(λSR) � 2.
In the case of the system with LRF, substituting the LRF

TT FP (20) into Eq. (45), we have

α+(λLRF) = (N − 14)(N − 3)ε̂ + (N − 2)(N − 6)

2[3(N − 3)ε̂ + N − 2]

+
√

{(N − 3)ε̂ − 6}2 − 4(N + 7)

3(N − 3)ε̂ + N − 2
. (47)

LRF TTcuspy

SR TT

ˆ

2(23 + 19
√√√√

7)/111

N 4(1 +
√√√

7)
18 Ncusp

FIG. 2. The regions where various FPs are singly unstable. The
ordinate is ε̂[= ε/(ε − ρ )], and the abscissa is N . The broken line
(black) denotes the lower boundary above which the SR TT and the
LRF TT FPs are singly unstable against the cuspless perturbation.
The border line (black line) between the SR TT and LRF TT FPs is
given by ε̂ = (N − 2)/(N − 3). The solid line (red line) denotes the
lower boundary above which the SR TT and LRF TT FPs are singly
unstable against the cuspy perturbation.

The power α+(λLRF) takes α+(λLRF) � 1 + √
3 for N �

Ncusp and ε̂ � (N − 2)/(N − 3), and α+(λLRF) � 1 for 4(1 +√
7) � N < Ncusp and ε̂ � ε̂cuspless. However, we should note

that, for N < 4(1 + √
7) and in the region of

ε̂cuspless � ε̂ <
(N − 2)(N2 + 32)

(N − 3)(N − 8)(N + 16)
, (48)

α+(λLRF) < 1, which is in contradiction with the condition
(14). Thus, for N < 4(1 + √

7) and in the region (48), the
cuspy deformation from the LRF TT FP (20) is unphysical.
Then the destabilization of the LRF TT FP (20) by the cuspy
perturbation does not occur for ε̂ > 2(23 + 19

√
7)/111.

The regions where the various fixed points are singly unsta-
ble are depicted in Fig. 2. Outside the areas where the SR TT
and the LRF TT FPs are singly unstable, the cuspy fixed point
is considered to control the critical behavior in the system.
Particularly, in the region of 1 � ε̂ < 2(23 + 19

√
7)/111 �

1.32, the destabilization of the SR TT and the LRF TT FPs by
the cuspy perturbation is caused at Ncusp for the SR TT FP, and
at ε̂cusp for the LRF TT FP, respectively.

III. FIXED POINTS AND THEIR STABILITY IN THE
RENORMALIZATION GROUP OF LONG-RANGE

CORRELATED RANDOM FIELD O(N) SPIN MODEL
WITH LONG-RANGE EXCHANGE INTERACTIONS

IN 2σ + ρ + ε DIMENSIONS

We now study the critical phenomena at zero temperature
of the long-range correlated random field O(N) spin model
with the long-range exchange interactions in 2σ + ρ + ε di-
mensions by use of the renormalization group. The critical
phenomena at zero temperature of the long-range correlated
random field O(N) spin model with the long-range exchange
interactions near lower critical dimension is described by
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the O(N ) nonlinear-sigma model. In this section we investi-
gate the fixed points and their stability of the one-loop beta
functions in the O(N ) nonlinear-sigma model. The critical
phenomena are carefully discussed in the subsequent sections.

A. Model

We start from the O(N) nonlinear-sigma model with the
replica effective action

βHrep = aσ−d

2T

∫
x

n∑
α=1

Sα (x) · (−∂2)σ/2Sα (x)

− a−d

2T 2

∫
x

n∑
α,β

R1[Sα (x) · Sβ (x)]

− a−d−ρ

2T 2

∫
x,x′

n∑
α,β

g(x − x′)R2[Sα (x) · Sβ (x′)]. (49)

The first term in the action (49) is the kinetic term which
corresponds to the long-range exchange interactions between
spins. The operator (−∂2)σ/2 denotes the fractional Laplacian
in the Euclidean space. In the present study we consider the
case of 0 < σ < 2. The parameter T denotes the dimension-
less temperature. The function Ri(z) (i = 1, 2) represents the
random field and all the random anisotropies, which is defined
by Eq. (2). The lower critical dimension of this model is
dl = 2σ + ρ. In the present study, we consider the case of
ρ � 0.

B. One-loop beta functions

To carry out the renormalization group transformation,
it is convenient to use the momentum representation. The
fractional Laplacian (−∂2)σ/2 is written by its Fourier trans-
formation:

(−∂2)σ/2 f (x) =
∫

k
kσ f̃ (k)eikx, (50)

where kx = k(1)x(1) + · · · + k(d )x(d ), kσ = (k(1)2 + · · · + k(d )2
)σ/2, and

∫
k ≡ ∫

dd k
(2π )d . The correlation of the random fields g(x −

x′) is written as

g(x − x′) ∼ 1

|x − x′|d−ρ
=

∫
k

k−ρeik(x−x′ ), (51)

in the momentum representation. The N-component replicated vector spin Sα (x) of the magnetization (3) is rewritten in the
momentum representation as follows:

Sα (x) � nα
0 (x) − 1

2
[ϕα (x)2]nα

0 (x) + ϕα (x) =
∫

k
ñα

0 (k)eikx − 1

2

∫
k,k1,··· ,k4

⎛
⎝N−1∑

i, j

ϕ̃α
i (k1)ϕ̃α

j (k2)ẽα
i (k3) · ẽα

j (k4)

⎞
⎠ñα

0 (k)ei(k1+···+k4+k)x

+
∫

k1,k2

(
N−1∑
i=1

ϕ̃α
i (k1)ẽα

i (k2)

)
ei(k1+k2 )x. (52)

We integrate out the fast fields ϕ̃α
i (k), and calculate the new replicated action βH ′

rep up to the second order of the perturbation
expansion. After rewriting βH ′

rep in the coordinate representation again, we can then obtain the one-loop beta functions for T ,
R1, and R2. The one-loop beta function for the temperature T is

∂t T = −(d − σ )T + (N − 1)T [T + R′
1(1) + R′

2(1)]. (53)

Here we have rescaled T , R1, and R2 by 2/[(4π )d/2�(d/2)]. For d > σ , we find that T = 0 is the fixed point, at which the
parameter T is irrelevant. The one-loop beta functions at T = 0 for R1 and R2 are

∂t R1(z) = −(ε + ρ)R1(z) + 2(N − 1)[R′
1(1) + R′

2(1)]R1(z) − (N − 1)z[R′
1(1) + R′

2(1)]R′
1(z)

+ (1 − z2)[R′
1(1) + R′

2(1)]R′′
1 (z) + 1

2 (N − 2 + z2)[R′
1(z) + R′

2(z)]2

−z(1 − z2)[R′
1(z) + R′

2(z)][R′′
1 (z) + R′′

2 (z)] + 1
2 (1 − z2)2[R′′

1 (z) + R′′
2 (z)]2, (54)

∂t R2(ζ ) = −εR2(ζ ) + 2(N − 1)[R′
1(1) + R′

2(1)]R2(ζ ) − (N − 1)ζ [R′
1(1) + R′

2(1)]R′
2(ζ ) + (1 − ζ 2)[R′

1(1) + R′
2(1)]R′′

2 (ζ ).

(55)

Here we have put d = 2σ + ρ + ε. To study the fixed points and their stability, we consider the beta functions for their derivative.
Differentiating Eqs. (54) and (55) with respect to z and ζ , respectively, we obtain the one-loop beta functions for R′

1(z), R′′
1 (z),

R′
2(ζ ), and R′′

2 (ζ ):

∂t R
′
1(z) = −(ε + ρ)R′

1(z) + (N − 1)[R′
1(1) + R′

2(1)]R′
1(z) − (N + 1)z[R′

1(1) + R′
2(1)]R′′

1 (z) + (1 − z2)[R′
1(1) + R′

2(1)]R′′′
1 (z)

+ z[R′
1(z) + R′

2(z)]2 + (N − 3 + 4z2)[R′
1(z) + R′

2(z)][R′′
1 (z) + R′′

2 (z)] − z(1 − z2)[R′
1(z) + R′

2(z)][R′′′
1 (z) + R′′′

2 (z)]

− 3z(1 − z2)[R′′
1 (z) + R′′

2 (z)]2 + (1 − z2)2[R′′
1 (z) + R′′

2 (z)][R′′′
1 (z) + R′′′

2 (z)], (56)
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∂t R
′′
1 (z) = −(ε + ρ)R′′

1 (z) − 2[R′
1(1) + R′

2(1)]R′′
1 (z) − (N + 3)z[R′

1(1) + R′
2(1)]R′′′

1 (z) + (1 − z2)[R′
1(1) + R′

2(1)]R(IV)
1 (z)

+ [R′
1(z) + R′

2(z)]2 + 10z[R′
1(z) + R′

2(z)][R′′
1 (z) + R′′

2 (z)] + (N − 4 + 7z2)[R′
1(z) + R′

2(z)][R′′′
1 (z) + R′′′

2 (z)]

− z(1 − z2)[R′
1(z) + R′

2(z)]
[
R(IV)

1 (z) + R(IV)
2 (z)

] + (N − 6 + 13z2)[R′′
1 (z) + R′′

2 (z)]2 − 11z(1 − z2)[R′′
1 (z)

+ R′′
2 (z)][R′′′

1 (z) + R′′′
2 (z)] + (1 − z2)2[R′′

1 (z) + R′′
2 (z)]

[
R(IV)

1 (z) + R(IV)
2 (z)

] + (1 − z2)2[R′′′
1 (z) + R′′′

2 (z)]2, (57)

∂t R
′
2(ζ ) = −εR′

2(ζ ) + (N − 1)[R′
1(1) + R′

2(1)]R′
2(ζ ) − (N + 1)ζ [R′

1(1) + R′
2(1)]R′′

2 (ζ ) + (1 − ζ 2)[R′
1(1) + R′

2(1)]R′′′
2 (ζ ), (58)

∂t R
′′
2 (ζ ) = −εR′′

2 (z) − 2[R′
1(1) + R′

2(1)]R′′
2 (ζ ) − (N + 3)ζ [R′

1(1) + R′
2(1)]R′′′

2 (ζ ) + (1 − ζ 2)[R′
1(1) + R′

2(1)]R(IV)
1 (ζ ). (59)

We discuss the properties of the fixed point solution
[R′

1(z)∗, R′
2(ζ )∗]. First, we investigate the fixed point solution

R′
2(ζ )∗ for Eq. (58). Since Eq. (58) is linear in the function

R′
2(ζ ), the fixed point equation ∂t R′

2(ζ )∗ = 0 can be solved
analytically. The fixed point equation ∂t R′

2(ζ )∗ = 0 takes the
form

(1 − ζ 2)[R′
1(1)∗ + R′

2(1)∗]R′′′
2 (ζ )∗

− (N + 1)ζ [R′
1(1)∗ + R′

2(1)∗]R′′
2 (ζ )∗

+ [(N − 1)[R′
1(1)∗ + R′

2(1)∗] − ε]R′
2(ζ )∗ = 0. (60)

The solutions of this equation have regular singular points at
ζ = ±1 for the interval −1 � ζ � 1. Under the condition of
|R′

2(ζ )∗| < ∞ on the interval −1 � ζ � 1, the solutions of
Eq. (60) can be expressed in terms of the Gaussian hypergeo-
metric function:

R′
2(ζ )∗ =

{
C2F1[x1, x2; y; (1 − ζ )/2] around ζ = 1,
C′

2F1[x1, x2; y; (1 + ζ )/2] around ζ = −1, (61)

where C and C′ are constants fulfilling the condition
|R′

2(ζ )∗| < ∞. Here the generalized hypergeometric function
is defined by the following series expansion:

mFn(x1, x2, . . . , xm; y1, y2, . . . , yn; z)

≡
∞∑

k=0

(x1)k (x2)k · · · (xm)k

(y1)k (y2)k · · · (yn)k

zk

k!
, (62)

(x)k = �(x + k)/�(x). (63)

And x1, x2, and y are

x1, x2 = 1

2

[
N ±

√
N2 + 4

{
N − 1 − ε

R′
1(1)∗ + R′

2(1)∗

}]
,

(64)

y = N + 1

2
. (65)

Thus the fixed point solution R′
2(ζ )∗ is an analytic function on

ζ . Next we examine the renormalization group flow of R′
1(z).

We assume that the functions R′
1(z) and R′

2(ζ ) take the forms
given by Eqs. (12) and (13) with α > 0. To keep |R′

1(z)| and
|R′

2(ζ )| finite, the following condition on the function (12) is
required:

α = 1
2 or α � 1. (66)

The fixed point solution R′
1(z)∗ also has the same singularity.

Only in the case of α = 1/2, R′′(1)∗ diverges.

C. Stability of cuspless fixed points

The critical exponents η and η̄ are expressed by use of
R′

1(1)∗ and R′
2(1)∗:

η = 2 − σ, (67)

η̄ = (N − 1)[R′
1(1)∗ + R′

2(1)∗] − (2σ + ρ + ε − 4). (68)

The critical exponent ν is determined from the inverse of the maximum eigenvalue of the 4 × 4 scaling matrix at the fixed point.
Then we find the fixed points by solving ∂t R′

1(1)∗ = 0, ∂t R′′
1 (1)∗ = 0, ∂t R′

2(1)∗ = 0, and ∂t R′′
2 (1)∗ = 0, and study their stability.

The cuspless fixed points are

[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗] =
(

ε + ρ

N
, 0,

(ε + ρ)[N − 8 + √
(N − 2)(N − 18)]

2N (N + 7)
, 0

)
, (69)

[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗] =
(

ε + ρ

N
, 0,

(ε + ρ)[N − 8 − √
(N − 2)(N − 18)]

2N (N + 7)
, 0

)
, (70)

[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗] =
(

ε2

(N − 1)2ρ
,
ε2[(N − 1)ε̃ − N]

(N − 1)2ρ
,
ε[(N − 1)ε̃ − 8 +

√
{(N − 1)ε̃ − 8}2 − 4(N + 7)]

2(N + 7)(N − 1)
, 0

)
,

(71)
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[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗] =
(

ε2

(N − 1)2ρ
,
ε2[(N − 1)ε̃ − N]

(N − 1)2ρ
,
ε[(N − 1)ε̃ − 8 −

√
{(N − 1)ε̃ − 8}2 − 4(N + 7)]

2(N + 7)(N − 1)
, 0

)
.

(72)

Here we have introduced the reduced variable ε̃:

ε̃ = ε + ρ

ε
. (73)

The stability of the cuspless fixed points with respect to
the cuspless perturbation can be investigated by calculating
eigenvalues of the 4 × 4 scaling matrix whose elements are
the first derivatives of the beta functions ∂t R′

1(1), ∂t R′′
1 (1),

∂t R′
2(1), and ∂t R′′

2 (1) at the cuspless fixed points.
The cuspless fixed points (69) and (70) exist for N �

18. The eigenvalues λ1, . . . , λ4 of the scaling matrix at the
cuspless fixed points (69) and (70) are given by

λ1 = ε + ρ, (74)

λ2 = −ε

(
1 − N − 1

N
ε̃

)
, (75)

λ±
3 = ±(ε + ρ)

√
(N − 2)(N − 18)

N
, (76)

λ4 = −ε

(
1 + 2

N
ε̃

)
. (77)

Thus the fixed point (69) is multiply unstable. If 1 � ε̃ <

N/(N − 1) or 0 � ρ < ε/(N − 1), the fixed point (70) is
singly unstable. Due to R′

2(1)∗ = 0, the long-range correla-
tions of random fields and random anisotropies are irrelevant,
and thus the fixed point (70) governs the phase transition in
the system with LRE. Whereas, in N � 18, the cuspless fixed
points (69) and (70) merge and annihilate, and thus the beta
functions have no cuspless fixed point of O(ε).

The cuspless fixed points (71) and (72) exist for N > 1 and

ε̃ � ε̃cuspless = 8 + 2
√

N + 7

N − 1
. (78)

The eigenvalues λ1, . . . , λ4 of the scaling matrix at the cusp-
less fixed points (71) and (72) are given by

λ1 = ε

[
N

N − 1
− ε̃

2
+ ε̃

2

√
1 + 4[N − ε̃(N − 1)]

ε̃2(N − 1)2

]
, (79)

λ2 = ε

[
N

N − 1
− ε̃

2
− ε̃

2

√
1 + 4[N − ε̃(N − 1)]

ε̃2(N − 1)2

]
, (80)

λ±
3 = ±(ε + ρ)

√
1 − 4[N − 9 + 4ε̃(N − 1)]

ε̃2(N − 1)2
, (81)

λ4 = −ε
N + 1

N − 1
. (82)

Thus the fixed point (71) is multiply unstable. If ε̃ > N/(N −
1) or ρ > ε/(N − 1), the fixed point (72) is singly unstable.
Due to R′

2(1)∗ > 0, the effect of the long-range correlation of
random fields and random anisotropies appears, and then the
fixed point (72) governs the phase transition in system with
LREF.

The cuspless fixed points (70) and (72) have subcuspy
singularities (1 − z)α∗ with a noninteger α∗ � 1. Then we call
the singly unstable fixed points (70) and (72) as the “LRE TT
FP” and the “LREF TT FP,” respectively. The power α∗ is
obtained as follows. Calculating the flow of al in Eq. (12) we
have

∂t al = al�α+1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗], (83)

�α+1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]

= 2{R′
1(1)∗ + R′

2(1)∗ + 3[R′′
1 (1)∗ + R′′

2 (1)∗]}α2

−{(N − 5)[R′
1(1)∗ + R′

2(1)∗] − (N + 7)[R′′
1 (1)∗

+ R′′
2 (1)∗]}α + (N + 1)[R′

1(1)∗ + R′
2(1)∗

+ R′′
1 (1)∗ + R′′

2 (1)∗] − (ε + ρ). (84)

The power α∗ is determined from

�α∗+1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗] = 0. (85)

Substituting the LRE TT FP (70) and the LREF TT FP (72)
into the above equation, we have explicit expressions for
α∗, respectively. First, substituting the LRE TT FP (70) into
Eq. (85), we obtain the following quadratic equation for α∗:(

2 + 3

N + 7
[N − 8 −

√
(N − 2)(N − 18)]

)
α∗2

−
(

N − 5 − 1

2
[N − 8 −

√
(N − 2)(N − 18)]

)
α∗

+ 1 + N + 1

2(N + 7)
[N − 8 −

√
(N − 2)(N − 18)] = 0. (86)

Solving the above equation, we have the solution α∗ as a
function of N . It goes to N/2 + O(1) at large N . The solution
is the same as that of the system with SR [14,17]. The graph of
α∗ = α∗(N ) is depicted in Fig. 3. Next, substituting the LREF
TT FP (72) into Eq. (85), we obtain the following quadratic
equation for α∗:(

2 + 3

N + 7
[(N − 1)ε̃ − 8

−
√

{(N − 1)ε̃ − 8}2 − 4(N + 7)]

)
α∗2

−
(

N − 5 − 1

2
[(N − 1)ε̃ − 8

−
√

{(N − 1)ε̃ − 8}2 − 4(N + 7)]

)
α∗

+ N + 1 − (N − 1)ε̃ + N + 1

2(N + 7)
[(N − 1)ε̃ − 8

−
√

{(N − 1)ε̃ − 8}2 − 4(N + 7)] = 0. (87)
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α∗

N

3/2

16 18 20 22 24 26 28 30

2

4

6

8

10

FIG. 3. Exponent α∗ = α(N )∗ characterizing the subcuspy sin-
gularity (1 − z)α∗ of the LRE TT FP (70). The ordinate is α∗, and the
abscissa is N . α(N ↘ 18)∗ = 3/2.

Solving the above equation, we obtain the solution α∗ as a
function of N and ε̃. It goes to N/2 + O(1) at large N . The
graphs of α∗ = α(N, ε̃)∗ for some values of ε̃ are depicted in
Fig. 4.

We investigate the stability of the TT fixed points with
respect to the cuspy perturbation. It can be done by calculating
the eigenvalue λ relating to the cuspy deformation from the TT
fixed point, which is given by

λ = �3/2[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]. (88)

Substituting the LRE TT FP (70) and the LREF TT FP (72)
into the above equation, we obtain explicit expressions for λ,

α∗

3/2

16 18

(i)
ˆ= 18/

17

(ii)
ˆ= 2(4

+
√ 23)

/15

(iii)
ˆ = 2(4

+
√ 15)

/7

FIG. 4. Exponent α∗ = α(N, ε̃)∗ characterizing the subcuspy
singularity (1 − z)α

∗
of the LREF TT FP (72) for three values of

ε̃. The ordinate is α∗, and the abscissa is N . (i) For ε̃ = 18/17,
the value N of the lower boundary above which the LREF TT
FP are singly unstable with respect to the cuspless perturbation is
N = 18. α(N ↘ 18, ε̃)∗ = 3/2. (ii) For ε̃ = 2(4 + √

23)/15, N =
16. α(N ↘ 16, ε̃)∗ = 1. (iii) For ε̃ = 2(4 + √

15)/7, N = 8. α(N ↘
8, ε̃)∗ = 1.

respectively. The eigenvalues λLRE for the system with LRE
and λLREF for the system with LREF are as follows:

λLRE = − (ε + ρ)(N − 2)

4N (N + 7)

[
3(N + 4)

√
N − 18

N − 2
− N + 8

]
.

(89)

λLREF = − ε

4(N − 1)(N + 7)

× [3(N + 4)
√

[(N − 1)ε̃ − 8]2 − 4(N + 7)

− 2(N + 7)(N − 8)+(N +16)[(N −1)ε̃ − 8]]. (90)

In the case of the system with LRE, we find that, below
N = Ncusp = 2(4 + 3

√
3) � 18.3923 . . ., the eigenvalue λLRE

takes a positive value. Thus the cuspy perturbation becomes
relevant for N < Ncusp, where the LRE TT FP (70) is multiply
unstable with respect to the cuspy perturbation. Whereas it
remains singly stable with respect to the perturbation with and
without the cuspy behavior for N > Ncusp.

In the case of the system with LREF, the eigenvalue λLREF

takes a positive value below

ε̃ = ε̃cusp

= 3(N + 4)
√

N2 − 8N + 48 − (N2 − 24N − 64)

4(N − 1)(N − 2)
. (91)

Since ε̃cusp � ε̃cuspless for 4(1 + √
7) � N � 2(4 + 3

√
3), the

LREF TT FP (72) is destabilized by the cuspy perturbation
for 4(1 + √

7) � N � 2(4 + 3
√

3) and ε̃ < ε̃cusp. Even in this
case, a singly unstable cuspy fixed point which governs the
phase transition in the system is considered to exist for 4(1 +√

7) � N � 2(4 + 3
√

3) and ε̃ < ε̃cusp.
Finally, we calculate the eigenfunction which belongs to

the eigenvalue (88). Solving the eigenvalue equation, we
obtain two solutions. One takes the form of (1 − z)α−(λ) with
α−(λ) = 1/2 when z → 1, and the other takes the form of
(1 − z)α+(λ). Both solutions individually diverge in z = −1.
The physical eigenfunction is represented as a linear combi-
nation of two solutions of the eigenvalue equation, in which
the coefficients should be chosen to eliminate the singularities
at z = −1. The power α+(λ) of the function (1 − z)α+(λ) can
be obtained by imposing

�α++1[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]

= �3/2[R′
1(1)∗, R′

2(1)∗, R′′
1 (1)∗, R′′

2 (1)∗]. (92)

In the case of the system with LRE, substituting the LRE
TT FP (70) into Eq. (92), we have

α+(λLRE) = 1
4 [N − 10 +

√
(N − 2)(N − 18)]. (93)

For N � 18, α+(λLRE) takes α+(λLRE) � 2.
In the case of the system with LREF, substituting the LREF

TT FP (72) into Eq. (92), we have

α+(λLREF) = (N − 14)(N − 1)ε̃ + N2 − 10N + 40

2[3(N − 1)ε̃ + N − 8]

+ (N − 2)
√

{(N − 1)ε̃ − 8}2 − 4(N + 7)

3(N − 1)ε̃ + N − 8
. (94)
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LREF TTcuspy

LRE TT

ˆ

2(10 + 21
√√√

7)/103

N 7)
18 Ncusp4(1 +

√
7)

FIG. 5. The regions where various FPs are singly unstable. The
ordinate is ε̃[= (ε + ρ )/ε], and the abscissa is N . The broken line
(black) denotes the lower boundary above which the LRE TT and the
LREF TT FPs are singly unstable against the cuspless perturbation.
The border line (black line) between the LRE TT and LREF TT
FPs is given by ε̂ = N/(N − 1). The solid line (red line) denotes the
lower boundary above which the LRE TT and LREF TT FPs are
singly unstable against the cuspy perturbation.

The power α+(λLREF) takes α+(λLREF) � 1 + √
3 for N �

Ncusp and ε̃ � N/(N − 1), and α+(λLREF) � 1 for 4(1 +√
7) � N < Ncusp and ε̃ � ε̃cuspless. However, we should note

that, for N < 4(1 + √
7) and in the region of

ε̃cuspless � ε̃ <
N3 + 48N − 320

(N − 1)(N − 8)(N + 16)
, (95)

α+(λLREF) < 1, which is in contradiction with the condition
(66). Thus, for N < 4(1 + √

7) and in the region (95), the
cuspy deformation from the LREF TT FP (72) is unphysical.
Then the destabilization of the LREF TT FP (72) by the cuspy
perturbation does not occur for ε̃ > 2(10 + 21

√
7)/103.

The regions where the various fixed points are singly
unstable are depicted in Fig. 5. Outside the areas where the
LRE TT and the LREF TT FPs are singly unstable, the cuspy
fixed point is considered to control the critical behavior in
the system. Particularly, in the region of 1 � ε̃ < 2(10 +
21

√
7)/103 � 1.27, the destabilization of the LRE TT and the

LREF TT FPs by the cuspy perturbation is caused at Ncusp for
LRE TT FP, and at ε̃cusp for the LREF TT FP, respectively.

In the following sections, we carefully examine the critical
phenomena governed by the LRE TT FP (70) and the LREF
TT FP (72).

IV. CRITICAL PHENOMENA IN THE SYSTEM
WITH LRE IN 2σ + ρ + ε DIMENSIONS

In this section we study the critical phenomena controlled
by the LRE TT FP (70). We calculate the critical exponents
η, η̄, and ν at O(ε). We put ρ = 0, and investigate the d →
d − σ dimensional reduction. We also discuss the relations
between η and η̄, and present the result for the critical value
σ∗.

Substituting the LRE TT FP (70) into Eqs. (67) and (68),
we obtain the critical exponents ηLRE and η̄LRE at the LRE TT
fixed point (70):

ηLRE = 2 − σ, (96)

η̄LRE = 4 − 2σ − ε + ρ

N
. (97)

These exponents satisfy ηLRE � (4 − d )/2, η̄LRE � 4 − d ,
and the Schwartz-Soffer inequality η̄LRE � 2ηLRE. In the large
N limit, the relation between ηLRE and η̄LRE satisfies η̄LRE =
2ηLRE, which is identical to the result of the previous study
for the critical properties of the random field spherical model
by Vojta and Schreiber [41]. For finite N but N > Ncusp,
the relation between ηLRE and η̄LRE satisfies 2ηLRE − η̄LRE =
(ε + ρ)/N for ε = d − 2σ − ρ. Our result is consistent with
the result of 1/N expansion study by Bray [21]. He showed
2ηLRE − η̄LRE = ε/N for ε = d − 2σ by the use of the 1/N
expansion. Thus, the relation 2ηLRE − η̄LRE = (d − 2σ )/N
holds in the region where the scaling behavior in the system is
controlled by the LRE TT fixed point.

We turn to compute the exponent νLRE of the correlation
length. The critical exponent νLRE is determined from the
inverse of the maximal eigenvalue given by Eq. (74). Thus
we obtain the inverse of the critical exponent νLRE as

ν−1
LRE = ε + ρ. (98)

If we put ρ = 0, the spatial dimension in the present system
becomes d = 2σ + ε, and then ν−1

LRE is

ν−1
LRE = ε, (99)

which is in agreement with that in the pure long-range system
in σ dimensions less [42]. Therefore, the d → d − σ dimen-
sional reduction holds at O(ε), and its validity is recognized
only for N > Ncusp.

The relation between ηLRE and η̄LRE is classified on the
basis of the value of σ as follows:

1. σ < 2 − ε + ρ

N
: η̄LRE > ηLRE, (100)

2. σ = 2 − ε + ρ

N
: η̄LRE = ηLRE, (101)

3. σ > 2 − ε + ρ

N
: η̄LRE < ηLRE, (102)

for N > Ncusp. Since ηLRE � η̄LRE � 2ηLRE, case 3 is unphys-
ical. Thus, the critical value σ = σ∗ which separates between
the long-range and the short-range exchange regimes of the
theory is

σ∗ = 2 − ε + ρ

N
. (103)

Here we comment on the critical value σ∗. If σ > 2 − (ε +
ρ)/2, the spatial dimension in the present system is above
four. Then we put d = 2σ + ρ + ε = 4 + ε′ (0 < ε′ � 1).
The critical value σ∗ is rewritten in terms of ε′ as follows:

σ∗ = 2 − ε′

N − 2
. (104)

Since the exponent η of the random field O(N) spin model
with SR in 4 + ε′ dimensions is η = ηSR = ε′/(N − 2) at
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O(ε′) and for N > Ncusp, our result confirms that the critical
value σ∗ which separates between the long-range and the
short-range exchange regimes of the theory is

σ∗ = 2 − ηSR. (105)

V. CRITICAL PHENOMENA IN SYSTEM WITH
LREF IN 2σ + ρ + ε DIMENSIONS

In this section we study the critical phenomena controlled
by the LREF TT fixed point (72). We calculate the critical
exponents η, η̄, and ν, and investigate the d → d − σ − ρ

dimensional reduction and the d → d − 2 dimensional reduc-
tion.

Substituting the LREF TT FP (72) into Eqs. (67) and (68),
we obtain the critical exponents ηLREF and η̄LREF at LREF TT
fixed point (72):

ηLREF = 2 − σ, (106)

η̄LREF = 4 − 2σ − ρ. (107)

These exponents satisfy the Schwartz-Soffer inequality
η̄LREF � 2ηLREF [39], and saturate the generalized Schwartz-
Soffer inequality η̄LREF � 2ηLREF − ρ [40]. And the inverse
of the critical exponent νLREF is

ν−1
LREF = ε

[
N

N − 1
− ε̃

2
+ ε̃

2

√
1 + 4[N − ε̃(N − 1)]

ε̃2(N − 1)2

]
. (108)

Since limN→∞ ν−1
LREF = ε, in the large N limit, the exponent

νLREF agrees with that of the pure long-range system in σ + ρ

dimensions less [42]. However, as long as N is finite, ν−1
LREF =

ε. Thus, the d → d − σ − ρ dimensional reduction is broken
for finite N . Hence, the d → d − 2 dimensional reduction in
the case of ρ = 2 − σ is also broken for finite N , although the
exponents ηLREF and η̄LREF satisfy η̄LREF = ηLREF = 2 − σ

for N > 1 and σ > 2 − ε/(N − 1). The graphs of (ενLREF)−1

for some values of N are depicted in Fig. 6. It shows that
(ενLREF)−1 tends to draw to 1 as the value of the parameter
σ decreases. Then one expects that (ενLREF)−1 reaches 1 if
the value of the parameter σ decreases even further. However,
it is impossible to study within the present framework, since
the nontrivial fixed point of O(ε) disappears.

( LREF)−1

N = 2 N = 6

N = 9

N = 14

N = 18

N = 30

1.80 1.85 1.90 1.95 2.00
1.00

1.02

1.04

1.06

1.08

1.10

FIG. 6. The graphs of Eq. (108) in σ ∈ [1.80, 2.00]. Here we
have put ρ = 2 − σ in Eq. (108). Then the reduced variable ε̃ takes
ε̃ = (ε + 2 − σ )/ε. The ordinate is (ενLREF )−1, and the abscissa is
σ . Here we have set ε = 0.01. Then ε̃ = (2.01 − σ )/0.01.

VI. SUMMARY

In this paper we have reexamined the critical phenomena
of the long-range random field O(N) spin model near the
lower critical dimension by using the O(N ) nonlinear-sigma
model with the random fields and all possible higher-rank
random anisotropies. By the use of the perturbative functional
renormalization group, we have investigated the stability of
the analytic fixed points in the one-loop beta functions. Also,
we have calculated the critical exponents η, η̄, and ν at the
analytic fixed point controlling the critical behavior in the
system.

We have shown that the analytic fixed point controlling the
critical behavior in the system with the long-range correla-
tions of the random fields has the subcusp, and that it can be
destabilized by the cuspy perturbation in both cases where the
exchange interactions between spins are short ranged and long
ranged.

We have studied the critical phenomena in the spin system
with LRE. We have investigated the d → d − σ dimensional
reduction. We have found that there exists the once-unstable
analytic fixed point corresponding to the d → d − σ dimen-
sional reduction for N > Ncusp = 2(4 + 3

√
3) � 18.3923 . . . .

Although it has the subcusp, the weaker nonanalyticity does
not change the value of the fixed point. Then the critical
exponents ηLRE and η̄LRE evaluated at the once-unstable ana-
lytic fixed point are ηLRE = 2 − σ and η̄LRE = 4 − 2σ − (d −
2σ )/N , respectively, and satisfy the relation 2ηLRE − η̄LRE =
(d − 2σ )/N . The inverse of the exponent νLRE takes ν−1

LRE =
ε at O(ε) in ε = d − 2σ . Therefore, we conclude that the
d → d − σ dimensional reduction at the leading order of the
d − 2σ expansion holds only for N > Ncusp. For N < Ncusp,
the nonanalyticity occurring by the appearance of the linear
cusp breaks down the d → d − σ dimensional reduction.
This is considered to violate the simple relation between the
exponents. Thus, one expects that the critical scaling behavior
in the spin system with LRE is described by three independent
exponents [19]. Moreover, we have also obtained the critical
value σ∗ = 2 − ηSR on the basis of the condition η � η̄ � 2η.
Thus, our result supports the prediction that the crossover
between the long-range and the short-range exchange regimes
of the theory occurs at σ∗ = 2 − ηsr [21,28,30,31,34–38].

We have studied the critical phenomena in the spin system
with LREF. We have investigated the d → d − σ − ρ dimen-
sional reduction and the d → d − 2 dimensional reduction.
We have found the once-unstable analytic fixed point con-
trolling the critical behavior. Although it has the subcusp, the
weaker nonanalyticity does not change the value of the fixed
point. Then the critical exponents ηLREF and η̄LREF evaluated
at the once-unstable analytic fixed point are ηLREF = 2 − σ

and η̄LREF = 4 − 2σ − ρ, respectively, and satisfy 2η̄LREF −
ηLREF = ρ. However, we have shown that the d → d − σ − ρ

dimensional reduction does not holds within the present anal-
ysis, as far as N is finite; the exponent νLREF does not coincide
with that of the pure long-range system in σ + ρ dimensions
less. Thus, the d → d − 2 dimensional reduction in the case
of ρ = 2 − σ is also broken for finite N . The result does not
contradict that in our previous study for the three-dimensional
long-range random field Ising model [26]. Since our present
study by the use of the perturbative renormalization group
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has been restricted to ε + ρ = ε + 2 − σ ∼ O(ε), only the
breakdown of the d → d − 2 dimensional reduction has been
observed. Then, to study the d → d − 2 dimensional reduc-
tion and its breakdown in the (σ + 2 + ε)-dimensional long-
range random field O(N ) spin model, the nonperturbative
analysis are needed.

Finally, we comment on the validity of the d → d − σ

dimensional reduction in the system with LRE near the
lower critical dimension and for N > Ncusp. As shown in the
previous works by Young [5] and Bray [21], the value of
ν−1

LRE coincides with that of the pure long-range system in
σ dimensions less at the leading order in ε = du − d near

the upper critical dimension du = 3σ . However, it fails at
O(ε2). Thus, although we have shown that the d → d − σ

dimensional reduction holds at the leading order in ε = d − dl

near the lower critical dimension dl = 2σ and for N > Ncusp

in the present work, there is room for doubt whether it holds
beyond one loop, even if N > Ncusp. Further studies by using
the higher-loop calculation should shed light on this problem.
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