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Theory of standing spin waves in a finite-size chiral spin soliton lattice
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We present a theory of standing spin waves (SSW) in a monoaxial chiral helimagnet. Motivated by
experimental findings on the magnetic-field dependence of the resonance frequency in thin films of CrNb3S6

[Goncalves et al., Phys. Rev. B 95, 104415 (2017)], we examine the SSW over a chiral soliton lattice (CSL)
excited by an ac magnetic field applied parallel and perpendicular to the chiral axis. For this purpose, we
generalize Kittel-Pincus theories of the SSW in ferromagnetic thin films to the case of a noncollinear helimagnet
with the surface end spins, which are softly pinned by an anisotropy field. Consequently, we found that there
appear two types of modes. One is a Pincus mode that is composed of a long-period Bloch wave and a
short-period ripple originated from the periodic structure of the CSL. Another is a short-period Kittel ripple
excited by space-periodic perturbation, which exists only in the case in which the ac field is applied perpendicular
the chiral axis. We demonstrate that the existence of the Pincus mode and the Kittel ripple is consistent with the
experimentally found double resonance profile.

DOI: 10.1103/PhysRevB.100.024411

I. INTRODUCTION

Dynamical responses to external probes disclose the nature
of collective excitations in condensed matter. Thin ferro-
magnetic films in this regard have received much attention
in recent years due to striking features never seen in bulk
samples, and they have been widely applied to technology [1].

At the same time, recent studies of thin films and
micrometer-sized crystals of the monoaxial chiral helimagnet
CrNb3S6 have exhibited a number of remarkable phenomena,
thereby making this system highly attractive for spintronic
applications. These include detection of the chiral spin soliton
lattice (CSL) by using Lorenz microscopy and small-angle
electron diffraction [2], a sequence of jumps in magnetore-
sistance [3,4], and magnetic soliton confinement [5,6]. It was
argued that the discretization effects result from a specific
domain structure, 1-μm-wide grains with different crystallo-
graphic structural chirality. In this system, the direction of in-
plane magnetic moments is pinned down around the domain
boundary.

An obvious consequence of the pinning effect other than
quantization of magnetization and magnetoresistance is the
emergence of the intrinsic resonance frequency [7]. The early
studies on spin resonance in monoaxial chiral helimagnets
relied on a spin-wave spectrum of an infinite system and
completely ignored this circumstance [8,9]. A recent report on
magnetic resonance in microsized crystals CrNb3S6 revealed
that the dynamical resonances of the CSL are sensitive to
the polarization of the driving microwave field [10]. In the
case in which the microwave field is applied parallel to the
chiral axis, the resonance profile was attributed to excitation

of standing spin waves (SSWs) [11]. On the other hand, when
the microwave field is applied perpendicular to the chiral axis,
two resonance modes, with the frequency difference being a
few GHz, appear across the entire CSL phase. Furthermore,
the resonance modes become asymmetric with regard to the
directions of a static field applied perpendicular to the chiral
axis to stabilize the CSL. The origins of these two prominent
features, namely (i) double resonance and (ii) asymmetry,
have not been known as yet. This situation motivates us to
elaborate a possible mechanism of these phenomena based on
standing spin-wave excitations, which was equally valid both
for the parallel and perpendicular microwave fields.

For this purpose, we start by turning our attention to the
theory of ferromagnetic resonance (FMR) in thin films, pio-
neered by Kittel [12]. In Kittel’s theory, the surface spins are
essentially pinned down by a strong surface anisotropy field.
The case of soft pinning was later considered by Pincus [13].
In the case of soft pinning, the eigenfrequencies of the interior
spin wave are required to match the Larmor frequency of
the surface spins. This matching condition is given by the
Davis-Puszkarski equation [14–16], which leads to allowed
values of the wave vector of the spin-wave modes.

Since the first observation in permalloy films [17], the de-
tection of the SSW has long attracted considerable attention,
including manganite films [18], magnonic crystals [19], and
ferromagnetic bars [20]. The SSW has also been regarded
as a candidate for working media in spintronics, including
Co multilayers [21], a ferrite film [22,23], and spin-torque
excitation in YIG/Co heterostructures [24]. Detection of the
SSW by FMR is also used to probe the interface exchange-
biased structure [25].
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However, so far little attention has been paid to the SSW
in a magnetic system with a noncollinear ground state, simply
because of a lack of experimental motivation. In this regard,
we expect that clarifying the nature of the SSW in a chiral
helimagnetic system may open a new window to the field. In
particular, a purpose of this paper is to reproduce the magnetic
resonance profile in microsized CrNb3S6 [10], with the aid
of a theory of SSW over the CSL. We provide evidence that
the chiral soliton lattice allows two types of standing waves,
either with “soft” (Pincus) or with “hard” (Kittel) pinning
of the boundary spins. The ac field applied parallel to the
chiral axis excites only standing waves of Pincus type, while
being oriented perpendicular to the chiral axis gives rise to a
superposition of the Pincus and Kittel modes.

This paper is organized as follows. In Sec. II, we describe a
model. In Sec. III, we present results of numerical simulations
of SSWs based on equations of motion for the spins. In
Sec. IV, we present a detailed analytical theory based on the
generalized Davis-Puszkarski scheme. The discussions and
conclusions are given in Sec. V.

II. MODEL

In this section, we present a model to describe the SSW in
a monoaxial chiral helimagnet. What is essential is a correct
description of the ground state of a finite-size soliton lattice
with surface spins at the boundaries of a domain with a
definite chirality. In this respect, we note that in most of the
previous theoretical studies [6] the linear size of the system is
assumed to be infinite, though some confinement effects in a
finite-size system have been proposed [26,27].

The pinning effects are implemented through surface
anisotropy described by two equivalent manners. The atomic
discrete lattice approach was used in Refs. [13,28] as op-
posed to the continuum model developed by Rado and Weert-
man [29,30]. We will follow the former approach below.
Before going into detail, we would like to emphasize that the
studies [13,28] resort to a trick to convert the phenomenologi-
cal expression for magnetocrystalline anisotropy into a vector
of the so-called anisotropy field. This effective field is very
useful to study spin dynamics based on the Landau-Lifshitz-
Gilbert equation, however it assumes time-reversal symmetry
breaking (see Ref. [31] for details).

CrNb3S6 crystal has localized spins S = 3/2 carried by
Cr3+ ions and the strong intralayer ferromagnetic coupling
strength, J⊥ ∼ 154 K, although the weak interlayer ferromag-
netic coupling strength is J ∼ 18 K and the weaker DM inter-
action strength is D ∼ 2.9 K [32]. This layered structure with
strong intralayer ferromagnetic correlation makes it legitimate
to describe the system based on an effective one-dimensional
classical Hamiltonian,

H = −J
∑
〈i, j〉

Si · S j − D ·
∑
〈i, j〉

Si × S j

− [H0 + h(t )] ·
∑

i

Si −
∑
σ=l,r

Hs · Sσ , (1)

where Si is the local spin vector located at the site i, J > 0
is the nearest-neighbor ferromagnetic exchange interaction,
and D = Dêz is the monoaxial DM interaction vector along
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FIG. 1. (a) The interior (blue) and surface end (red) spins that
form the chiral soliton lattice. (b) The soft boundary condition gives
rise to the Pincus mode, which is incommensurate with respect to
the background system. (c) The perpendicular ac field βx (τ ) further
excites the additional Kittel mode (ripple), which is pinned down at
both ends and commensurate with respect to the background system.

a certain crystallographic chiral axis (taken as the z-axis). We
take the z-axis as the monochiral-axis and let the linear size
be L. Both ends are specified by z = ±L/2. H0 = H0êx is the
external magnetic dc field and h(t ) is a microwave ac field,
given in units of gμB. The first two sums are restricted to the
nearest neighbors, and the sum over s is a sum over the spins
on the left (σ = l) and right (σ = r) boundary surfaces. As
experimentally indicated [5], the constant surface anisotropy
field Hs = Hsêx is assumed to lie in the plane of the film
(xz-plane), i.e., Hs is parallel to the uniform dc field H0.
Because of the soft boundary condition that originated from
Hs, the end surface spins Sl and Sr have their own dynamics
distinguished from the interior spins Si, as schematically
indicated in Fig. 1(a).

Now, we separately treat the dynamics of the interior and
end spins. To analyze the dynamics of the interior spins, the
term with Hs can be discarded. Long period modulation of
the magnetic structure makes it legitimate to take a continuum
limit of the lattice Hamiltonian (1),

Hinterior = JS2

2
(∂zθ )2 + JS2

2
sin2 θ (∂zϕ)2

− DS2 sin2 θ∂zϕ

− [H0 + hx(t )]S sin θ cos ϕ − hz(t )S cos θ. (2)

Here, ϕ and θ are the angles that the magnetization, S(r) =
S(sin θ cos ϕ, sin θ sin ϕ, cos θ ), makes with respect to the x
and z axis, respectively, with the film lying parallel to the xz
plane. The field H0 is directed along the x-axis. The presence
of the field alters a helical spin arrangement of the ground
state to the chiral soliton lattice [6,33]. The classical equa-
tions of motion, h̄S sin θ∂tθ = δHinterior/δϕ and h̄S sin θ∂tϕ =
−δHinterior/δθ , can be easily shown to be

∂τ θ = − sin θ∂2
z ϕ − 2 cos θ∂zθ∂zϕ

+ 2(D/J ) cos θ∂zθ + [β0 + βx(t )] sin ϕ, (3)

− sin θ∂τϕ = sin θ cos θ (∂zϕ)2 − ∂2
z θ

− 2(D/J ) sin θ cos θ∂zϕ

− [β0 + βx(t )] cos θ cos ϕ + βz(t ) sin θ, (4)
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where τ = JSt/h̄, β0 = H0/JS, and βx,z(t ) = hx,z(t )/JS. We
note that the frequency scale is JS/h̄ ∼ 3.5 × 1012 Hz (by
choosing J = 18 K [32] and S = 3/2).

The ground state is specified by θ0 = π/2 and

ϕ0(z) = φ0 − 2am

(√
β0

κ
z + φ1

)
. (5)

Here, am is the Jacobi amplitude function. The elliptic mod-
ulus κ and two constants, φ0 (0 or π ) and φ1 (0 or K), are
chosen through fitting with the numerical data (see Sec. III).
The spatial period of the CSL is LCSL = 2κK/

√
β0 and the

total number of solitons is n = L/LCSL [34]. Here, K is the
elliptic integral of the first kind.

To consider small dynamical fluctuations around the equi-
librium configuration of the CSL, we introduce the ψ (z, t )
(out-of-plane) and χ (z, t ) (in-plane) fluctuations of the local
spins,

θ (z, τ ) = π

2
+ ψ (z, τ ),

(6)
ϕ(z, τ ) = ϕ0(z) + χ (z, τ ),

where |ψ |, |χ | � 1. Then, a linear approximation of Eqs. (3)
and (4) leads to (see Appendix A)

κ2

β0

∂ψ (z, t )

∂τ
= L̂ϕχ (z, t ) + κ2

β0
βx(τ ) sin ϕ0(z), (7)

κ2

β0

∂χ (z, t )

∂τ
= −L̂θψ (z, t ) − κ2

β0
βz(τ ), (8)

where L̂ϕ = −∂2
z̄ + 2κ2sn2z̄ − κ2 and L̂θ = −∂2

z̄ +
2κ2sn2z̄ + 4 − 3κ2 are the linear Lamé operators, and
z̄ = z

√
β0/κ , with sn being the Jacobi sn function. Due to

the presence of the perpendicular ac field, βx, these equations
differ slightly from those used in Ref. [35] to describe
coherent sliding motion of the CSL when a time-dependent
ac field is applied parallel to the chiral axis.

We comment here on the structure of the EOMs. L̂ϕ and
L̂θ give the propagating wave described by the eigenfunctions
of the Lamé equation. The propagating solution gives the spin
resonance in an infinite system [8]. In the present case, the
soft boundary condition gives rise to standing waves, where
the end surface spins softly fluctuate. We call this mode the
“Pincus mode” [see Fig. 1(b)], which is incommensurate with
respect to the background system.

Next, the dynamics of the surface spins is described by (see
Appendix B for details)

∂ψs

∂τ
= ±∂zχs − 1

2
∂2

z χs ∓ (D/J )∂zϕ0∂zχs

+ βx(τ ) sin ϕ0 + (βs + β0) cos ϕ0χs, (9)

∂χs

∂τ
= ∓∂zψs + 1

2
∂2

z ψs + 1

2
(∂zϕ0)2ψs

+ (D/J )(∂zϕ0)ψs − 1

2
(D/J )

(
∂2

z ϕ0
)
ψs

− {[βs + β0 + βx(τ )] cos ϕ0}ψs, (10)

where βs = Hs/JS is the pinning field strength. The upper
(lower) sign refers to the end spins at the right (left) end site,
z = L/2 or −L/2, that are indexed by s = r or l, respectively.

The precession of the surface spins with the frequency,
�surface, is eventually caught up in the interior spin wave
with the frequency, �interior. Then, the matching condition
�surface = �interior, which is called the Davis-Puszkarski equa-
tion [14–16], determines the overall spin-wave dispersion.
The SSW modes are quite sensitive to the direction of the
external magnetic h(t ), i.e., whether h(t ) is parallel to the
chiral axis [h(t ) = h0zêz] or perpendicular to the chiral axis
[h(t ) = h0x êx].

Before presenting the detailed analysis, we give an intu-
itive argument on this effect. In Eq. (7), the term including
βx(τ ) sin ϕ0(z) plays a role of space-time-dependent external
force whose “spatial frequency” is equal to the spatial period
of the CSL, LCSL. Therefore, when βx(τ ) is present, there
appears a series of the additional standing spin waves with
their basis spanned by the eigenfunctions of the Lamé equa-
tion. These additional modes are completely pinned down at
both ends, z = ±L/2. We call this mode “Kittel ripple” [see
Fig. 1(c)], which appears only for finite βx(τ ) and commen-
surate to the background system. Unlike the case of βx(τ ),
the term including βz(τ ) in Eq. (8) is spatially uniform and
can excite the Pincus mode only. As we will discuss in more
detail below, the presence or absence of the Kittel ripple
may provide an explanation for the experimentally found
difference in the SSW modes depending on the direction of
the ac field [10].

III. NUMERICAL SIMULATIONS

A. Simulation scheme

To gain insight into the resonant dynamics, we first perform
numerical simulations similar to those used to study CSL
sliding motion driven by a parallel magnetic ac field [35]. The
numerical analysis is based on the lattice version of Eqs. (3)
and (4) for the interior spins,

∂θi

∂τ
=

√
1 + (D/J )2 sin θi−1 sin(ϕi − ϕi−1 − δ)

−
√

1 + (D/J )2 sin θi+1 sin(ϕi+1 − ϕi − δ)

+ [β0 + βx(τ )] sin ϕi, (11)

∂ϕi

∂τ
= −(cos θi+1 + cos θi−1)

+
√

1 + (D/J )2cotθi sin θi−1 cos(ϕi − ϕi−1 − δ)

+
√

1 + (D/J )2cotθi sin θi+1 cos(ϕi+1 − ϕi − δ)

+ [β0 + βx(τ )]cotθi cos ϕi − βz(τ ), (12)

where δ = arctan(D/J ), and complemented by equations for
the boundaries (B2) and (B3). For the boundary spins, βx is
substituted for βs + βx. The length of the system is chosen as
L = 411, which corresponds to the number of kinks accom-
modated inside the system, nmax = [Lqs/2π ] = 10. The value
is about the same order of magnitude as the number of kinks
confined within grains of a definite crystalline chirality in thin
films of CrNb3S6 [2], where the pitch of the helix is qs = 0.16.

A search for a static configuration of the ground state is
described in detail in Ref. [35]. The static solution found with
the aid of the relaxation method serves as an initial condition
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FIG. 2. The spatial profiles of ϕ and θ associated with the
standing waves over the helical structure under zero dc magnetic field
(β0 = 0). The ac field is applied parallel to the chiral axis. The SSW
of the first order at the frequency � = 0.0011 (a,b) and of the third
order at the frequency � = 0.0030 (c,d). The parameters are taken
as βs = 0.02 and βz0 = 0.0001.

for the dynamical equations addressed by the eighth-order
Dormand-Prince method with an adaptive step-size control.
To search for a resonant frequency, the following procedure
is adopted. Time evolution of ϕi(τ ), θi(τ ) is determined as a
response to the ac field βα (τ ) = βα0[1 − exp(−τ )] (α = x, z)
at the start. The Fourier transform of the ac-field signal is
distributed over a continuous frequency range that enables us
to localize an approximate position of an intrinsic resonance.
To get its precise value, the spin dynamics equations are
again integrated but now the ac field is periodic, βα (τ ) =
βα0 sin (�τ ), where α = x or z. Provided that the frequency
� lies near the resonance, this gives rise to characteristic
beatings. Reexamination of these signals by Fourier analysis
specifies an exact position of the resonance frequency.

Here, we separately discuss the results of numerical solu-
tion for configurations examined experimentally in Ref. [10]:
when (I) the ac microwave field is applied parallel to the chiral
axis, and when (II) the ac field is applied perpendicular to the
axis.

B. Case I: The ac magnetic field is parallel to the chiral axis

In case I, we expect the driving ac field to excite the Pincus
modes, which are symmetric with respect to reflection across
the center (z = 0), because the pinning fields βs(t ) act on both
ends in a symmetric manner.

In Fig. 2, we show the spatial profiles of ϕ and θ associated
with the standing waves over the helical structure under a
zero dc magnetic field (β0 = 0). The parameters are taken
as βs = 0.02 and βz0 = 0.0001. The SSWs of the first and
third orders occur at the frequencies � = 0.0011 and 0.0030,
respectively. As is evident from Fig. 2, there arise SSWs with
the number of half-wavelengths being approximately odd in
a similar way to those in the original Kittel theory [12]. It
should be noted that the amplitude of the ϕ-oscillations is ten
times the θ -mode amplitude. These findings fit into the idea
that spin-wave modes in a thin film behave like a vibration
of a rope clamped at both ends, when some anisotropy field
essentially or partially pins down boundary spins.

FIG. 3. The spatial profiles of ϕ and θ associated with the
standing waves over the CSL structure under finite dc magnetic field
(β0 = 0.002). The ac field is applied parallel to the chiral axis. The
SSW of the first order at the frequency � = 0.001 05 (a,b), and of
the third order at the frequency � = 0.003 05 (c,d). The parameters
are taken as βs = 0.02 and βx0 = 0.0001.

In Fig. 3, we show the spatial profiles of ϕ and θ associated
with the standing waves over the CSL structure under a finite
dc magnetic field (β0 = 0.002). The parameters are taken as
βs = 0.02 and βx0 = 0.0001. The SSWs of the first and third
orders occur at the frequencies � = 0.001 05 and 0.003 05,
respectively. Just as in the case of Fig. 2, one may immediately
recognize the symmetric modes with zero and two nodes,
but the profiles of these excitations look different. It is clear
that some short-scale oscillations, seen as a ripple over the
standing wave background, contribute to the signal. We will
discuss the origin of this ripple in Sec. IV.

C. Case II: The ac magnetic field is perpendicular
to the chiral axis

Next we consider case II. In this case, we expect the driving
ac field to excite the Pincus modes, which are antisymmetric
with respect to reflection across the center (z = 0), because in
Eq. (7) the space-dependent field sin ϕ0(z) is an odd function
of z.

In Fig. 4, we show the spatial profiles of ϕ and θ associated
with the standing waves over the helical structure under a
zero dc magnetic field (β0 = 0). The parameters are taken as
βs = 0.02 and βx0 = 0.0001. The SSW of the second order

FIG. 4. The spatial profiles of (a) ϕ and (b) θ associated with the
second-order standing waves over the helical structure under zero dc
magnetic field (β0 = 0). The ac field is applied perpendicular to the
chiral axis at the frequency � = 0.0021.
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FIG. 5. The spatial profiles of (a) ϕ and (b) θ associated with the
second-order standing waves over the CSL structure under finite dc
magnetic field (β0 = 0.002). The ac field is applied perpendicular to
the chiral axis at the frequency � = 0.0022.

occurs at the frequencies � = 0.0021. As compared with
case I, shown in Fig. 2, we recognize that the additional ripples
with a tiny amplitude are superimposed on the background
Pincus mode. These additional ripples are caused by the
space-time-dependent external force, βx(τ ) sin ϕ0(z). Because
the term sin ϕ0(z) vanishes at both ends z = ±L/2, the addi-
tional modes are analogous to the original Kittel modes [12],
which are completely pinned down at both ends.

In Fig. 5, we show the spatial profiles of ϕ and θ associated
with the standing waves over the CSL structure under a finite
dc magnetic field (β0 = 0.002). The parameters are taken as
βs = 0.02 and βx0 = 0.0001. The SSW of the second order
occurs at the frequencies � = 0.0022. As with the case shown
in Fig. 4, the additional Kittel ripples are superimposed on
the background Pincus mode, although it is almost invisible
because of tiny amplitudes.

Based on the numerical findings presented above, it is
evident that the SSW modes are significantly affected by the
movable boundaries, which causes Pincus modes. Further-
more, when the ac field is applied perpendicular to the chiral
axis (case II), the additional Kittel ripples are superimposed.
Our next challenge is to elaborate an appropriate analytical
theory of the dynamics.

IV. ANALYTICAL THEORY OF THE SSW DYNAMICS

In this section, we present an analytical theory in detail.
We consider the following four cases depending on “case I
or II” and “the SSW over either CSL or helical structure.”
Throughout this section, we follow the technical scheme
for the Davis-Puszkarski equation, which is summarized in
Appendix C from general viewpoints.

A. Case I: The ac magnetic field is parallel to the chiral axis

1. SSW over the CSL

In case I, the interior spins are subject to the uniform ac
field only. In Eqs. (7) and (8), βx(τ ) = 0 and only the spatially
uniform field, βz(τ ), excites the intrinsic SSW modes. So, we
can also drop βz(τ ) for the purpose of obtaining the SSW
dispersion. Then, the coupled equations are solved by separa-
tion of variables, χ (z, τ ) = ν(z̄)Z (τ ) and ψ (z, τ ) = ν(z̄)ξ (τ ).

Both χ and ψ fields share the same spatial parts ν(z̄), which
is the eigenfunction of the Lamé equation [6,36], and satisfy

L̂ϕνq(z̄) = λ(ϕ)νq(z̄)

= κ ′2sn2(α, κ ′)νq(z̄), (13)

L̂θ νq(z̄) = λ(θ )νq(z̄)

= [κ ′2sn2(α, κ ′) + 2 + 2κ ′2]νq(z̄). (14)

Here, the real parameter α lies in the range −K ′ < α < K ′,
where K ′ is the elliptic integral of the first kind with the
complementary elliptic modulus, κ ′2 = 1 − κ2. The lower
index of the eigenfunctions stands for the wave number of the
Bloch wave,

q(α) =
√

β0

κ

[
Z (α, κ ′) + πα

2KK ′

]
, (15)

which is related with the eigenvalues λ(ϕ,θ ) through an implicit
parameter α [37]. Z (α, κ ′) represents Jacobi’s zeta-function.
The allowed values of q(α) are to be determined by this
equation.

The temporal parts Z (τ ) and ξ (τ ) are merely the collective
coordinates associate with ϕ and θ fields, respectively, and
describe the collective dynamics of the CSL as a whole. Then,
Eqs. (7) and (8) become

ξ̇ (τ ) = C1

(
β0

κ2

)
Z (τ ),

(16)

Ż (τ ) = −C2

(
β0

κ2

)
ξ (τ ),

and we immediately have the eigenfrequency �0 = (β0/κ
2)√

C1C2 that contains the arbitrary constants C1,2,
which characterize the separation of variables [(κ2/β0)
[Z (τ )]−1∂ξ (τ )/∂τ = [ν(z̄)]−1L̂ϕν(z̄) = C1, for example].

Using (13) and (14), we have C1C2 = λ(ϕ)λ(θ ), which gives
rise to the resonance frequency for the interior SSW,

�2
interior(q) = β2

0

κ4
κ ′2sn2(α, κ ′)[κ ′2sn2(α, κ ′) + 2 + 2κ ′2].

(17)
Then, we use the symmetrical solution of the Lamé equa-
tion [6,36,37],

νq(z̄) ∝ Re

[
θ4

(
π

2K [z̄ − iα − K]
)

θ4
(

π z̄
2K

) e−iq̄z̄

]
, (18)

where z̄ = √
β0/κ (z − L/2) + K , and θ4 is the Jacobi theta

function.
Next, we solve the equations of motion for the end surface

spins, Eqs. (9) and (10), by means of a separation of vari-
ables, χr,l (z, τ ) = νq(z)Zs(τ ), ψr,l (z, τ ) = νq(z)ξs(τ ). Here,
q̄ = (κ/

√
β0)q(α). It should be noted that the spatial part

νq(z) is the same as that for the interior spins. This trick, used
throughout this paper, provides the resonance frequency for
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the end surface spins [11],

�2
surface = 1

ν2
q (z̄L/2)

[√
β0

κ
ν ′

q(z̄L/2) − β0

2κ2
ν ′′

q (z̄L/2) − D

J

β0

κ2
ϕ′

0(z̄L/2)ν ′
q(z̄L/2)+(β0 + βs) cos ϕ0(z̄L/2)νq(z̄L/2)

]

×
[√

β0

κ
ν ′

q(z̄L/2) − β0

2κ2
ν ′′

q (z̄L/2) − β0

2κ2
νq(z̄L/2)(ϕ′

0)2(z̄L/2) − D

J

{√
β0

κ
ϕ′

0(z̄L/2) − β0

2κ2
ϕ′′

0 (z̄L/2)

}
νq(z̄L/2)

+ (β0 + βs) cos ϕ0(z̄L/2)νq(z̄L/2)

]
. (19)

Now, the matching condition (the Davis-Puszkarski equation)

�interior(q) = �surface (20)

leads to the determination of the parameter α, and then gives
the allowed wave number q. This algorithm is similar to the
case for ferromagnetic thin films [14–16].

The SSW is obtained by superposition of two waves prop-
agating into the opposite directions,

χ (z̄, τ ) = νq(z̄L/2+z ) + νq(z̄L/2−z )

νq(z̄L ) + νq(z̄0)
χ (z̄L/2, τ ). (21)

We obtain a similar expression for ψ (z̄, τ ). Here, the bound-
ary functions are taken from the numerical data. In Fig. 6, we
show a comparison between numerical and analytical results

FIG. 6. Comparison between numerical (red line) and analytical
(blue line) results for the spatial profiles of (a) ϕ and (b) θ associated
with the first-order standing waves over the CSL structure under a
finite dc magnetic field (β0 = 0.002). The parameters are taken as
βs = 0.02 and βx0 = 0.0001. An analytical result is obtained from
Eq. (21) at τ = 5600.

for the spatial profiles of (a) ϕ and (b) θ associated with
the first-order standing waves over the CSL structure under
a finite dc magnetic field (β0 = 0.002). It is seen that the
analytical results are consistent with the numerical ones.

Analytical results enable us to understand the ori-
gin of the ripples. For this purpose, we decompose
Eq. (18) into a “Bloch wave” (e−iq̄z̄) and a “Lamé ripple”
[θ4( π

2K [z̄ − iα − K])/θ4( π z̄
2K )]. We separately show the spatial

profiles of these waves in Fig. 7. It is seen that the Bloch
part behaves like a smooth background, while the Lamé
part exhibits the short-wavelength modulation (ripple), which
directly reflects the spatial period of the CSL, LCSL.

Figure 8 shows the spectrum of the SSW of the first,
second, and third orders, where both numerical and analyt-
ical results are shown for comparison. It is evident that the
theoretical and numerical results are in good agreement.

2. SSW over the simple helix

In this subsection we discuss separately the case of a zero
magnetic dc field (β0 = 0). In this case, the ground state

FIG. 7. Schematic demonstration of how the SSW wave function
over the CSL, Eq. (18), is decomposed into (a) a Bloch wave (e−iq̄z̄)
and (b) Lamé ripple [θ4( π

2K [z̄ − iα − K])/θ4( π z̄
2K )]. The parameter

setting is the same as in the case of Fig. 6.
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(a)

(b)

FIG. 8. (a) Schematic view of the case I configuration. (b) Res-
onance frequency �0 for standing waves of the first order (©,
numerical data; •, theory), the second order (�, numerical data; �,
theory), and the third order (�, numerical data; �, theory) depending
on the transverse dc field β0.

is a simple helix with a uniform modulation and the above
analysis can be repeated in a much simpler manner [11].

The helical structure of the interior spins is described by
θ0 = π/2 and ϕ0 = qs(z − z0). The helical pitch is determined
through an equation (see Appendix B for derivation)

0 = sin qs − (D/J ) cos qs ∓ βs sin ϕ(∓L/2). (22)

The presence of the pinning field complicates the condition
for qs.

The equations of motion (7) and (8) may be recast in the
form

∂τψ = −∂2
z χ, (23)

∂τχ = [
∂2

z − 2(D/J )qs + q2
s

]
ψ − βz(τ ). (24)

We look for solutions in the form of the standing wave,
cos(kz), with the wave vector k. The resonance frequency for
the interior spins is then given by

�2
interior = k2[k2 − q2

s + 2qs(D/J )
]
. (25)

On the other hand, the resonance frequency for the surface end
spins is obtained as

�2
surface = [k tan(kL/2){1 + (D/J )qs}

− k2/2 − βs cos ϕ0(L/2)]

× {k tan(kL/2) − k2/2 + q2
s /2

− (D/J )qs − βs cos ϕ0(L/2)}. (26)

Then, the Davis-Puszkarski equation leads to the determina-
tion of allowed values of k.

By performing numerical estimations for D/J = 0.16,
βs = 0.02, and ϕ0(∓L/2) = ±31.6369, where L/2 = 205,
we obtain k(1) = 0.006 671, �

(1)
0 = 0.001 067 and k(3) =

0.020 279, �(3)
0 = 0.003 268 for the standing waves of the first

and third orders, respectively [38]. This result is included in
Fig. 8.

B. Case II: The ac magnetic field is perpendicular
to the chiral axis

1. SSW over the CSL

Now we examine the most complicated case, where the
SSW is excited over the CSL by the ac field applied per-
pendicular to the chiral axis. To the best of our knowledge,
such a study had not yet been conducted. An essential feature
of this case lies in the fact that the interior spins experience
space-time-dependent Zeeman interaction with an effective
field βeff(z, τ ) = sin ϕ0(z)βx(τ ) in Eq. (7). This term prevents
us from applying a separation of variables. To attack the prob-
lem, the method of transformations leading to homogeneous
boundary conditions may be used [40]. For the purpose, we
solve initially the EOM for the interior spins by assuming that
dynamics of the end spins is known. The results obtained in
this fashion are then used to address the problem to describe
the dynamics of the end surface spins in a self-consistent
manner.

To realize the scheme, the spin fluctuations may be
expanded as

χ (z̄, τ ) = νq(z̄)

νq(z̄L/2)
χ (z̄L/2, τ ) + εχ̃ (z̄, τ ), (27)

ψ (z̄, τ ) = νq(z̄)

νq(z̄L/2)
ψ (z̄L/2, τ ) + εψ̃ (z̄, τ ), (28)

where the first terms correspond to the standing-wave anti-
symmetric with respect to reflection across the center,

νq(z̄) ∝ Im

[
θ4

(
π

2K [z̄ − iα − K]
)

θ4
(

π z̄
2K

) e−iq̄z̄

]
. (29)

The second terms on the right-hand side of Eqs. (27) and (28)
give rise to the additional short-wavelength ripples with
both ends being completely pinned, i.e., χ̃ (z̄±L/2, τ ) = 0 and
ψ̃ (z̄±L/2, τ ) = 0. In view of the complete pinning, we call this
additional ripple the “Kittel ripple.”

The amplitude of the Kittel ripple is proportional to the
small parameter ε. From the beginning, the dynamics of the
end spins, i.e., χ (z̄L/2, τ ) and ψ (z̄L/2, τ ), is considered as
being known. Due to the odd parity of the function νq(z̄), the
oscillations of the boundary spins are antisynchronized, i.e.,
χ (z̄−L/2, τ ) = −χ (z̄L/2, τ ) and ψ (z̄−L/2, τ ) = −ψ (z̄L/2, τ ).

Substituting Eqs. (27) and (28) into Eqs. (7) and (8), we
obtain the coupled equations of zeroth-order in ε,

ψ̇ (z̄L/2, τ ) = (β0/κ
2)λ(ϕ)χ (z̄L/2, τ ), (30)

χ̇ (z̄L/2, τ ) = −(β0/κ
2)λ(θ )ψ (z̄L/2, τ ), (31)

which gives the resonance frequency for the Pincus mode of
the interior spins,

�2
interior-Pincus = β2

0

κ4
λ(ϕ)λ(θ ) = β2

0

κ4
κ ′2sn2(α, κ ′)

× [κ ′2sn2(α, κ ′) + 2 + 2κ ′2], (32)
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with no restriction on α. We call this the “interior Pincus”
mode.

The coupled equations of the first-order in ε are found
to be

˙̃ψ (z̄, t ) = β0

κ2
L̂ϕχ̃ (z̄, t ) + βx(τ )

ε
sin ϕ0(z̄), (33)

˙̃χ (z̄, t ) = −β0

κ2
L̂θ ψ̃ (z̄, t ). (34)

The resonance frequency for the Kittel ripples of the interior
spins is now

�2
interior-Kittel(q) = β2

0

κ4
κ ′2sn2(α, κ ′)

× [κ ′2sn2(α, κ ′) + 2 + 2κ ′2], (35)

under the restriction on α due to the boundary condition,
νq(z̄±L/2) = 0. We look for solutions of Eqs. (33) and (34) in
the form

ψ̃ (z̄, τ ) =
∑

n

ψ̃n(τ )νqn (z̄), (36)

χ̃ (z̄, τ ) =
∑

n

χ̃n(τ )νqn (z̄), (37)

where the wave vectors qn are determined by νqn (z̄±L/2) = 0.
Inserting Eqs. (36) and (37) into Eqs. (33) and (34) yields

χ̃n(τ ) = fn
βx0

ε

κ2

β0

�n

λ
(ϕ)
n

[�n sin(�τ ) − � sin(�nτ )]

�2 − �2
n

, (38)

ψ̃n(τ ) = fn
βx0

ε
�

[cos(�nτ ) − cos(�τ )]

�2 − �2
n

, (39)

where �n is given by (35) being estimated for qn, and

fn =
∫ z̄L/2

−z̄L/2
sin ϕ0(z̄)νqn (z̄)dz̄∫ z̄L/2

−z̄L/2
ν2

qn
(z̄)dz̄

. (40)

The function sin ϕ0 is antisymmetric with respect to reflection
across the center of the system, and therefore the summation
in (36) and (37) should include the odd functions νqn (z̄) only.

In Fig. 9, we show a comparison between numerical and
analytical results for the spatial profiles of ϕ and θ associated
with the second-order standing waves over the CSL structure
under a finite dc magnetic field.

We now consider the boundary values χ (z̄L/2, τ ) and
ψ (z̄L/2, τ ). To do this in a self-consistent manner, we neglect
the additional Kittel ripple terms in Eqs. (27) and (28), which
become vanishingly small in the vicinity of the boundaries,

χ (z̄, τ ) ∼ cχ

νq(z̄)

νq(z̄L/2)
χ (z̄L/2, τ ), (41)

ψ (z̄, τ ) ∼ cψ

νq(z̄)

νq(z̄L/2)
ψ (z̄L/2, τ ), (42)

where cχ and cψ are some constants.
Substitution of (41) and (42) into Eqs. (9) and (10) leads

to the differential equations for the two unknowns ψ (zL/2, τ )
and χ (zL/2, τ ),

ψ̇ (zL/2, τ ) = − cχ

cψ

Aqχ (zL/2, τ ) + βx(τ )

cψ

sin ϕ0(zL/2), (43)

χ̇ (zL/2, τ ) = cψ

cχ

Bqψ (zL/2, τ ), (44)

FIG. 9. Comparison between numerical (red line) and analytical
(blue line) results for the spatial profiles of (a) ϕ and (b) θ associated
with the second-order standing waves over the CSL structure under
a finite dc magnetic field (β0 = 0.002). The parameters are taken
as βs = 0.02 and βx0 = 0.0001. An analytical result is obtained by
Eqs. (27) and (28) with ε = 2/3 at τ = 6000.

where

Aq = −ν ′
q(zL/2)

νq(zL/2)
+ 1

2

ν ′′
q (zL/2)

νq(zL/2)
+ D

J

ν ′
q(zL/2)

νq(zL/2)
ϕ′

0(zL/2)

− (βs + β0) cos ϕ0(zL/2), (45)

Bq = −ν ′
q(zL/2)

νq(zL/2)
+ 1

2

ν ′′
q (zL/2)

νq(zL/2)
+ 1

2
ϕ′2

0(zL/2)

+ D

J
ϕ′

0(zL/2) − D

2J
ϕ′′

0 (zL/2)

− (βs + β0) cos ϕ0(zL/2). (46)

Then, the resonance frequency for the end surface spins is

�surface-Pincus = √
AqBq, (47)

which is identified as the “surface Pincus” mode. Choos-
ing the initial values ψ (zL/2, 0) = 0 and χ (zL/2, 0) = 0
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    ×Lame ripple
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FIG. 10. Decomposition of Eq. (27) into the (a) Pincus mode
(which is further decomposed into the Bloch wave and Lamé ripple,
as shown in Fig. 7) and (b) Kittel ripples.

that are consistent with the field βx(τ ) = βx0 sin (�τ ), we
find

χ (zL/2, τ )= βx0Bq

cχ

sin ϕ0(zL/2)

�0
(
�2

0 − �2
) [�0 sin(�τ )−� sin(�0τ )],

(48)

ψ (zL/2, τ ) = βx0

cψ

� sin ϕ0(zL/2)

�2 − �2
0

[cos(�0τ ) − cos(�τ )],

(49)

where �0 = �surface-Pincus = �interior-Pincus. This matching con-
dition leads to the determination of the wave number q.

Analytical results obtained here enable us to understand
how the SSWs are constructed from the Bloch waves, Lamé
ripples, and Kittel ripples. In Fig. 10, we separately show
the spatial profile of χ (z̄L/2, τ ) and εχ̃ (z̄, τ ) in Eq. (27). The
Pincus modes consist of the slowly varying Bloch wave and
short-wavelength Lamé ripple. On the other hand, the Kittel
ripple is completely pinned down at both ends and has a tiny
amplitude.

To make a supplementary comparison between numerical
and analytical results, in Fig. 11 we show the time evolution
of χ (L/2, τ ) and ψ (L/2, τ ). The analytical results are given
by Eqs. (49) and (48).

Finally, computation of χ̃ and ψ̃ with the aid of the found
solutions gives resonances of the Kittel ripples at �n. In
Fig. 12, we summarize the results that are the most essential
results in this paper to make a comparison between theoret-
ical and experimental findings on the magnetic resonance in
case II.

FIG. 11. Time evolution of χ (L/2, τ ) and ψ (L/2, τ ): numerical
data (blue) and the analytical relation (49) and (48), respectively,
(red) with cχ = 60 and cψ = −32.

In Fig. 12(c), it is seen that there appear double resonances.
The lower branch originates from the lowest antisymmetric
Pincus mode of the second order (M = 2) and the upper
branch originates from the lowest Kittel ripple with n = 1.
Actually, the first and second resonance frequencies are re-
ported as �1 ∼ 17 GHz and �2 ∼ 20 GHz with the bell-
shaped field dependence, i.e., (�2 − �1)/�1 is the order of
0.1. Based on this fact, we may conclude that the experi-
mentally observed double resonances consistently correspond
to the second Pincus mode and the first Kittel ripple mode,
respectively. The difference in the resonance frequencies be-
tween the first and second Pincus modes [shown in Fig. 12(b)]
is too large as compared with the experimental finding. As
for direct quantitative comparison between the theory and the
reported experimental results, we mark that � ∼ 0.002 for the
lowest antisymmetric mode corresponds to (JS/h̄)� ∼ 7 GHz
in physical units, i.e., approximately half as much as detected
in experiments. To justify the discrepancy, we mention that the
resonant frequency is inversely proportional to the square root
of the system size, � ∼ L−1/2, as proved early in Ref. [7].
That means that the length of the system should be reduced
to L ∼ 100 in order to achieve an agreement with the ex-
perimental values. However, it must be remembered that an
accurate estimate of the pinning field is required for such a
direct comparison. Another important factor totally neglected
in our analysis is an easy-plane anisotropy, which is present
in CrNb3S6 [39], which can increase the resonant frequency
also [8].
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(a)

(b)

(c)

Kittel (n=1)

Kittel (n=2)

Pincus (M=2)
Kittel (n=1)
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0.0015

0.0020
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FIG. 12. (a) Schematic view of the case II configuration. (b) Res-
onance frequencies for the Kittel ripples of the lowest orders n = 1
and 2 shown by • and �, respectively. (c) H0 dependences of the
lowest antisymmetric M = 2 Pincus mode (©) and the n = 1 ripple
Kittel mode (•).

We also note that the intensities of the Pincus mode and
Kittel ripples are almost similar, because they are both the
fundamental modes. Based on these considerations, we may
conclude that the resonance profile in case II is attributed to
the coexistence of the Pincus and Kittel excitations. In the
final part of Appendix C, we explained the reason why the
resonance frequency for the Pincus mode is smaller than that
of the Kittel ripple.

The asymmetric profile of the distribution of the resonance
frequencies with respect to the direction of the dc field (β0 > 0
or β0 < 0) should be discussed in more detail. This asymme-
try is actually observed experimentally [10]. At first glance,
the origin of this characteristic could easily be attributed to
the pinning field at both ends. Because the pinning fields Hs

are uniform, the total field, H0 + Hs, exhibits an asymmetric
profile depending on the orientation of H0, i.e., the H0 is
either parallel or antiparallel to the Hs. It should, however, be
recognized that this explanation is not fully satisfactory, being
a consequence of the time-reversal symmetry breaking arising
when replacing magnetic anisotropy with a fictitious “sur-
face” field. Apparently, this problem demands clarification,

therefore we mention the experimental fact that may serve
as a key to addressing the challenge. Namely, investigations
of magnetic structure near grain boundaries of CrNb3S6 thin
films reveal two π/2 twists that connect in-plane spins on
either side of the boundary. The π/2 twist spin configuration
looks like that found in MnSi thin films [27,41] and is related
to the continuity of a normal component of the Poynting
vector at the boundary surface [42].

2. SSW over the simple helix

Similar to case I, the case of a simple helix can be more
easily analyzed than the case of the CSL. In case II, the SSW
is antisymmetric with respect to reflection across the center.
This situation reminds us of the standing waves in thin ferro-
magnetic films with the asymmetric surface pinning [15]. We
accordingly modify the scheme given by Eqs. (27) and (28) in
the form

χ (z, τ ) = sin(kz)

sin(kL/2)
χ (L/2, τ ) + εχ̃ (z, τ ), (50)

ψ (z, τ ) = sin(kz)

sin(kL/2)
ψ (L/2, τ ) + εψ̃ (z, τ ). (51)

Apparently, the boundary values become antisymmetric,
χ (−L/2, τ ) = −χ (L/2, τ ) and ψ (−L/2, τ ) = −ψ (L/2, τ ),
provided the short-range parts vanish at the end.

We make use of (50) and (51) for the system

∂τψ = −∂2
z χ + βx(τ ) sin(qsz), (52)

∂τχ = [
∂2

z − 2(D/J )qs + q2
s

]
ψ, (53)

and we seek the solution in the form of the Fourier series

ψ̃ (z, τ ) =
∞∑

n=1

ψ̃n(τ ) sin(2πnz/L), (54)

χ̃ (z, τ ) =
∞∑

n=1

χ̃n(τ ) sin(2πnz/L). (55)

Here,

χ̃n(τ ) = fn
βx0

ε

√
q2

n − q2
s + 2qs(D/J )

q2
n

× [�n sin(�τ ) − � sin(�nτ )]

�2 − �2
n

, (56)

ψ̃n(τ ) = fn
βx0

ε
�

[cos(�nτ ) − cos(�τ )]

�2 − �2
n

(57)

with the coefficients being given by

fn = 2

L

∫ L/2

−L/2
sin(qsz) sin(2πnz/L)dz. (58)

The wave vectors are given by qn = 2πn/L such that
sin (qnL/2) = 0. The resonance frequency for the Kittel ripple
is then given by

�2
n = q2

n

[
q2

n − q2
s + 2qs(D/J )

]
. (59)
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FIG. 13. Comparison between numerical (red line) and analyt-
ical (blue line) results for the spatial profiles of (a) ϕ and (b) θ

associated with the second-order standing waves over the helical
structure under zero dc magnetic field (β0 = 0). The parameters are
taken as βs = 0.02 and βx0 = 0.0001. An analytical result is obtained
from Eqs. (50) and (51) with ε = −2/3 at τ = 9500.

On the other hand, the resonance frequency for the Pincus
mode is obtained through

[k cot(kL/2)(1 − qsD/J ) + k2/2 + βs cos(kL/2)]

× [
k cot(kL/2) + k2/2 − q2

s /2

− (D/J )qs + βs cos(kL/2)
]

= k2
[
k2 − q2

s + 2qs(D/J )
]
. (60)

Numerical estimates with the same parameters as in the pre-
vious subsection give the value k(2) = 0.012 603 8. In Fig. 13,
we show a comparison between the numerical and analytical
results.

To specify boundary dynamics, we substitute

χ (z̄, τ ) ∼ cχ

sin(kz)

sin(kL/2)
χ (L/2, τ ), (61)

ψ (z, τ ) ∼ cψ

sin(kz)

sin(kL/2)
ψ (L/2, τ ) (62)

into Eqs. (9) and (10), which yields

χ (zL/2, τ ) = βx0

cχ

Bk sin ϕ0(zL/2)

�0
(
�2

0 − �2
) [�0 sin �τ − � sin �0τ ],

(63)

ψ (zL/2, τ ) = βx0

cψ

� sin ϕ0(zL/2)(
�2 − �2

0

) [cos �0τ − cos �τ ], (64)

FIG. 14. Time evolution of χ (L/2, τ ) and ψ (L/2, τ ): numerical
data (blue) compared to the analytical relations (49) and (48), respec-
tively, (red) with cχ = −12.5 and cψ = −19.0.

where

Bk = −k cot(kL/2)−k2/2 + q2
s /2 + (D/J )qs−βs cos(kL/2).

(65)
These results show that the end spins oscillate with the

frequency of an unperturbed standing wave,

�2
0 = k2[k2 − q2

s + 2qs(D/J )
]
, (66)

where the numerical estimation gives �0 ≈ 0.002 018 5. For
comparison, the lowest short-range ripple frequency is �1 =
0.002 461 7. Figures 14(a) and 14(b) illustrate comparison
of (63) and (64) with numerical data.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, motivated by experimental findings on
the magnetic-field dependence of the resonance profile in
CrNb3S6 [10], we developed a theory of the SSW in a
monoaxial chiral helimagnet. We assumed that microsized
samples used in Ref. [10] are described as thin films with both
the surface end spins being softly pinned, and we constructed
a theory along with the line of Kittel-Pincus theories of ferro-
magnetic resonance. From technical viewpoints, we presented
a scheme of the Davis-Puszkarski equation generalized to the
case of chiral helimagnetic structure under the static magnetic
field applied perpendicular to the chiral axis.

Consequently, we found there are two classes of the SSW
over the spatially modulated chiral spin soliton lattice state.
One is the soft Pincus mode, while another is the hard Kittel
ripple. The former is analogous to the SSW in a ferromagnetic
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thin film discussed by Pincus [13]. The latter appears only
in the case of a spatially modulated spin structure, because
the spatially oscillating field acts on the interior spins and
causes forced oscillation in the space-domain. The Kittel
ripples are excited only when the ac magnetic field is applied
perpendicular to the chiral axis, because the perpendicular
field couples with the spatially modulated component of the
spins through the term βx(t )cosϕ0(z). The existence of two
modes, the Pincus modes and Kittel ripples, is consistent with
the experimentally observed double-resonance profile.

Standing spin waves in thin ferromagnetic films have been
studied intensively from both theoretical and experimental
standpoints. These excitations have already found a broad
application in problems of spintronics. However, to the best
of our knowledge, the problem of the SSW for a noncollinear
magnetic structure has not been addressed so far. The present
paper may open a new direction in the field.

Finally, we make some general comments on the issues that
have not been addressed in this paper. Generally speaking,
consideration of the chiral helimagnets requires careful treat-
ment of dipole-exchange and magnetostatic modes, which
play an essential role in films of thickness typically in the
range of micrometers [43–45]. Measurements in CrNb3S6

samples of finite geometries show that the overall resonance
response depends on nonuniform magnetization fields [11].
Their account has been done only for the phase of forced
ferromagnetism, but there remains a need for similar study
in the CSL phase.

Another important aspect involved in practical application
of the standing spin waves pertains to accounting for damping
effects not dealt with in this work. The theoretical studies for
thin films of an itinerant ferromagnet have shown that the
Landau damping mechanism of the standing-wave modes is
sufficiently severe, since they have a finite and rather large
vector normal to the film surfaces [46]. An analysis of the
perpendicular standing waves in sputtered permalloy films
by means of waveguide-based FMR measurements identifies
three contributions to their damping: the intrinsic damping,
the eddy-current damping [47], and the radiative damping that
stem from the inductive coupling between the sample and
the waveguide [48]. The radiative damping is present in all
ferromagnets including insulators.

The eddy-current damping may materialize for standing
waves in CrNb3S6 films, since there are itinerant carriers from
conducting NbS2 layers. However, even studies in itinerant
ferromagnets, quite thick permalloy films, demonstrate that
the eddy-current damping may be neglected in higher-order
standing waves. In addition, in thin ferromagnetic films the
eddy-current damping was found to be negligible in compar-
ison with the wave-number-dependent damping mechanism
due to intralayer spin-current transport [49]. Further theoret-
ical and experimental exploration toward this direction is of
interest for future investigations.
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APPENDIX A: LAMÉ FORM OF EQUATIONS OF MOTION

We derive here Eqs. (7) and (8). First, in Eqs. (3) and (4),
we make a linear expansion with respect to ψ and χ to obtain

sin θ∂2
z ϕ → ∂2

z ϕ0 + ∂2
z χ,

β0 sin ϕ → β0 sin ϕ0 + (β0 cos ϕ0)χ,

βx sin ϕ → βx sin ϕ0,

sin θ cos θ (∂zϕ)2 → −ψ (∂zϕ0)2,

sin θ cos θ∂zϕ → −ψ∂zϕ0,

where we note that ϕ0 satisfies the sine-Gordon equation,
∂2

z ϕ0 = β0 sin ϕ0. The higher-order terms such as ψ∂zψ , βxχ ,
and βxψ are discarded (βx is treated as a small perturba-
tion). Plugging them into Eqs. (3) and (4) and introducing
dimensionless space and time variables, z̄ = z

√
β0/κ and τ =

JSt/h̄, we have

κ2

β0
∂τψ =

(
− ∂2

∂ z̄2
+ κ2 cos ϕ0

)
χ + κ2

β0
βx(τ ) sin ϕ0, (A1)

κ2

β0
∂τχ = −

[
− ∂2

∂ z̄2
+ κ2 cos ϕ0 − (∂z̄ϕ0)2

+2
D

J

κ√
β0

(∂z̄ϕ0)

]
ψ − κ2

β0
βz(τ ). (A2)

Using Eq. (5), it may be shown that

cos ϕ0 = −1 + 2 sn2z̄, (A3)

∂z̄ϕ0 = 2 dnz̄. (A4)

and Eq. (A1) is reduced to Eq. (7). For small κ , we can
approximate

κ√
β0

= 4JE (κ )

πD
∼ 2J

D

(
1 − κ2

4

)
, (A5)

dnz̄ =
√

1 − κ2sn2z̄ ∼ 1 − κ2

2
sn2z̄. (A6)

Then, Eq. (A2) is reduced to

κ2

β0
∂τχ = −

(
− ∂2

∂ z̄2
+ 2κ2sn2z̄ − 3κ2 + 4

)
ψ

− κ2

β0
βz(τ ), (A7)

which gives Eq. (8).
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APPENDIX B: DYNAMICS OF THE SURFACE END SPINS

We examine in detail the motion of the end spins with the
coordinates ±L/2 in a line of N spins along the z axis. It is
assumed that the end spins experience an effective “surface”
anisotropy field Hs, the same on both ends, which is perpen-
dicular to the line and to the static magnetic field H0.

The boundary spins differ from interior ones in that they
have only one nearest neighbor instead of the usual two,
thereby giving the Hamiltonian for the right end spin

HR = −JSL/2−1 · SL/2 − D[SL/2−1 × SL/2]z

− (H0 + Hs )Sx
L/2. (B1)

The equations of motion are then shaped into

∂τ θL/2 = sin θL/2−1 sin(ϕL/2 − ϕL/2−1)

−(D/J ) sin θL/2−1 cos(ϕL/2 − ϕL/2−1)

+(β0 + βs) sin ϕL/2, (B2)

sin θL/2∂τϕL/2 = cos θL/2 sin θL/2−1 cos(ϕL/2−1 − ϕL/2)

− sin θL/2 cos θL/2−1

+(D/J ) cos θL/2 sin θL/2−1 sin(ϕL/2−ϕL/2−1)

+(β0 + βs) cos θL/2 cos ϕL/2. (B3)

The system (9) and (10) originates from (B2) and (B3) in
a continuum limit. Equation (22) for the wave vector of the
ground state is obtained if we take ϕi = qszi and θi = π/2. A
treatment for the left edge may be done in a similar way.

APPENDIX C: GENERAL SCHEME OF THE
DAVIS-PUSZKARSKI EQUATION FOR

ONE-DIMENSIONAL NONCOLLINEAR
MAGNETIC STRUCTURE

For convenience of applications to the standing spin wave
problem in a noncollinear magnetic chain, we give a concise
summary of the Davis-Puszkarski equation in a self-contained
manner. The notation in this Appendix will be independent of
that of the main body of the paper.

1. Equations of motion for the interior and the ends

We represent the arrangement of the spins on a chain
with a linear length L using the polar coordinates, S(z) =
S(sin θ cos ϕ, sin θ sin ϕ, cos θ ). The interior system is de-
scribed by a Lagrangian in a general form,

L[θ, ϕ] = h̄S
∫ L

2

− L
2

(cos θ − 1)∂tϕ dz −
∫ L

2

− L
2

H[θ, ϕ]dz, (C1)

where the first term represents the kinetic Berry phase term.
The effective Hamiltonian H[θ, ϕ] describes a continuous
model that contains spatial derivatives of θ and ϕ fields
coming from the exchange interactions and nonlinear Zeeman
terms such as sin θ cos ϕ or cosθ . Then, the coupled Euler-
Lagrangian equations of motion are written down as

h̄S sin θ
∂θ

∂t
= δH

δϕ
, (C2)

h̄S sin θ
∂ϕ

∂t
= −δH

δθ
. (C3)

Next we assume that the ground-state configurations θ0(z)
and ϕ0(z) are given through the stationarity condition
δ
∫
H[θ, ϕ]dz = 0, and we consider the small (Gaussian)

fluctuations δθ (z, t ) and δϕ(z, t ),

θ (z, t ) = θ0(z) + δθ (z, t ), (C4)

ϕ(z, t ) = ϕ0(z) + δϕ(z, t ). (C5)

Expanding the EOMs (C2) and (C3), we may obtain the
EOMs for the fluctuations in a general form,

∂δθ (z, t )

∂t
= L̂ϕδϕ(z, t ) + ε f (z, t ), (C6)

∂δϕ(z, t )

∂t
= −L̂θ δθ (z, t ), (C7)

where L̂ϕ and L̂θ are linear differential operators. Without
loss of generality, we introduce a small external force term
ε f (z, t ). From now on, we consider two cases: ε = 0 and
finite ε �= 0.

Next we address EOMs for the end spins. We start with
the lattice Hamiltonian and write down the EOMs for the
end spins, S1 and SN , which couple with the nearest-neighbor
interior spins S2 and SN−1, respectively. For example, for the
right-side end (z = L/2), the continuum limit is taken as

ϕN−1 ∼ ϕ(L/2) − a
∂ϕ(z)

∂z
+ a2

2

∂2ϕ(z)

∂z2
, (C8)

and then evaluating the derivative at z = L/2. Thus, we obtain
the EOMs at the ends,

∂δθs(z, t )

∂t
= M̂ϕδϕs(z, t ) + ε f (z, t ), (C9)

∂δϕs(z, t )

∂t
= −M̂θ δθs(z, t ). (C10)

Here, M̂ϕ and M̂θ are the linear operators including the
effects of the surface pinning fields. After acting with these
operators on δϕs(z, t ) and δθs(z, t ), respectively, we fix z =
zs = ±L/2, and, consequently, a dependence on the interior
coordinate, z, disappears.

2. The case of ε = 0

In the case of ε = 0, Eqs. (C6) and (C7) are solved using a
separation of variables,

δθ (z, t ) = μ(z)M(t ), (C11)

δϕ(z, t ) = ν(z)N (t ). (C12)

Inserting these forms into Eqs. (C6) and (C7), we obtain

1

N (t )

∂M(t )

∂t
= 1

μ(z)
L̂ϕν(z) = C1, (C13)

1

M(t )

∂N (t )

∂t
= − 1

ν(z)
L̂θμ(z) = −C2, (C14)

with C1 and C2 being constants. Then the temporal con-
stituents immediately give the eigenfrequency for the interior
system,

�interior = √
C1C2. (C15)
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Next let us consider the spatial parts,

L̂ϕν(z) = C1μ(z), (C16)

L̂θμ(z) = C2ν(z). (C17)

Here we assume that the differential operators L̂θ and L̂ϕ have
simultaneous eigenfunctions, �q(z), labeled by an index q.
That is to say,

L̂θ�q(z) = λθ (q)�q(z), (C18)

L̂ϕ�q(z) = λϕ (q)�q(z). (C19)

Expanding μ(z) and ν(z)in terms of �q(z) as the orthogonal
basis,

μ(z) = ∑
qμq�q(z), (C20)

ν(z) = ∑
qνq�q(z), (C21)

we have ∑
q[νqλϕ (q) − C1μq]�q(z) = 0, (C22)

∑
q[μqλθ (q) − C2νq]�q(z) = 0, (C23)

which lead to

C1 = νq

μq
λϕ (q), C2 = μq

νq
λθ (q). (C24)

Therefore, we can replace Eq. (C15) with

�interior(q) = √
λθ (q)λϕ (q). (C25)

Now, let us turn attention to the fluctuations at the ends,
described in a form

δθs(t ) = δθ (zs, t ) = c1�q(zs)Ms(t ), (C26)

δϕs(t ) = δϕ(zs, t ) = c2�q(zs)Ns(t ), (C27)

with c1 and c2 being constants, and zs = ±L/2. Note that the
surface states “participate in” or are “swallowed up by” the
interior mode specified by q. Inserting them into Eqs. (C9)
and (C10), we may have

∂Ms(t )

∂t
= AqNs(t ), (C28)

∂Ns(t )

∂t
= −BqMs(t ), (C29)

where Aq and Bq contain spatial derivatives of �q(z) at z =
zs, i.e., no linear differential operator appears. We dropped an
external force term, since information on Aq and Bq is enough
to obtain the Larmor frequency of the surface end spins,

�surface(q) = √
AqBq. (C30)

Now, the matching condition

�n ≡ �surface(qn) = �interior(qn) (C31)

gives the Davis-Puszkarski equation, which determines a se-
ries of allowed values of qn (n = 1, 2, . . . ) corresponding to
the SSW modes. In the context of this paper, this corresponds
to the Pincus mode.

3. The case of ε �= 0

The existence of the space-time-dependent term ε f (z, t )
prevents us from using a separation of variables. We then
seek the interior solution in a perturbative manner based on
an ansatz,

δθ (z, t ) = μ(z)

μs
δθs(t ) + εψ̃ (z, t ), (C32)

δϕ(z, t ) = ν(z)

νs
δϕs(t ) + εχ̃ (z, t ), (C33)

where μs and νs are, respectively, the values of μ(z) and ν(z)
at the surface ends. In this ansatz, we implicitly assume that
the time dependences at the surface, δθs(t ) and δϕs(t ), are
known. We impose here the boundary condition,

ψ̃ (zs, t ) = χ̃ (zs, t ) = 0, (C34)

which means the perfect pinning of the χ̃ and ψ̃ fields at the
ends. Due to these conditions, we consistently reproduce

δθ (zs, t ) = δθs(t ), (C35)

δϕ(zs, t ) = δϕs(t ) (C36)

at the surfaces.

a. Pincus mode

Now, we proceed with analysis in a perturbative manner.
Collecting the zeroth-order terms with respect to ε, we have

1

δϕs(t )

∂δθs(t )

∂t
= μs

νs

1

μ(z)
L̂ϕν(z) = D1, (C37)

1

δθs(t )

∂δϕs(t )

∂t
= − νs

μs

1

ν(z)
L̂θμ(z) = −D2, (C38)

with D1 and D2 being constants. Then, as in the case of ε = 0,
the eigenfrequency for the interior system is given by

�interior(q) = √
D1D2 = √

λϕ (q)λθ (q). (C39)

Let us then turn attention to the surface spins. In the
vicinity of the ends, ψ̃ (z, t ) and χ̃ (z, t ) can be dropped and
we have

δθ (z, t ) = c1�q(z)δθs(t ). (C40)

δϕ(z, t ) = c2�q(z)δϕs(t ), (C41)

with c1 and c2 being constants. It should be noted that the basis
function �q(z) is now specified just as in the case of (C26)
and (C27). Inserting them into Eqs. (C9) and (C10), we obtain
the zeroth-order equations,

∂δθs(t )

∂t
= c2

c1
Fqδϕs(t ), (C42)

∂δϕs(t )

∂t
= −c1

c2
Gqδθs(t ), (C43)

where Fq and Gq contain spatial derivatives of �q(z) at z = zs.
We thus obtain the Larmor frequency of the surface end spins,

�surface(q) = √
FqGq. (C44)

Now, the matching condition

�n ≡ �surface(qn) = �interior(qn) (C45)
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again gives the Davis-Puszkarski equation. In the context of
this paper, this corresponds to the Pincus mode.

b. Kittel ripple

Next, we consider the first-order terms to obtain

∂ψ̃ (z, t )

∂t
= L̂ϕχ̃ (z, t ) + f (z, t ), (C46)

∂χ̃ (z, t )

∂t
= −L̂θ ψ̃ (z, t ), (C47)

where the linear operators, L̂ϕ and L̂θ , for the interior system
appear. Again, we expand ψ̃ (z, t ) and χ̃ (z, t )in terms of
�Q(z),

ψ̃ (z, t ) = ∑
Qψ̃Q(t )�Q(z), (C48)

χ̃ (z, t ) = ∑
Qχ̃Q(t )�Q(z). (C49)

In this case, the allowed Q is determined solely by the perfect
pinning condition

�Qn (zs) = 0. (C50)

We should note the essential difference between the condi-
tions (C45) and (C50).

We insert Eqs. (C48) and (C49) into Eqs. (C46) and (C47),
take one more time derivative, multiply both sides by �Q(z),
and integrate over z to obtain

d2ψ̃Q(t )

dt2
= −λθ (Q)λϕ (Q)ψ̃Q(t ) + dfQ(t )

dt
, (C51)

d2χ̃Q(t )

dt2
= −λϕ (Q)λθ (Q)χ̃Q(t ) − λθ (Q) fQ(t ), (C52)

where

fQ(t ) =
∫ L/2
−L/2 �Q(z) f (z, t )dz∫ L/2

−L/2 �2
Q(z)dz

. (C53)

Now the eigenfrequency,

�̃n = √
λθ (Qn)λϕ (Qn), (C54)

specifies the modes associates with ψ̃ (z, t ) and χ̃ (z, t ), i.e.,
the Kittel ripple in the present context. Equations (C51)
and (C52) are readily solved to give

ψ̃Qn (t ) = 1

�̃n

∫ t

0

dfQ(t ′)
dt ′ sin[�̃n(t − t ′)]dt ′, (C55)

χ̃Qn (t ) = − λ̃θ (Q)

�̃n

∫ t

0
fQ(t ′) sin[�̃n(t − t ′)]dt ′, (C56)

provided fQ(0) = 0. Finally, we note

�n < �̃n, (C57)

because the Kittel modes, ψ̃ (z, t ) and χ̃ (z, t ), are strictly
confined into the system over the region −L/2 � z � L/2.
On the other hand, the Pincus mode can be extended beyond
this region. This makes �n smaller than �̃n for a common
n.
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