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Atomic antiferromagnetic domain wall propagation beyond the relativistic limit
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We theoretically investigate the dynamics of atomic domain walls (DWs) in antiferromagnets driven by a
spin-orbit field. For a DW with a width of a few lattice constants, we identify a Peierls-like pinning effect,
with the depinning field exponentially decaying with the DW width, so that a spin-orbit field moderately larger
than the threshold can drive the propagation of an atomic DW in a stepwise manner. For a broad DW, the
Peierls pinning is negligibly small. However, the external spin-orbit field can induce a fast DW propagation,
accompanied by a significant shrinking of its width down to atomic scales. Before stepping into the pinning
region, noticeable spin waves are emitted at the tail of the DW. The spin-wave emission event not only broadens
the effective width of the DW but also pushes the DW velocity over the magnonic barrier, which is generally
believed to be the relativistic limit of the DW speed. While the existing dynamic theory based on the continuum
approximation fails in the atomic scale, we develop an energy conversion theory to interpret the DW dynamics
beyond the relativistic limit.
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I. INTRODUCTION

Manipulating the domain wall (DW) dynamics by various
knobs [1–17] is of particular importance for both fundamen-
tal interest and its useful applications in spintronic devices
[18,19]. In ferromagnets, the DW velocity typically increases
with the external driving force at first and then drastically
decreases over a critical value, known as the Walker break-
down. Such a breakdown largely limits the maximum speed
and therefore hinders the potential of applications [20]. Their
antiferromagnetic counterpart, however, does not suffer from
this issue. Its propagation speed can keep increasing until the
magnon velocity, which is close to tens of kilometers per
second [21,22]. It was shown that the DW width significantly
shrinks when its velocity approaches the magnonic barrier,
known as the Lorentz contraction [23–25]. The antiferromag-
netic DW dynamics thus resembles the relativistic motion
of a classical particle. However, the DW width should be
limited by the intrinsic lattice constant due to the discrete
nature of the crystal. Then it is intriguing to ask whether
there is a generic cutoff of DW velocity in the antiferro-
magnet crystal. The static and dynamic properties of atomic
DWs in ferromagnets have been well studied [26–28]. How-
ever, the antiferromagnetic DW, particularly its dynamics,
in such atomic scales has received little attention from the
community [29].

In this paper, we take the first step to theoretically study the
dynamics of atomic antiferromagnetic DWs under a spin-orbit
field. We identify a generic pinning effect in a clean system
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without any disorders or defects, which originates from the
Peierls-like potential. The critical field for a DW propagation
scales exponentially with the DW width. Under a large driven
force, we find that, surprisingly, the DW could move even
faster than the magnon velocity, which is in sharp contrast
to the general belief of the community. Detailed analysis un-
covers the critical role of strong spin-wave emissions accom-
panying the DW tail. In the following, our model and main
results are presented in Sec. II, followed by the illustrations of
damping and the thermal effect on the DW motion in Secs. III
and IV, respectively. Terahertz-pulse-driven DW propagation
beyond the relativistic limit is shown in Sec. V. A detailed
discussion of the spin Cherenkov effect and intersublattice
damping effect during DW propagation, together with the
conclusions, is given in Sec. VI.

II. MODEL AND MAIN RESULTS

We consider a two-sublattice antiferromagnet with the easy
axis along the longitudinal direction (z axis), as shown in
Fig. 1(a). A head-to-head DW locates at the center of the
system initially and then is driven to move under a Néel field
(Ha = −Hb = Hez) from the spin-orbit coupling [21,30].
Figure 1(b) shows the DW velocity as a function of field
strength H at various anisotropies, while the inset shows the
anisotropy dependence of the DW width. Two important fea-
tures can be identified: (i) When the anisotropy of the system
is stronger than ∼4 meV, there exists an intrinsic pinning field.
(ii) At smaller anisotropies, the DW velocity keeps increasing
with field and goes beyond the magnonic barrier (indicated by
the dashed line), instead of being saturated, in sharp contrast
to common wisdom. This observation is qualitatively the
same using the parameters for Mn2Au (see the Appendix for
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FIG. 1. (a) Schematic illustration of a two-sublattice antiferro-
magnet. The red and blue arrows represent the magnetic moment on
each sublattice. Yellow arrows indicate the spin-orbit field. (b) The
field dependence of the DW velocity for K = 0.02 meV (gray rhom-
buses), 0.05 meV (blue dots), 1 meV (green squares), and 4 meV (red
triangles). The orange dashed line represents the relativistic limit.
Inset: DW width as a function of the magnetic anisotropy.

detailed simulation results for Mn2Au). Below, we examine
these two features in detail.

A. Intrinsic pinning

Let us first prove that the intrinsic pinning is absent
in a continuum theory by starting from the Heisenberg
Hamiltonian

Ht = J
∑
〈i, j〉

Sai · Sb j − K
∑

i

(
S2

ai,z + S2
bi,z

)

−
∑

i

(Sai · Ha + Sbi · Hb), (1)

where Sai and Sb j (|Sai| = |Sb j | = S) are the spins on sub-
lattices a and b, respectively, and 〈i, j〉 denotes the nearest-
neighboring sites. The first, second, and third terms in Eq. (1)
are the exchange coupling (J > 0), magnetic anisotropy
(K > 0), and Zeeman energy, respectively. In the simula-
tions, with a fixed exchange constant J = 16 meV and various
anisotropies and external magnetic fields, we numerically
solve the Landau-Lifshitz-Gilbert (LLG) equation with home-
made codes and further check the results using MUMAX3 [31].

In terms of the magnetization m ≡ (Sai + Sbi )/2S and the
stagger order n ≡ (Sai − Sbi )/2S, the Hamiltonian density H
in the continuum limit [Ht ≡ ∫

(dz/d )H] is given by [24,32]

H = a

2
m2 + A

2
(∂zn)2 − Kz

2
n2

z + Lm · ∂zn − 2n · H, (2)

where a ≡ 8JS2 and A ≡ d2JS2 are, respectively, homoge-
neous and inhomogeneous exchange constants, with d being
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FIG. 2. (a) The Peierls-like energy profile of the DW when
the DW center is placed at different positions of the nanowire for
K = 0.05 meV (blue line) and K = 4 meV (red curve). Inset: The
corresponding spin profile of the static domain wall. (b) The potential
depth (blue dots) and period (orange line) as a function of DW width.
(c) The scaling of the pinning field as a function of DW width. The
black curve is the theoretical fitting. (d) The time dependence of DW
displacement for K = 0.05 meV (blue dots) and K = 4 meV (red
squares). The DW position is defined as the position of spin with
ny = 1.

the lattice constant; Kz ≡ 4KS2; and L ≡ 2dJS2 breaks the
parity symmetry and results in a net magnetic moment inside
the antiferromagnetic (AFM) DW [33,34].

Minimizing the Hamiltonian with respect to the order
parameters leads to the following equation:

A

2

∂2θ

∂z2
− Kz sin θ cos θ − 2H sin θ = 0, (3)

where θ is the polar angle of the stagger order in spherical
coordinates. In the absence of external field, this equation
naturally gives the Walker profile [1]: ln tan(θ/2) = z/�0,
with �0 = √

A/2Kz being the static DW width. With external
field, we can integrate both sides of the equation and find that
H should be zero to validate Eq. (3), which apparently con-
tradicts the finite-field assumption. This implies that Eq. (3)
cannot be true under finite fields; that is, a DW will always
move in a clean system without any disorders or notches.

Note that the absence of pinning is purely concluded from
the continuum model, which is well justified only if the
length scale of the magnetic structure is much larger than
the lattice constant, i.e., �0 � d . However, if the DW width
is comparable to the lattice constant, the DW will need to
keep adjusting its internal structure to move across the lattice
and may be pinned by the lattice if the energy provided by
the external driving is not sufficient. To illustrate this point,
we plot the system energy as a function of DW position in
Fig. 2(a), for various DW widths. Clearly, as the DW width
approaches the lattice constant, the DW energy becomes
strongly dependent on the DW position, which provides a
generic pinning potential for the DW motion, known as the
magnetic Peierls potential [26]. The static profile of DWs
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should be the solution of δHt/δSi = 0, i.e.,

J (Sb,i−1 + Sb,i ) − 2KSai − H = 0,

J (Sa,i−1 + Sa,i ) − 2KSbi + H = 0. (4)

The inset of Fig. 2(a) shows the spin configuration ob-
tained by numerically solving Eqs. (4), where the DW center
locates between two nearest cells, i.e., where the DW is
trapped at the potential well in the energy landscape. This
explains why there exists an intrinsic pinning for a static DW.
Figure 2(b) shows that the pinning potential scales exponen-
tially with the DW width with a constant period D: �E =
�E0 exp[−�0/(ζD)], where �E0 = 293 meV and ζ = 0.12
are two fitting parameters. This scaling also suggests that ζ is
a universal constant that does not depend on the anisotropy.
Figure 2(c) plots the DW-width dependence of the depinning
field, which can also be well described by the exponential
function Hc = Hc0 exp[−�0/(ζD)] with coefficients Hc0 =
986 T and ζ = 0.14.

Naturally, it is expected that a DW should move in a step-
wise manner in such a periodic potential, which is indeed the
case, as shown in Fig. 2(d). Similar behavior for ferromagnetic
DWs was theoretically predicted and experimentally verified
[26,27,29]. For a wide DW, the stepwise propagation behavior
disappears.

B. Beyond the magnonic barrier

Next, we go to the dynamics of atomically narrow DWs.
The trivial case is an atomically narrow DW trapped by the
Peierls potential. However, the highly nontrivial case is that a
wide DW could drastically shrink its width to an atomic scale
as its speed approaches the relativistic limit due to the Lorentz
contraction. In what follows, we focus on the latter case.

As shown in Fig. 1(b), the DW could propagate beyond
the relativistic limit (or magnonic barrier), which suggests
that the intrinsic pinning from the discrete lattice does not
play a significant role for dynamical DWs. To probe this
propagation mode, we plot the spin configurations at different
times in Fig. 3(a), with two important features: (i) The mag-
netic structure behaves as a soliton or rigid body that keeps
its shape unchanged during the stable propagation. (ii) The
magnetization profile is no longer the Walker solution, where
significant spin-wave packets are emitted only at the tail of
the wall. As a comparison, Fig. 3(b) shows the case without
spin-wave emission when the DW velocity is well below the
magnonic barrier. The DW dynamics above and below the
relativistic limit is reminiscent of the spin Cherenkov effect
in a ferromagnetic cylinder [36].

Before presenting our theory on the DW motion beyond the
magnonic limit, we first discuss the analytics in the continuous
limit, where the steady DW motion obeys the sine-Gordon
equation [24],

1

c2

∂2ϕ

∂t2
− ∂2ϕ

∂z2
+ 1

�2
0

sin ϕ = 0, (5)

with ϕ = 2θ and c = γ
√

Aa/2 being the magnon velocity.
The one-soliton solution (DW) takes the general form
ϕ = 4 arctan exp[(z − vt )/�], with � = �0

√
1 − v2/c2 .

Then one can immediately see that the maximum speed

(a)

t=0 ps t=6 ps t=12 ps

(c)

t=0 ps t=6 ps t=12 ps

(b)

(d)

FIG. 3. (a) The profiles of magnetic structures at t = 0, 6, 12 ps
for (a) H = 0.5 T and (b) 0.3 T, respectively. (c) Domain wall
velocity [35] as a function of the field. Symbols are numerical results,
and the red and black curves represent the prediction of a discrete
model and a continuous model, respectively. The subscripts of vd

and vc refer to the prediction of discrete and continuous models,
respectively. The orange dashed line is the magnon velocity in this
system. The parameters are �0 = 20 nm and α = 0.02. (d) The
velocity dependence of the DW width.

of the soliton is the magnon velocity when the DW width
approaches zero. Our results obviously cannot be explained
by the sine-Gordon theory. Tracing the numerical findings
shown in Fig. 3(a), the spatial extension of the DW has
reached atomic scales at high speeds, such that the spatial
differential operators in Eqs. (2) and (5) are not well enough
defined to replace the difference operators in Eq. (1).

These findings motivate us to abandon the continuous
Hamiltonian (2) and the sine-Gordon Eq. (5) as well. The new
starting point is the energy conversion and its conservation.
Regardless of the detailed DW profile, the change rate of the
Zeeman energy during the DW propagation should be equal
to the magnetic energy dissipation rate through the Gilbert
damping,

−2HMsv = −αdMs

2γ

∑
i

[(
∂Sai

∂t

)2

+
(

∂Sbi

∂t

)2
]
, (6)

where the sum is taken over all atoms. For a relatively large
damping, we ignore the influence of the spin wave and discuss
the damping dependence of the DW velocity in Sec. III. Since
the anisotropy energy does not change for the rigid-body-like
domain for the whole propagation, the anisotropy term does
not enter Eq. (6). For a rigid-body motion, we have ∂t Sμi =
−v · ∇lSμi, where μ = a, b and ∇l is the first-order difference
operator, ∇lSμi = (Sμi − Sμi−1)/d . Then we can explicitly
express the DW velocity as

v = γ H�eff

α
, �eff = 4

d

⎡
⎣∑

μi

(∇lSμi )
2

⎤
⎦

−1

. (7)
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In the wide DW limit (�eff � d), we can replace the sum
by the integral and the magnetic moments by the magne-
tization order and the stagger order, and we obtain �−1

eff =
2

∫



[(∂zm)2 + (∂zn)2]dz. By disregarding the quadratic term
of the magnetization and adopting the Walker approxima-
tion, we can show �eff = 2/

∫



(∂zn)2dz = �. Combining

the Lorentz contraction � = �0

√
1 − v2/c2 with the velocity

expression v = γ H�/α, we obtain the DW velocity as v =
cγ H�0/

√
γ 2H2�2

0 + α2c2 , which increases as the spin-orbit
field increases but finally saturates [as plotted by the black
curve in Fig. 3(c)].

When �eff ∼ d , the above velocity formula is not applica-
ble, but Eq. (7) still holds. Figure 3(c) shows that the theo-
retical formula (red curve) compares perfectly with numerical
results over the entire spin-orbit field regime. To clarify the
variation of whether the magnetization or the stagger order
dominates the DW velocity in high fields, we define two DW
widths, �m = 2

d [
∑

i (∇lmi )2]
−1

and �n = 2
d [

∑
i (∇lni )2]

−1
.

Then the DW velocity can be rewritten as

v = γ H

α

(
1

�m
+ 1

�n

)−1

. (8)

Figure 3(d) shows that �m is almost three orders of
magnitude larger than �n, and its contribution to the DW
propagation can therefore be neglected. Moreover, �n in the
high-velocity regime approaches a constant value around 5
nm instead of zero as predicted by the continuum field theory.
This difference comes from the spin-wave excitation at the tail
of an atomic DW, which effectively broadens the DW width.

III. DAMPING EFFECT ON DOMAIN WALL MOTION

Since the magnitude of damping in antiferromagnets is still
not well characterized in experiments, here we treat it as a
free parameter and study its influence on the DW motion.
Figure 4(a) shows the DW velocity as a function of external
field for damping ranging from 0.02 to 0.0001. First, the DW
velocity can go beyond the relativistic limit (orange dashed
line), which indicates the robustness of our findings against
the fluctuation of dampings. Second, the critical field required
to exceed the magnon velocity Hc decreases and approaches
0.2 T, which is equal to the anisotropy field of the system
(HK = 4KS2/μs = 0.4 T for K = 0.02 meV). This is unusual
in the following way. From the DW velocity v = γ H�/α

obtained from the energy conversion principle, we can es-
timate the critical field as Hc = αc/(γ�), which will keep
decreasing to zero with the dampings dropping to zero, which
is not consistent with Fig. 4(b). This deviation may come from
the significant contribution from spin waves at low damping or
nearly zero damping, as addressed in the ferromagnetic case
[11]. Specifically, the inclusion of spin waves will modify the
energy conservation equation as

−2HMsv = −αdMs

2γ

∑
i

[(
∂Sai

∂t

)2

+
(

∂Sbi

∂t

)2
]

− dPSW ,

(9)

where PSW (>0) is the contribution from the emitted spin
wave accompanying the DW propagation. We can solve this

(a)

(c)

(b)

(d)
t=0 ps

t=50 ps

t=100 ps

FIG. 4. (a) Domain wall velocity as a function of field for damp-
ing ranging from 0.02 to 10−4. The orange dashed line is the rela-
tivistic limit. (b) Damping dependence of the critical field to exceed
the magnon velocity Hc. K = 0.02 meV, T = 0 K. (c) Reversal time
of the right domain of the nanowire as a function of temperature.
α = 0.001. (d) Snapshots of nz vs z during a typical reversal process.
T = 1 mK.

equation to obtain the DW velocity as

v = 1

2

⎡
⎣γ H�

α
+

√(
γ H�

α

)2

− 2γ�PSW

αMs

⎤
⎦. (10)

With the decrease of α, the spin-wave contribution propor-
tional to −PSW /α becomes significant, and it will reduce
the DW velocity, such that the essential field to reach the
relativistic limit becomes larger. This effect will compete
with the term γ H/α and results in the plateau of Hc at very
low damping. Quantitative calculation of PSW requires us to
consider the spin-wave spectrum accompanying the DW as
well as the interference of the waves. This goes beyond the
scope of current work.

IV. THERMAL EFFECT ON DOMAIN WALL MOTION

To consider the influence of the thermal effect on DW
dynamics, we consider the stochastic LLG equation [37],

∂mi

∂t
= −γ mi × hi,eff − γαmi × (mi × hi,eff ), (11)

where mi is the magnetic vector on the ith lattice site and hi,eff

includes the exchange field, anisotropy field, spin-orbit field,
and a random field ζi that satisfies the statistics,

〈ζi〉 = 0, 〈ζi,μ(t )ζ j,ν (t ′)〉 = 2αkBT

γμs
δ(t − t ′)δi jδμν, (12)

where Greek indices (μ, ν) refer to Cartesian coordinates
x, y, z, respectively, and α, kB, T, μ0, γ , and μs are, respec-
tively, the damping, Boltzmann constant, simulated tempera-
ture, vacuum permeability, and atomistic magnetic moment.
In the simulation with a discrete time step �t , the thermal
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field is expressed as

ζi,μ = η

√
2αkBT

γμs�t
, (13)

where η is a random number satisfying the random normal
distribution with zero average. Note that ζi,μ ∝ √

α; to re-
duce the effect of thermal field on the stability of magnetic
domains, we take a smaller damping α = 0.001.

One-dimensional case. Figure 4(c) shows the reversal
time of the magnetic domain as a function of temperature,
while a typical reversal process is shown in Fig. 4(d). For
T = 1 mK, the switching time is 0.1 ns. Physically, the rever-
sal happens because the Néel field H is opposite the stagger
magnetization of the magnetic domains on the right-hand side
of the DWs, and hence, it will induce the magnetic moment
switching when H is comparable to the anisotropy of the
system, similar to the traditional field-induced magnetization
switching in a ferromagnet that can be well explained by the
Stoner-Wohlfarth model [38].

Two-dimensional case. The reversal of the magnetic do-
main at low temperature still occurs when DW moves beyond
the relativistic limit. The reason is that both the anisotropy
energy and magnetic field energy are proportional to the
size of the domain, and the ratio between the anisotropy
field and magnetic field (Hc/HK ) determines the condition
for magnetic moment switching. The extension of the system
to two dimensions enlarges the domain size but does not
change Hc/HK .

In summary, the Néel-field-driven antiferromagnetic DW
motion beyond the relativistic limit is a low-temperature phe-
nomenon, and we suggest using subnanosecond current pulses
with a duration shorter than the reversal time of the domains
[39] to drive the DW such that the reversal can be avoided.
Moreover, one can use a terahertz field-pulse (not Néel-field-
like) to drive the DW propagation with better stability.

V. TERAHERTZ-FIELD-PULSE-DRIVEN
DOMAIN WALL MOTION

Here we show that a terahertz field pulse can drive an anti-
ferromagnetic DW to move beyond the relativistic limit with
better thermal stability free from the magnetization reversal
problem.

Figure 5(a) shows the initial 90◦ DW profile ob-
tained by minimizing the sum of exchange energy and a
cubic anisotropy Ean = Kc

∑
i,μ[(Sx

μ)2(Sy
μ)2 + (Sx

μ)2(Sz
μ)2 +

(Sy
μ)2(Sz

μ)2], μ = a, b. Then a terahertz field pulse with max-
imum amplitude H is applied in the longitudinal direction
(z axis) to drive the DW. Figure 5(b) shows that the DW
velocity increases with the field amplitude H and goes beyond
the relativistic limit for H > 4 T. Since the field is normal to
the direction of the magnetic domain, the spin-flop transition
does not occur. Figure 5(c) shows that the propagation mode
is robust up to the temperature T = 1 K. The stability regime
can survive up to 10 K in a two-dimensional film with
the same parameters as its one-dimensional counterpart. Note
that a terahertz field pulse with the desired shape can be
realized [40], and our proposal should be applicable to metals,
insulators, and semiconductors.

(a)

x

y

z

(b) (c)

t=0 ps

t=200 ps T=1 K

t=200 ps T=0 K

0 t

H

FIG. 5. (a) Schematic illustration of a two-sublattice antiferro-
magnet with a 90◦ DW that separates two domains along ny = 1
and nx = −1. The terahertz field pulse H (t ) = θ (τ − t )θ (t )Ht/τ
is applied along the z direction with maximum magnitude H and
duration τ , where θ (t ) is a step function. (b) Domain wall velocity
as a function of H . J = 16 meV, Kc = 0.02 meV, α = 0.001. The
dashed line represents the relativistic limit. The bottom inset shows
the shape of the field pulse. (c) Domain wall profile as a function
of time at τ = 2 ps for T = 0 and 1 K, respectively. The vertical
dashed line indicates the position of DWs. The DW displacement is
the same for T = 0 K and T = 1 K, and no magnetization reversal is
found when the simulation time increases further.

VI. DISCUSSION AND CONCLUSION

First, we would like to compare our results with the
supermagnonic phenomena in a cylindrical ferromagnetic
nanowire, where spin waves are emitted in both the front and
tail of the DWs with different frequencies but share an equal
phase velocity [36,41]. In our case, spin waves are emitted
only at the tail of the DW. This difference can be understood
from the distinct natures of ferromagnetic and antiferromag-
netic spin-wave dispersions, as shown in Figs. 6(a) and 6(b).
In a ferromagnet, there exist two spin-wave modes for a given
phase speed (DW speed), while the group velocity of the high-
(low-) frequency mode is larger (smaller) than the DW speed
[as plotted in Fig. 6(c)]. Hence, the high-frequency mode
runs in front of the DW, while the low-frequency one lags
behind. For an antiferromagnet, only one spin-wave mode
exists at a given phase speed, and its group velocity is always
smaller than its phase velocity [DW speed; see Fig. 6(d)]. So
it always lags behind the wall. Further, from the perspective
of materials, a cylindrical geometry is required to eliminate
the Walker breakdown effect and to accelerate the DW into
the magnonic regime, while it is still a challenge to make a
perfect cylindrical magnetic wire and to detect the nanoscale
DW motions in particular. However, for antiferromagnets, a
planar film is sufficient to reach this magnonic regime with a
typical DW velocity as high as several tens of kilometers per
second, 10 times faster than the speed in ferromagnets.

Second, the dissipation mechanism of spins is a long-
lasting issue in general magnetism. The effect of intersublat-
tice pumping on magnetic damping was first uncovered by
Yuan et al. [43] on antiferromagnets and then was extended
to ferrimagnets by Kamra et al. [44]. The existence of the
intersublattice pumping will make the damping coefficient
through the motion of magnetization sufficiently larger than
that of the Néel order, which was verified by two independent
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(a) (b)

(c) (d)

FIG. 6. Spin-wave spectrum in (a) ferromagnets and (b) anti-
ferromagnets. The k dependence of the phase velocity (red curve)
and the group velocity (black curve) for (c) ferromagnetic and
(d) antiferromagnetic spin waves. The parameters J = 16 meV and
K = 0.02 meV are used for both ferromagnets and antiferromagnets
for a fair comparison. The gray (orange) dashed lines refers to a
speed beyond (at) the relativistic limit [42].

first-principles calculations [45,46], while the experimental
evidence is still lacking. Back to our concern, the intersub-
lattice damping will influence Eq. (6) as

−2HMsv = −dMs

2γ

∑
i

[(
α

∂Sai

∂t

)2

+ α

(
∂Sbi

∂t

)2

+ 2αc

(
∂Sai

∂t

)
·
(

∂Sbi

∂t

)]
, (14)

where αc is the intersublattice damping coefficient. Similar to
the procedure in Sec. II, we obtain the DW speed as

v = γ H

(
αm

�m
+ αn

�n

)−1

, (15)

where αm = α + αc, αn = α − αc, �m = 2
d [

∑
i (∇lmi )2]

−1
,

and �n = 2
d [

∑
i (∇lni )2]

−1
. Numerical simulations show that

�m ∼ 103�n, while the first-principles calculation gives
αm ∼ 10αn–103αn. Hence, the influence of the intersublattice
damping should have a minor effect on the velocity if αm ∼
10αn–102αn, while it may lead to a sizable DW velocity re-
duction if αm ∼ 103αn. This suggests to us a practical method
to quantify the intersublattice damping by measuring the DW
velocity in future experiments.

Third, chiral damping was shown to exist in noncentrosym-
metric ferromagnetic systems [47–50], while its manifestation
in an AFM and its subsequent influence on the DW velocity
are still open questions.

Last, it was shown that the antiferromagnetic DW could
survive in the quantum limit and the spins inside the DW
become highly entangled. In our current model, spin-spin
entanglement may be neglectably small since we are dealing
with a classical spin system where spins are approximated as

classical vectors [34]. On the other hand, the quantum effect
may reduce the spin length and thus increase the effective DW
width in Eq. (7), which tends to further increase DW speed.
This effect may become pronounced in low-spin cases.

In conclusion, we have investigated both the static and
dynamic behaviors of atomic DWs in antiferromagnets. An
intrinsic pinning effect was identified due to the discrete
nature of crystal lattices instead of disorders or defects.
Driven by an external field larger than the pinning force,
the DW velocity could go beyond the relativistic limit. Since
the required spin-orbit field is comparable with the domain
anisotropy, a stable supermagnonic DW propagation is ob-
servable only at very low temperatures. Nevertheless, one may
use either the subnanosecond spin-orbit field pulse (duration
smaller than the switching time) or the normal terahertz
field pulse (not the Néel field), to enhance the DW stability
against thermal fluctuations and to avoid the domain flipping
[39]. This finding suggests that the antiferromagnetic domain
wall motion beyond the relativistic limit should be a quite
general phenomenon, which roots in the discrete nature of
the lattice.
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APPENDIX: SIMULATION RESULTS ON Mn2Au

Figure 7 shows the DW velocity as a function of field
strength using the parameters for Mn2Au, i.e., J = 24 meV

FIG. 7. Domain wall velocity as a function of field strength for
K = 0.035 meV (gray diamonds), 0.07 meV (blue circles), 0.14 meV
(green squares), and 1.40 meV (red triangles). The solid lines are
theoretical predictions. The dashed line at c = 42.24 km/s indicates
the relativistic limit.
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[51] and μs = 3.59μB. Since the anisotropy of Mn2Au
is sensitive to the magnitude of strain (0.07 meV per 1%
strain [52]), we take three different values of anisotropy for
comparison. For larger anisotropy (larger strain), the pinning
effect hinders the DW propagation. For smaller anisotropy

(weak strain), the DW velocity can go beyond the relativistic
limit. These results are qualitatively the same as shown in
Fig. 1 of the main text. It is therefore safe to claim that our
results are applicable to a wide class of antiferromagnets,
including Mn2Au.
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