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Tuning the laser-induced ultrafast demagnetization of transition metals
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The ultrafast demagnetization (UFD) dynamics of itinerant ferromagnets is theoretically investigated as a
function of the characteristics of the initial laser excitation. A many-body pd-band Hamiltonian is considered
which takes into account hybridizations, Coulomb interactions, spin-orbit interactions, and the coupling to the
laser field on the same electronic level. In this way, a fruitful connection is established between the nonadiabatic
quantum dynamics and the well-known equilibrium statistical mechanics of itinerant-electron ferromagnets. The
time evolution during and after the pulse absorption is determined exactly by performing numerical Lanczos
propagations on a small cluster model with parameters appropriate for Ni. The most relevant laser parameters,
namely, the fluence F , wave length λ, polarization ε̂, and pulse duration τp are varied systematically. The
results show how F , ε̂, and τp allow one to control the total absorbed energy, the spectral distribution of the
initial excitation, and the subsequent magnetization dynamics. The calculations show that reasonable changes
in these parameters do not affect the UFD dynamics qualitatively and have only a minor influence on the
timescale τdm which characterizes the initial demagnetization. In contrast, our model predicts that the degree
of demagnetization �Sz/S0

z achieved for t � τdm correlates well with the average number of electrons excited
by the laser or average number of absorbed photons nph, which can be tuned by varying the fluence, spectral
distribution and polarization of the laser pulse. The theoretical results are discussed by comparing them with
available experiments. From a fundamental perspective, the robustness of the ultrafast demagnetization effect
is theoretically demonstrated, as a phenomenon reflecting the intrinsic dynamics of the metallic 3d valence
electrons. A wide variety of well-focused possibilities of tailoring the efficacy of the ultrafast demagnetization
process is thereby opened.
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I. INTRODUCTION

Over the past twenty years, a wide range of different time-
resolved experiments have demonstrated that the excitation
of magnetic transition metals (TMs) and rare earths with
short laser pulses triggers an ultrafast demagnetization (UFD)
of the material on a subpicosecond or picosecond timescale
[1–16]. This remarkable effect offers new possibilities of
ultrafast control and manipulation of the magnetization, which
could find multiple applications in spin-electronic devices
and storage media. Understanding the nontrivial quantum
physics behind this phenomenon is obviously crucial for
any knowledge-oriented material design. Therefore several
mechanisms explaining the UFD have been proposed in the
literature [13–45]. On the one hand, one finds models in
which the central role is played by the coupling between
the narrow-band electrons responsible for magnetism and
some distinct, a priori nonmagnetic degrees of freedom or
field. In this context, let us mention the mechanisms based
on electron-phonon spin-flip scattering [14,23–29], on the
transport of spin-polarized electrons [30–37], and on the co-
herent relativistic interaction between the photon field and the
electronic spins [38–40]. On the other hand, two purely elec-
tronic theories have also been proposed, in which the essential
part of the demagnetization takes place within the electronic
system, as a result of the coupling between the spin and
translational degrees of freedom in the presence of the lattice
potential [41–45]. To this category belong the time-dependent

density-functional studies reported in Refs. [41–44]. These
explain the UFD as a throughout breakdown of the spin
density and local magnetic moments in all unit cells, which
involves spin-orbit driven spin flips and spin currents. An
alternative approach, which is particularly relevant for the
present paper, is the many-body electronic model Hamilto-
nian proposed in Ref. [45]. In this case, the experimentally
observed demagnetization is explained as the consequence of
an ultrafast breakdown of the FM correlations between the
local 3d magnetic moments which remain highly stable at
all times. From the latter investigations the following micro-
scopic picture of the magnetization dynamics emerges [45]:
(i) at the start, the laser excitation changes the occupation
of the valence-electron states by inducing mainly 3d-to-4p
electronic transitions, thus creating holes in the magnetically
relevant 3d band. During this process the total magnetization
of the sample remains essentially unchanged, since spin is
conserved in optical transitions. (ii) These changes in occu-
pations trigger the dynamics by opening so far Pauli-blocked
new channels for spin-orbit coupling (SOC) induced local
angular-momentum transfers, dominantly from the atomic
d-electron spins �si to the d-orbital moments �li. Taking into
account that the local spin moments are initially large and the
orbital moments almost quenched, this process alone would
tend to enhance 〈�li〉 at the expense of 〈�si〉, since the total
local angular momentum �ji = �li + �si is conserved by the SOC.
(iii) However, the perpetual motion of electrons in the lattice
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due to interatomic hopping quenches most efficiently any
incipient increase of the average orbital angular momentum
〈�L〉 = ∑

i〈�li〉 on a timescale of the order of one femtosecond.
The result of these three simple fundamental processes is the
rapid decrease of the average electronic angular momentum
〈 �J〉 = ∑

i〈�ji〉 and magnetization of the sample as a function of
time. The demagnetization occurs essentially at the same rate
as the spin-to-orbital angular momentum transfer, which is
governed by the SOC and thus corresponds to a characteristic
demagnetization time τdm of the order of 100 fs. Notice,
moreover, that the sum of the angular momenta associated
to the electronic and ionic degrees of freedom is strictly
preserved by the electron-lattice interactions. Therefore the
decrease of 〈 �J〉 is exactly compensated by an increase of the
lattice angular momentum �Llat, occurring at the same rate.
The fact that high local-moment stability, electron delocal-
ization, and spin-orbit interactions are all inherent features
of itinerant-electron magnetism explains the experimentally
observed universality of the UFD effect. Further details on the
electronic mechanism of UFD are discussed in Ref. [45].

In past years, a considerable research activity has been
focused on the role of the initial excitation in the UFD process,
and on the possibilities of controlling the spin dynamics by
tuning the laser-pulse characteristics [42,46–48]. For exam-
ple, it has been recently demonstrated that the degree of
demagnetization can in principle be controlled by changing
the shape and spectral distribution of the pump pulse [42].
It is therefore most interesting to correlate the degree of
demagnetization with the material parameters and electronic
structure. Furthermore, one would like to understand how
the efficiency of the demagnetization process depends on the
degree of excitation of the ferromagnet. Varying the intensity
of the pumping pulse at a given frequency allows us to
adjust the number of absorbed photons, excited electrons and
absorbed energy. Changing the laser frequency for a given
absorbed energy one should be able to discern the role of
the number of excitations, and thus gain further insight into
thermalization effects. In addition, one may also consider
different circularly and linearly polarized light, in order to
explore how an initial transfer of angular momentum upon
laser absorption may affect the subsequent dynamics. Finally,
adjusting the laser-pulse duration τp, from ultrashort highly
intense excitations to values of τp comparable with SOC relax-
ation time, should help us to reveal any specific spin dynamics
taking place while the laser field is active, and which may
result from SOC-laser interference effects [38–40]. It is the
purpose of this paper to investigate the role of the initial laser
excitation on the magnetization dynamics of ferromagnetic
TMs and to quantify the possibilities of tuning the ultrafast
demagnetization by its means. To this aim, we consider a
many-body electronic theory in which the dynamics of the
electronic translational, orbital and spin degrees of freedom,
as well as their coupling to the external electric field, are de-
scribed quantum mechanically and on the same footing [45].

The remainder of the paper is organized as follows. The
theoretical background, including a derivation of the model
Hamiltonian, the involved approximations, and the parameters
used for the calculations, is presented in Sec. II. Exact numer-
ical results for the magnetization dynamics as a function of
the fluence, wave length, polarization and duration of the laser

pulse are presented and discussed in Sec. III. Finally, Sec. IV
summarizes the main conclusions and perspectives.

II. THEORETICAL BACKGROUND

In the following, we first derive the electronic model
[45] used in the present investigations of the laser-induced
magnetization dynamics by explicitly pointing out all the
involved approximations. The complete many-body problem,
which includes both electronic and ionic degrees of freedom,
is simplified by using the Born-Oppenheimer approximation,
which decouples the electronic and ionic dynamics [49]. This
is justified, as usual, by the large ion-to-electron mass ratio,
and the resulting differences in the corresponding timescales.
Since we are interested in the dynamics of the magnetization,
which is given by the spin and orbital electronic contributions,
we focus on the electronic degrees of freedom so that the ion
coordinates appear only as parameters of the quantum many-
electron problem. Although the lattice dynamics is ignored in
all the calculations reported in Sec. III, we shall return to it
at the end of this section and in Sec. IV, when discussing the
conservation of total (lattice plus electron) angular momentum
and the possible role of the coupling to phonons.

The spin and orbital magnetic moments of transition metals
are known to be dominated by the 3d-electron contributions.
Moreover, the prime optical excitations of the 3d states, which
result from the pumping laser, involve transitions to the nearby
4p orbitals. Therefore, in order to capture the main physics
of laser-excited 3d electrons in ferromagnetic TMs, it is
reasonable to concentrate on the correlated-electron dynamics
within these two bands. The corresponding many-body pd
Hamiltonian is given by

Ĥ = Ĥ0 + ĤC + ĤSO + ĤE (t ) , (1)

where

Ĥ0 =
∑
iασ

εα n̂iασ +
∑

i j

∑
αβσ

tαβ
i j ĉ†

iασ ĉ jβσ (2)

describes the single-particle electronic structure of the 3d
and 4p bands. In the usual notation, ĉ†

iασ (ĉiασ ) creates
(annihilates) an electron at atom i with radial and orbital
quantum numbers α = nlm and spin σ (nl refers to 3d and
4p). The corresponding electron number operator is n̂iασ . For
simplicity, the energy levels εα of the atomic-like 3d and
4p orbitals |ϕiα〉 are assumed to be independent of m. The
interatomic hopping integrals tαβ

i j describe the delocalization
of the electrons throughout the lattice. Formally, they are
given by tαβ

i j = 〈ϕiα|(−h̄2∇2/2μ + φlat )|ϕ jβ〉, where μ stands
for the electron mass and φlat for the effective lattice potential,
which depends on all atomic positions �Ri. Notice that the
hoppings tαβ

i j , but also the energy levels εα = tαα
ii , incorporate

the leading contribution to the electron dynamics resulting
from the electron-lattice interaction as given by φlat. In the
following, the hopping integrals tαβ

i j are determined by using
the two-center approximation, which takes into account the
most important terms in φlat due to the ions i and j [50]. In this
case, tαβ

i j depends only on the relative vector �Ri j = �Ri − �Rj , as
well as on the radial and orbital quantum numbers nlm of the
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orbitals α and β. Further details on the calculation of tαβ
i j may

be found in Appendix A.
The second term, ĤC in Eq. (1), refers to the electron-

electron interaction. For simplicity, we approximate it by
taking into account only the dominant intra-atomic terms
among the 3d electrons, which are known to be responsible
for the magnetic behavior of TMs. Starting from the general
intra-atomic expression

ĤC = 1

2

∑
i

∑
αβγ δ∈3d

∑
σσ ′

Vαβγ δ ĉ†
iασ ĉ†

iβσ ′ ĉiδσ ′ ĉiγ σ , (3)

we consider only the largest two-orbital integrals, namely,
the direct terms Uαβ = Vαβαβ and the exchange terms Jαβ =
Vαββα (α �= β), which are the most important for the magnetic
behavior. Moreover, the orbital dependencies of Uαβ and Jαβ

are neglected by setting them equal to their average values
Uαβ = U and Jαβ = J . While the orbital dependencies of the
intra-atomic d-electron repulsions are known to be important
for a quantitative description of orbital magnetism [51], they
are not essential for describing the total spin polarization
within the 3d band, even as a function of temperature [52].
Taking into account these simplifications one obtains the
particularly transparent form [52–55]

ĤC = 1

2

(
U − J

2

) ∑
i

n̂d
i

(
n̂d

i − 1
) − J

∑
i

�̂sd
i · �̂sd

i

+ J

2

∑
iα∈3d

n̂iα (2 − n̂iα ) + J

4

∑
i

n̂d
i . (4)

Here, n̂d
i = ∑

α∈3d,σ n̂iασ denotes the operator for the total

number of 3d electrons at atom i, �̂sα
i (n̂iα) is the spin (number)

operator for the orbital α at atom i, and �̂s d
i = ∑

α∈3d �̂s α
i the

total 3d-electron spin operator at atom i. The first terms,
proportional to the number of pairs of d electrons, take into
account the changes in the Coulomb energy resulting from
charge fluctuations. Although important for correlations, they
have a visibly nonmagnetic character. The second terms,
proportional to (�̂s d

i )2, favor a parallel alignment of all the 3d
spins at each atom (Hund’s first rule). They are responsible for
the formation and strong stability of the local spin moments
(J ∼ 1 eV). Part of the energy gain upon local moment
formation (33%–50% depending on the number of unpaired
electrons) is compensated by the third terms, which are pro-
portional to n̂iα (2 − n̂iα ). These terms are actually ignored in
the subsequent dynamics, since their contribution results in an
effective reduction of the exchange integral J , and since they
are unaffected by the relative orientation of the unpaired spins.
Finally, the last terms amount to an unimportant constant
energy shift which can be incorporated in the definition of the
bare levels ε3d [see Eq. (2)].

For the sake of compactness, it is useful to define a new di-
rect Coulomb repulsion parameter U as the average repulsion
U − J/2 between d electrons having parallel and antiparallel
spins. In this way one obtains the model interaction in its final
form [45]

ĤC = U

2

∑
i

n̂d
i

(
n̂d

i − 1
) − J

∑
i

�̂s d
i · �̂s d

i . (5)

Notice that ĤC , as the full Coulomb interaction, conserves
both the spin �s d

i and orbital �li angular momenta of the
atoms, since the rotational invariance of the first-principles
interaction is not altered by the local approximations. In this
context it is useful to recall that this model has been success-
fully applied in numerous previous studies of the equilibrium
ground-state and finite-temperature properties of transition-
metal magnetism [56].

The third term in Eq. (1) is the spin-orbit coupling operator

ĤSO = ξ
∑

i

∑
αα′∈3d

∑
σσ ′

(�l · �s)ασ,α′σ ′ ĉ†
iασ ĉiα′σ ′ (6)

in an intra-atomic approximation within the 3d band, where
the parameter ξ denotes the SOC strength. The matrix ele-

ments (�l · �s)ασ,α′σ ′ of �̂li · �̂si at atom i couple the spin and orbital
degrees of freedom, thereby conserving the total local angular
momentum �ji = �li + �si.

The last term ĤE in Eq. (1) introduces the interaction with
the external laser field, which is treated in the intra-atomic
dipole approximation. For linearly polarized light, we have

ĤE (t ) = e�̂r · �E (t ) = e| �E (t )|
∑
iαβσ

〈α|ε̂ · �̂r|β〉 ĉ†
iασ ĉiβσ , (7)

where �E (t ) refers to the uniform classical electric field, ε̂

denotes a dimensionless normalized polarization vector, and
e > 0 is the electron charge. In the case of circularly polar-
ized laser pulses ĤE is replaced by the operator Ĥσ

E , which
describes an electric field with helicity σ = ±1 carrying an
angular momentum σ h̄ along the z axis. This is given by

Ĥ±
E (t ) = e| �E (t )| P̂p (ε̂± · �̂r) P̂d + H.c. , (8)

where P̂d (P̂p) denotes the projection operator onto the 3d (4p)
orbitals and ε̂± = (êx ± iêy)/

√
2 is the complex polarization

vector. As usual, êx and êy stand for the unit vectors along the
x and y axis. Since the dipole matrix elements 〈α|�̂r|β〉 satisfy
the atomic selection rule 〈nlm|�̂r|n′l ′m′〉 = 0 unless l − l ′ =
±1, the optical excitation involves only 3d-4p transitions.
A more detailed account of the dipole matrix elements is
given in Appendix B. The operator Ĥ+

E can be interpreted
as follows. The first term in Eq. (8) describes the absorption
of a photon which transfers an angular momentum +h̄ to a
3d electron making a transition to a 4p orbital (m → m + 1).
Hermiticity, as ensured by the second term in Eq. (8), implies
the emission of a photon with angular momentum h̄ in the
reverse electronic transition from a 4p to a 3d orbital (m →
m − 1). Analogously, the operator Ĥ−

E with the opposite helic-
ity σ = −1 describes the absorption (emission) of an angular
momentum −h̄ in the optical transitions from 3d to 4p (4p to
3d) orbitals.

Before closing the discussion of the model, it is worth
recalling that the field-free Hamiltonian Ĥ = Ĥ0 + ĤC + ĤSO

represents a purely electronic model, which describes the dy-
namics of electrons within the lattice potential φlat generated
by the ions at given fixed positions �Rj . Since φlat is obviously
not isotropic, the electronic angular momentum �L + �S is not
conserved, where �L = ∑

i
�li (�S = ∑

i �si) stands for the total
electronic orbital (spin) angular momentum. However, the
combined system of electrons and ions represents a closed
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and therefore rotationally invariant system. Consequently, it
is clear that the total angular momentum of electrons and
ions �J = �L + �S + �Llat remains a formally rigorous constant
of motion, where �Llat denotes the angular momentum of
the lattice. An explicit account of the time dependence of
the lattice angular momentum would require to consider the
dynamics of the ionic degrees of freedom, which is beyond
the scope of the present work.

Model simplifications and parameters

In order to achieve an exact numerical solution of the
many-body dynamics without involving often hardly control-
lable and symmetry breaking mean-field approximations, we
keep the pd-band model as transparent as possible by intro-
ducing two simplifications. First, we reduce the orbital degen-
eracy by considering only the 3d orbitals having |m| � 1 and
the 4p orbital having m = 0. This approximation reduces the
numerical effort involved in the exact numerical propagation
without significantly affecting the 3d-4p optical absorption
process, the electronic delocalization and exchange interac-
tions responsible for magnetism, or the angular-momentum
transfer between spin and orbital degrees of freedom induced
by the SOC. Similar reductions of the local orbital degeneracy
have often been used in the context of electron correlations
and itinerant magnetism, in particular, in connection with the
Hubbard model [57–59].

The second approximation consists in performing the nu-
merical propagations on a small cluster model. In this work,
we consider equilateral triangles (Na = 3 atoms) having Ne =
4, 5, and 7 electrons, and an equilateral Na = 4 rhombus with
Ne = 5, where the length of the short diagonal equals the
side length. This allows us to explore various geometries and
band fillings having different electronic structures. As shown
in Sec. III, the small-cluster approximation can be justified a
posteriori by the local character of the mechanism responsible
for angular momentum transfer and ultrafast demagnetization.
However, it also brings some limitations, such as the discrete-
ness of the energy spectrum, a significant underestimation of
the d-band width, and the impossibility of describing long-
range electron correlations, the consequences of which need
to be discussed.

The model parameters are specified as follows. The hop-
ping integrals tαβ

jk are determined by considering nearest-
neighbor (NN) Slater-Koster integrals (ddσ ) = 0.6 eV,
(ddπ ) = −0.3 eV, (ppσ ) = 1.5 eV, and (pdσ ) = −0.4 eV.
The absolute values of these parameters are similar to those
obtained by fitting the band structure of bulk Ni [60,61] or in
canonical transition-metal bands [62,63]. Notice that the pp
hoppings are significantly larger than the dd ones, which cor-
responds to a rather broad sp-band and a narrow 3d-band, as
found in 3d TMs such as Ni. Moreover, the NN pd hoppings
are important, almost of the same order of magnitude as the
difference between the 4p and the 3d energy levels εp − εd =
1.4 eV. This leads to a significant pd hybridization and a small
but not negligible p-level ground-state occupation, which is
consistent with the spd hybridization found in 3d TMs.

The largest energy scale is given by the direct Coulomb
integral U = 8.0 eV, a value taken from experimental photoe-
mission spectra and theoretical calculations of the Ni density

of electron states [64–67]. The intra-atomic exchange integral
J yields stable FM ground states whose easy magnetization
direction defines the z axis. For the rhombus having Na = 4
atoms and Ne = 5 electrons, we use J = 1.5 eV and obtain
a ground-state off-plane spin polarization S0

z = 2.15 h̄. For
the triangular clusters having Ne = 4, 5, and 7, we use J =
0.8–1.0 eV. The ground states of the Ne = 4 and 5 triangles
exhibit off-plane easy magnetization axes and spin polariza-
tions of S0

z = 1.96 h̄ and S0
z = 1.34 h̄, while the ground state

of the Ne = 7 triangle exhibits an in-plane easy magnetization
plane and S0

z = 1.52 h̄.
The smallest energy scale in the model is the spin-orbit

coupling strength ξ = −80 meV. Typical values for 3d TMs
are in the range |ξ | = 50–100 meV [68]. Notice that the
sign of ξ has been changed for systems having a less than
half-filled d band, in order to reproduce the parallel alignment
between �L and �S found in Ni, Co, and Fe [69]. This corre-
sponds to performing the electron-hole transformation ĥiασ =
ĉ†

iασ , which does not affect the Coulomb interaction and only
changes the sign of the hopping integrals. Explicit calculations
show that changing the sign of ξ does not affect the time
dependence of the discussed observables in any significant
way. However, as discussed in Sec. III, the value of |ξ | and
its relation to the other energy scales, in particular the d-band
width, are important in order to determine the characteristic
timescale of the magnetization dynamics.

The spin dynamics is triggered by an optical pump pulse
having a Gaussian form

�E (t ) = ε̂ · E0 cos(ωt ) exp
(−t2/τ 2

p

)
, (9)

where ω = 2πc/λ is the laser frequency. The pulse, centered
at t = 0, has a duration characterized by the pulse width τp.
The intensity of the electric field can be measured by the
maximal amplitude E0 of �E (t ), which is related to the energy
flow per unit area or fluence F : E0 = (2/π )1/4

√
2F/(cε0τp),

where ε0 is the vacuum permittivity. In order to investigate
the role of the pump-pulse parameters in the laser-induced
magnetization dynamics, we vary F , ε̂ and τp systematically.
In this way, we quantify the dependence of the spin relaxation
on the initial laser excitation. In cases where F , τp or ε̂ are
not explicitly mentioned, we use F = 40 mJ/cm2, τp = 5 fs
and a linear in-plane polarization ε̂ along one NN bond in
the triangle or along the long diagonal in the rhombus. These
values correspond approximately to the typical numbers of ex-
cited electrons per atom observed in experiments [9]. It should
be noted that the pump-pulse durations used in experiments
(τ exp

p � 25–100 fs) [9–16,35] are significantly larger than the
τp = 5 fs considered in the present study. From a theoret-
ical perspective, short excitation pulses have the advantage
of allowing a clear separation between the initial excitation
and the subsequent magnetization dynamics. However, this
choice also implies that the calculated demagnetization time
is somewhat underestimated, since the energy is more rapidly
absorbed. Finally, the strength of the coupling between the
electronic degrees of freedom and �E is characterized by the
reduced matrix element 〈3d||T̂ (1)||4p〉 [see Eqs. (B5) and (B6)
in Appendix B]. For the calculations, throughout this work,
we set 〈3d||T̂ (1)||4p〉 = 0.5 Å, which corresponds to the
typical extension of 3d and 4s orbitals in 3d TMs. The precise
value of 〈3d||T̂ (1)||4p〉 is not important for our conclusions.
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In the following section, we investigate the consequences
of the laser excitation on the FM ground state |�0〉 by
propagating |�(t )〉 numerically under the action of the time-
dependent electric field. The time evolution is calculated by
using the short-time iterative Lanczos propagation method
[70]. Once the many-body wave function |�(t )〉 is obtained
we compute the expectation values O(t ) = 〈�(t )|Ô|�(t )〉 of
the observables Ô of physical interest, for example, the total
spin magnetization Ŝz, the local spin and orbital moments �̂si

and �̂li, and the spin-correlation functions �̂si · �̂s j .

III. RESULTS AND DISCUSSION

Before solving and analyzing the dynamics it is important
to keep in mind that the hybridizations due to the electron-
lattice interaction, the Coulomb interactions and the laser-
absorption processes, which are described by Ĥ0, ĤC , and ĤE ,

all conserve the total spin �S = ∑
i �si, i.e., [Ĥ0, �̂S] = [ĤC, �̂S] =

[ĤE , �̂S] = 0. The spin-rotational invariance is broken only by

the SOC since [ĤSO, �̂S] �= 0. However, the SOC operator ĤSO

commutes with the sum �̂li + �̂si of the local orbital and spin
angular momenta at each TM atom. Therefore, any spin-flip
process induced by SOC necessarily involves a local angular
momentum transfer between �si and �li, in which the sum �li + �si

is conserved. This local intra-atomic symmetry notwithstand-
ing, neither the local orbital moment �li nor the total orbital
angular momentum �L = ∑

i
�li are conserved throughout the

dynamics, since the lattice potential is not rotationally invari-

ant (i.e., [Ĥ0, �̂li] �= 0 and [Ĥ0, �̂L] �= 0). This can be traced back
to the fact that the interatomic hoppings tαβ

i j connect orbitals
with different azimuthal quantum numbers m at different
atoms. The previous fundamental symmetry considerations
are essential for understanding the ultrafast magnetization
dynamics from a microscopic quantum perspective. The use
of time-dependent mean-field approximations to the dynamics
seems very questionable in this context, because they artifi-
cially break the spin-rotational invariance with respect to Ĥ0,
ĤC , and ĤE . In contrast, exact time propagations —although
limited in their application to small finite systems—have the
clear advantage of complying with all fundamental conserva-
tion laws. They should therefore allow us to derive rigorous
conclusions [45].

The purpose of this Section is to investigate the dynamics
of ferromagnetic TMs as a function of the laser fluence F ,
photon energy h̄ω, electric-field polarization ε̂, and pulse du-
ration τp, in order to quantify to what extent these experimen-
tally tunable parameters can be used to taylor the magnetiza-
tion dynamics. Results for different model systems and band
fillings are contrasted. The correlations between degree of
initial electronic excitation, absorbed energy, demagnetization
time and degree of demagnetization are analyzed. General
trends are inferred.

A. Laser fluence

The laser fluence F is naturally expected to play an impor-
tant role in the subsequent spin relaxation since it controls the
level of electronic excitation. In order to quantify its effect,
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FIG. 1. Time dependence of the spin magnetization in an equi-
lateral triangle with Ne = 4, 5, and 7 electrons, after excitation using
a linearly polarized 5 fs laser pulse with wave length λ = 1051,
556, and 849 nm, respectively. The considered laser fluences F
are indicated together with the corresponding absorbed energies per
atom �E . The left insets show the demagnetization times τdm as a
function of F , as obtained from exponential fits to Sz(t ) given by
the dashed curves in the main panels. The right insets show, for all
considered values of F , the nearly identical time dependencies of the
corresponding scaled spin magnetization Ssc(t ) = [Sz(t ) − S∞

z ]/�Sz.
In the bottom panel the amplitude E (t ) of the triggering electric field
is illustrated.

we have determined the magnetization dynamics Sz(t ) for
different representative values of F and for different structures
and number of electrons Ne. This also gives us the opportunity
to explore the dependence of the ultrafast demagnetization
on band filling. Since the excitation spectrum depends on the
precise structure and band filling of the model, and in order
that the results can be compared, we have chosen the laser
wave length such that it matches the absorption spectrum.
The pulse shape is illustrated at the bottom panel of Fig. 1.
The results of Figs. 1 and 2 show that similar laser-induced
demagnetizations take place for all considered geometries
and band fillings. One observes that Sz(t ) decreases rapidly
after the pulse passage at t = 0 (τp = 5 fs) reaching val-
ues close to the long-time limit S∞

z in about 100 fs. The
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FIG. 2. Time dependence of the spin magnetization in a rhombus
having Ne = 5 valence electrons. The excitation at t = 0 corresponds
to a linearly polarized 5 fs laser pulse with wave length λ = 385 nm.
See the caption of Fig. 1.

characteristic demagnetization timescale τdm can be obtained
by fitting an exponential law of the form Sz(t ) = S∞

z +
[Sz(0) − S∞

z ] exp{−t/τdm} to the exact calculated numerical
propagations, where Sz(0) is the spin polarization at the time
t = 0 when the electric field amplitude E (t ) reaches its max-
imum. Alternatively, one could set Sz(0) equal to the ground-
state magnetization, in which case one obtains a somewhat
larger estimation of τdm.

From the fits, shown as thin dashed curves in the figures,
one obtains τdm � 20–50 fs depending on the structure (tri-
angle or rhombus) and the number of electrons (Ne = 4–7).
Notice that the spin relaxation occurs essentially after the
passage of the laser pulse, since τdm is always much larger
than the considered pulse duration τp = 5 fs. This implies that
the demagnetization effect is not the direct result of the inter-
action with the laser electric field, but rather the consequence
of an intrinsic process occurring within the excited electronic
system. Indeed, previous studies show that the interplay be-
tween d-electron SOC, the associated spin-to-orbital angular
momentum transfer, and the electronic motion in the lattice is
at the origin of the ultrafast demagnetization [45]. The spin-
orbit interactions acting on the excited electrons bring about
a local flux of angular momentum from the atomic spins �si to
the atomic orbits �li on a timescale of the order of h̄/ξ � 10 fs.
At the same time, the electronic hoppings between different
atoms quench any incipient increase of the total orbital an-
gular momentum �L = ∑

i
�li on a very short timescale of only

h̄/tαβ

jk � 1 fs. This prevents any accumulation of the transfered
spin angular momentum in the orbital degrees of freedom. The
local character of the above discussed mechanism of angular
momentum transfer, including the laser excitation dominated
by intra-atomic dipole transitions, supports the physical va-
lidity of the present small-cluster exact-propagation approach
(see Sec. II).

Before any further analysis of the role of the various laser
parameters on the magnetization dynamics, it is important to
point out that the values of the demagnetization times τdm �
20–50 fs obtained with the present model parameters and
approximations are a factor 3–5 smaller than the typical values
τ

exp
dm � 120–160 fs inferred from recent experiments on Ni

[10,11,14]. The first and physically most relevant reason for

the underestimation of τdm is the small-cluster approximation,
which underestimates the d-band width Wd and tends to
overestimate the spin-to-orbital angular momentum transfer
rate. The SOC parameter ξ defines the timescale h̄/ξ � 10 fs
involved in SOC-induced spin flips. Since ξ is the smallest
energy scale in the Hamiltonian, it leads to the slowest pro-
cesses which control the changes in the spin polarization.
However, in order to determine the actual rate of the SOC-
induced angular momentum transfer (e.g., in the framework
of perturbation theory [71]) it is equally important to take into
account the average density of spin-flipped final states, which
scales roughly proportional to the inverse d-band width 1/Wd .
In a small-cluster model, Wd is seriously underestimated and,
therefore, the spin-to-orbital angular momentum transition
rates are overestimated. In our case, using bulklike nearest-
neighbor hopping integrals, we obtain a single-particle d-band
width Wd � 2 eV, which is almost a factor 3 smaller than the
typical bulk value Wd = 5–6 eV. Representative calculations
have been performed using larger hoppings and thus larger
Wd in order to quantify this trend. They show indeed a cor-
responding increase of τdm as the average number of d states
per unit energy (∼1/Wd ) decreases. For example, for Wd =
6 eV, we obtain τdm = 60–150 fs. In addition, the discreteness
of the energy spectrum and the spatial confinement of the
cluster single-particle d states are also expected to result
in an overestimation of the spin-orbit matrix elements. A
second, less fundamental reason behind our underestimation
of τdm is the considered pulse duration τp = 5 fs, which
is significantly shorter than the typical experimental values
τ

exp
p � 25–100 fs [9–16,35]. This choice of τp is motivated by

the interest of having a well-defined sharp excitation, which
allows us to clearly discern between the absorption process
and the subsequent magnetization dynamics. As discussed in
Sec. III D, increasing the pulse duration increases τdm since
the energy is absorbed more slowly. Finally, one should take
into account the role of the SOC constant ξ , which directly
affects τdm. A systematic ensemble of calculations based
on exact numerical time propagations shows that τdm is ap-
proximately proportional to Wd/ξ

2, in qualitative agreement
with the spin-orbit spin-flip rates estimated within first-order
time-dependent perturbation theory [71]. This implies that
small changes in ξ can have a significant impact on τdm. For
example, using a somewhat smaller, though still reasonable
value of ξ = 50 meV, and leaving all other model parameters
as stated in Sec. II, we obtain τdm ≈ 80 fs for the triangle with
Ne = 4 electrons. In sum, taking into account our parameter
choice and the approximations inherent to the small-cluster
model used for the exact many-body time propagations, one
concludes that the values of the demagnetization time τdm

reported in this paper, though smaller than the observed ones,
are consistent with experiment [9–16,35].

Figures 1 and 2 clearly show that the larger F the larger
the demagnetization �Sz = S0

z − S∞
z , where S0

z denotes the
initial spin polarization. For instance, in the triangle with
Ne = 7 electrons the long-time spin polarization decreases
from S∞

z = 0.36 h̄ to S∞
z = 0.09 h̄ per atom when the fluence

is increased from F = 10 to 80 mJ/cm2. However, the char-
acteristic shape of Sz(t ), and in particular the demagnetization
time τdm, depend weakly on F . To clarify this point, the insets
in Figs. 1 and 2 show, on the right hand side, the scaled
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spin magnetization Ssc(t ) = [Sz(t ) − S∞
z ]/�Sz as a function

of time t for all considered fluences F . In addition, on the left
hand side, the demagnetization time τdm is given as a function
of F . One observes that for all considered systems Ssc(t )
and τdm are essentially independent of F , i.e., of the degree
of excitation (10 mJ/cm2 � F � 80 mJ/cm2). However, τdm

depends to some extent on the lattice structure and band
filling, although it always remains in the range of a few tens
of femtoseconds for |ξ | = 80 meV. This can be understood
by recalling that the coupling between spin and translational
degrees of freedom, which results from spin-orbit interactions,
can be very sensitive to the details of the electronic struc-
ture. In fact, it is well-known that the magneto-crystalline
anisotropy energy, easy magnetization axis, and orbital mo-
ments of transition-metal systems depend strongly on lattice
structure and band filling [72–75]. Furthermore, notice that
weak oscillations are superimposed to the general exponential
decrease of the calculated Sz(t ). These become somewhat
weaker (stronger) for shorter (longer) pulse durations τp,
as the laser-field spectrum becomes broader (narrower) and
the final excited state involves a larger (smaller) number of
eigenfrequencies. They are possibly a consequence of the dis-
creteness of the energy spectrum of the small cluster models
used for the numerical time propagations.

It is instructive to compare our theoretical results for
the fluence dependence of the UFD effect with available
experiments [8,14]. The measurements on Ni by Koopmans
et al. have shown that both the relative demagnetization �Sz

and the demagnetization time τdm increase with increasing
fluence [14]. While results for �Sz are in agreement with
our trends, the results for τdm are not. However, more recent
experiments on Ni by Tengdin et al. indicate a qualitatively
different behavior, namely, an essentially fluence-independent
demagnetization time [8], which coincides with the predic-
tions of our model (see Figs. 1 and 2). In this context, it is
interesting to observe that Tengdin et al. have fitted the time
dependence of their magnetization data by using up to three
distinct exponential functions: The first one describes the
initial laser-triggered demagnetization, which is investigated
in this paper, whereas the remaining ones correspond to the
subsequent magnetization recovery. In this way, they were
able to separate the timescale of the ultrafast demagnetization
from the much slower magnetization recovery. In Ref. [14],
the demagnetization time τdm has been obtained as the time
at which the drop of the magnetization towards its lowest
value is completed by 63%. Concerning the final recovery
process, both experimental groups have clearly observed
that it depends significantly on the fluence of the pumping
laser. Therefore it is possible that the fluence dependence
of Sz(t ), and the demagnetization time derived from it, are
affected by the energy dissipation processes involved in the
magnetization recovery, particularly as the level of excitation
increases.

It is interesting to investigate the experimentally observed
increase of the demagnetization �Sz with increasing flu-
ence F by analyzing the spectral distribution of the many-
body state |�(t )〉 after the pump-pulse passage (e.g., t �
15 fs for a 5 fs laser pulse). For this purpose, we expand
|�〉 = ∑

k αk |ψk〉 in the stationary states |ψk〉 of the field-
free Hamiltonian Ĥ = Ĥ0 + ĤC + ĤSO satisfying Ĥ |ψk〉 =

0 1 2
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FIG. 3. Spectral density D� (ε) of the excited many-body state
|�(t )〉 after the laser-pulse passage (t � 15 fs) as a function of
excitation energy ε = E − E0. Results are given for the equilateral
triangle having Ne = 4 and representative laser fluences F . The laser
wave length is λ = 1051 nm (h̄ω = 1.18 eV). The discrete spectral
lines have been broadened with a finite width δ = 20 meV for the
sake of clarity. The ground-state energy and the excitation energies
corresponding to the absorption of one and two photons are indicated
by the dashed lines.

Ek|ψk〉. The spectral distribution of |�〉 is then given by

D� (ε) =
∑

k

|〈ψk|�(t )〉|2 δ(ε − εk ), (10)

where ε = E − E0 is referred to the ground-state energy
E0 and εk = Ek − E0. Notice that Ĥ and thus the spectral
distribution D� (ε) of |�(t )〉 are independent of t once the
pulse has passed (e.g., t � 3τp). Figure 3 shows D� (ε) for
a triangle with Ne = 4, which has been excited with a 5 fs
laser pulse of wave length λ = 1051 nm (h̄ω = 1.18 eV) and
fluences F = 10, 20, 40, and 80 mJ/cm2. Three main peaks
or groups of nearby peaks are distinguished around ε = 0,
h̄ω, and 2h̄ω. They correspond to the ground state and to
the absorption of 1 and 2 photons. One observes how the
spectral weight of the excited-state manifolds around h̄ω and
2h̄ω increases with increasing F at the expense of the ground-
state contribution |〈�0|�(t )〉|2. This reflects the growing level
of electronic excitation and can be directly related to the
degree of demagnetization �Sz/S0

z = (S0
z − S∞

z )/S0
z achieved

at long times t � τdm. Indeed, a simple argument allows us
to approximately express �Sz/S0

z in terms of the angle α =
arccos 〈�0|�(t )〉 between the excited state |�(t )〉 at t � 3τp

and the ground state |�0〉. Writing

|�(t )〉 = cos(α) |�0〉 + sin(α) |��(t )〉 (11)

with 〈�0|��(t )〉 = 0 and 〈��(t )|��(t )〉 = 1 we have

Sz(t ) = cos2(α) S0
z + sin2(α) 〈��(t )|Ŝz|��(t )〉 . (12)

The demagnetization in the long-time limit is then given by

�Sz = sin2(α)
[
S0

z − S∗
z (∞)

]
, (13)

where S∗
z (t ) = 〈��(t )|Ŝz|��(t )〉 is the magnetization in the

excited states at time t . This shows that �Sz/S0
z is proportional
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to the spectral weight sin2(α) transferred to the excited states
or, in other words, to the level of excitation. Since S∗

z (0) � S0
z

(i.e., essentially no change in the spin polarization occurs
during the pulse passage) the proportionality factor S0

z −
S∗

z (∞) = S∗
z (0) − S∗

z (∞) gives a measure of the efficiency
of the demagnetization in the excited-state manifolds. It is
interesting to observe that the dynamics of the many-electron
system yields a remarkably effective reduction of the excited-
state magnetization S∗

z (t ). In fact, in some cases (e.g., a
triangle having Ne = 7 electrons) the quenching of S∗

z (t ) is
nearly complete [i.e., S∗

z (∞) � 0]. While it is tempting to
interpret this in terms of the statistical hypothesis of equal
a priori probability, there are many examples where no full
excited-state quenching is found. For instance, in a triangle
having Ne = 4 or 5 electrons, as well as the rhombus, one
finds that S∗

z (∞) is significantly larger than zero [S∗
z (∞) �

0.06 − 0.13 h̄ per atom, see Sec. III B].
At this stage, one may wonder whether the relation be-

tween the degree of long-time demagnetization and the level
of excitation is not simply a consequence of the fact that with
increasing fluence F and increasing sin2(α) also the absorbed
energy �E increases. In order to clarify this matter, it is
important to investigate the dynamical magnetic response as a
function of the photon energy h̄ω.

B. Absorbed energy versus average number
of absorbed photons

The preceding section has shown that the main conse-
quence of increasing the level of electronic excitation is to
enhance the degree of demagnetization �Sz = S0

z − S∞
z at

long times, at least for the considered range of fluence F .
A complementary way of investigating the dependence of
ultrafast demagnetization on the level of excitation and on
the absorbed energy �E is to vary systematically the photon
energy h̄ω. In this way, the importance of the absorbed energy
and of the average number of electrons excited by the laser or
of absorbed photons nph = �E/h̄ω can be tell apart.

In the following, different laser frequencies are considered,
for which the absorption probabilities are significant. The
corresponding exact time dependences of |�(t )〉 and Sz(t )
have been numerically determined. In all cases, the UFD
effect is observed with demagnetization times τdm = 18–62 fs
for the triangle with Ne = 4 electrons, τdm = 23–62 fs for the
triangle with Ne = 5, τdm = 42–122 fs for the triangle with
Ne = 7, and τdm = 15–86 fs for the rhombus with Ne = 5.
This confirms that the UFD effect is an intrinsic character-
istic of the correlated electronic system, which is qualita-
tively independent of the details of the triggering excitation.
Nevertheless, notice that the precise value of τdm depends
to some extent on the laser frequency ω. This shows that
different optical absorptions lead to different excited states, or
more generally, different spectral distributions D� (ε), which
exhibit their own specific many-body dynamics. Incidentally,
this may also indirectly cause a fluence dependence of τdm.
Assuming a rapid thermalization of the electronic transla-
tional degrees of freedom after the laser absorption, one
expects that the distribution of the excited many-body states
should become broader as the fluence F increases. This would
render higher excitation energies accessible and could thus
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FIG. 4. Correlation between the laser-induced degree of demag-
netization �Sz/S0

z at long times t � τdm and the absorbed energy �E
(right) or the average number of absorbed photons nph = �E/h̄ω

(left), where ω is the angular frequency of the exciting laser. The
crosses are obtained from the exact calculated time evolution for (a) a
rhombus with Ne = 5 electrons, and an equilateral triangle having
(b) Ne = 4, (c) 5, and (d) 7 electrons. The laser fluence is always
F = 40 mJ/cm2, while the different photon energies h̄ω are indicated
in eV. The dashed straight lines on the left panels are fits to the
approximate linear dependence of �Sz/S0

z on nph.

result in changes in τdm as a function of F . Unfortunately,
this hypothesis cannot be quantified numerically in the present
framework, since the cluster models accessible to exact time
propagations are too small to allow a true thermalization or
self-averaging [76].

The long-time limit of the demagnetization �Sz = S0
z −

S∞
z has been derived for each h̄ω from the numerical time

propagations. The thus obtained relative demagnetizations
�Sz/S0

z are shown in Fig. 4 as a function of the absorbed
energy �E (right-hand side) and of the average number of
absorbed photons nph = �E/h̄ω (left-hand side). The scatter
plot on the right-hand side of Fig. 4 is so disperse that no
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relation between �E and �Sz/S0
z can be established. �Sz

is obviously not a function of �E alone. In contrast, the
left-hand side figure reveals a remarkably simple, approxi-
mately linear dependence of �Sz/S0

z on nph. For example,
in the triangle with Ne = 7, �Sz/S0

z are nearly the same for
h̄ω = 1.5 eV and h̄ω = 5.9 eV although the absorbed energies
�E = 1.0 and 4.1 eV differ widely by a factor four. The
corresponding nph = 0.72 and 0.69 are very similar. In other
cases, for example in the triangle with Ne = 4, the absorbed
energies are very similar (�E = 0.9 eV for h̄ω = 1.0 eV and
�E = 0.8 eV for h̄ω = 2.5 eV) but the relative demagneti-
zations differ widely (�Sz/S0

z = 0.81 and 0.25, respectively).
One concludes that the average number of absorbed photons
nph, or equivalently, the number of single-particle electronic
excitations induced by the pumping pulse, rather than the
absorbed energy, determines primarily the strength of the
demagnetization. This is consistent with the discussion at
the end of Sec. III A showing that �Sz/S0

z is proportional to
the spectral weight transfered to the excited states during the
laser-pulse absorption.

The slope γ of the linear dependence �Sz/S0
z � γ nph can

be related to the efficiency of the demagnetization in the
excited states S∗

z (∞), which was introduced at the end of
the Sec. III A. Assuming for simplicity that only the ground
state and the lowest excited states around h̄ω contribute to the
spectral distribution of |�(t )〉 after the pump pulse, one can
easily show that sin2(α) in Eqs. (11)–(13) is equal to the av-
erage number of absorbed photons nph = �E/h̄ω. Therefore
γ = [S0

z − S∗
z (∞)]/S0

z represents the relative demagnetization
efficiency in the excited states. Figure 4 (left) shows that γ

and thus S∗
z (∞) do not depend significantly on h̄ω. However,

they depend somewhat on the considered cluster model and
band filling. For example, for the triangle with Ne = 4 and 5
electrons, and for the rhombus with Ne = 5 electrons we find
γ � 0.72 − 0.88 < 1. This implies that the magnetic order in
the excited states |��〉 is not fully destroyed as a result of
the many-electron dynamics. In other words, |��〉 remains
ferromagnetic to a small extent even at very long times. In
contrast, for the triangle with Ne = 7, the FM correlations in
|��〉 are fully lost along the dynamics. The demagnetization
of |��〉 is in this case almost complete, namely, S∗

z (∞)/S0
z �

0.03 or γ � 0.97.
According to our exact model calculations, the energy per

atom �E , which is absorbed during the pump pulse, does
not give the appropriate measure of the degree of excitation
of the electronic system in relation to subsequent �Sz/S0

z .
This is physically interesting, since it contrasts with the idea
that the translational degrees of freedom of the electronic
system should rapidly thermalize in a spin-conserving way.
Indeed, if the latter were so, the energy absorbed in any
field-induced single-particle transition would be rapidly re-
distributed among the electrons, thus erasing any memory
of the details of the triggering excitation (e.g., the number
of initial single-particle transitions or number of absorbed
photons). Let us recall that the characteristic times involved in
electron-lattice and electron-electron interactions (h̄/tαβ

i j and
h̄/U ) are at least an order of magnitude shorter than the typical
spin-orbit and demagnetization times. All these short-time
dynamical processes are properly taken into account in our
studies. Still, it is also true that our calculations are unable to
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FIG. 5. Time dependence of the average (a) spin moment Sz and
(b) orbital moment Lz following the excitation with a τp = 5 fs
laser pulse having a wave length λ = 1051 nm and a polarization
ε̂ which is in-plane linear (σ = 0), right circular (σ = +) or left
circular (σ = −). The full curves are obtained from the exact time
evolution of the equilateral triangle model with Ne = 4 electrons.
The dashed curves in (a) are exponential fits to Sz(t ) with a common
demagnetization time τdm = 19 fs. The inset in (a) shows the degree
of demagnetization �Sz/S0

z as a function of the average number
of absorbed photons nph = �E/h̄ω, together with the same linear
approximation (dashed line) as the one found in Fig. 4(b) left.

describe the approach to thermal equilibrium, since the exact
time propagations are performed for closed purely electronic
systems (Neumann-Liouville theorem). The interactions with
the environment are ignored and the considered models are
too small to achieve self-averaging [76]. It is unclear at present
what would be the characteristic time involved in the thermal-
ization of the translational electronic degrees of freedom of
ferromagnetic metals, and how such a thermalization would
affect the relation between �Sz/S0

z and the absorbed energy
�E . Extensions of our calculations by taking into account
a spin-conserving coupling to a bath, which simulates the
environment, as well as numerical time propagations of mixed
states corresponding to translationally thermalized electronic
states are therefore worthwhile.

C. Electric-field polarization

The dependence of the magnetization dynamics on the
polarization ε̂ of the incident laser pulse has been investi-
gated by considering linearly and circularly polarized electric
fields. Figure 5 shows the time dependence of the spin and
orbital angular momenta in an equilateral triangle with Ne = 4
electrons. The pumping excitation has a duration τp = 5 fs
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and a wave length λ = 1051 nm. Three different electric-field
polarizations ε̂ are considered: linear polarization along a NN
bond within the xy-plane containing the triangle (σ = 0), right
circular polarization (σ = +) and left circular polarization
(σ = −). For σ = + (σ = −), the field carries an angular
momentum of h̄ (−h̄) which is parallel (antiparallel) to the
ground-state spin magnetization S0

z along the out-of-plane z
direction. Figure 5(a) shows that Sz(t ) depends weakly on the
considered polarization, in agreement with experiment [77].
In the limit of long times, the spin magnetization decreases
to a somewhat larger (smaller) value S∞

z after the absorption
of a right (left) circular pulse in comparison with the linear
pulse. As we shall see, this can be ascribed to the rather
small polarization dependence of the absorption cross section.
One may also notice that the difference in Sz(t ) between left
and right polarized light increases at the early stages of the
dynamics (t � τdm = 19 fs) showing some oscillations for
t � τdm [78].

The laser-polarization effects on the orbital magnetic mo-
ment Lz are found to be significant only at very short times
(t � 10–15 fs). The dynamics of the initially quenched mo-
ment Lz � 0.17 h̄/atom, which is parallel to Sz, is shown
in Fig. 5(b) for different laser polarizations. For linear po-
larization (σ = 0), the orbital moment decreases to around
Lz � 0.03 h̄/atom during the action of the pulse, while in the
case of a left (right) circularly polarized pulse Lz decreases
by around 0.26 h̄/atom (increases by around 0.03 h̄/atom) on
the same time scale. Notice that for σ = −, Lz becomes even
negative (i.e., antiparallel to Sz) for a very short time. The
time lapse during which the polarization dependence of Lz is
significant is of the order of the pulse width, in the present
case τp = 5 fs.

In order to analyze the polarization effects on Lz, let
us first notice that the absorption of nonpolarized σ = 0
pulses consists in electronic dipole transitions mainly from
the 3d, m = ±1 orbitals to the 4p, m = 0 orbitals. Thus, the
orbital-moment projection is reduced, which explains qualita-
tively the laser-induced decrease of Lz observed for linearly
polarized pulses [see Fig. 5(b)]. For σ = − (σ = +), Lz is
further decreased (enhanced) by around 0.12 − 0.17 h̄/atom
in comparison with the σ = 0 dynamics (t � 10–15 fs). This
polarization-dependent decrease (enhancement) is the conse-
quence of the transfer of angular momentum from the laser
field to the orbital electronic motion. The left (right) po-
larized light induces m → m − 1 (m → m + 1) intra-atomic
transitions, where the azimuthal quantum number m gives
the local contribution to Lz. Neglecting for a moment any
spin-orbit transitions and interatomic electron hoppings, this
would imply a change �Lz = ±h̄ in the angular momentum
per absorbed photon. Knowing that nph/Na

∼= 0.28 (nph/Na
∼=

0.22) for left (right) polarization, we conclude that the change
in Lz induced per absorbed photon explains qualitatively the
observed short-time decrease (enhancement) of Lz for σ = −
(σ = +). The polarization-dependent change �Lz is in fact
somewhat smaller than ±nphh̄/Na, since part of the effect is
lost due to the rapid interatomic hoppings.

It is also important to remark that the changes in Lz induced
by the laser field, and the thus resulting differences in the
time dependence of Lz for different polarizations, rapidly
vanish once the laser pulse passes. As shown in Fig. 5(b),

already 18 fs after the pulse reaches its maximum (t = 0)
the differences in Lz(t ) for different σ are no longer distin-
guishable from the intrinsic oscillation of Lz(t ) due to the
dynamics ruled by the field-free Ĥ . The reason behind this is
the motion of 3d electrons throughout the lattice, which does
not conserve the atomic liz. In TMs d-electron delocalization
actually quenches Lz on a very short timescale of the order of
h̄/tαβ

i j � 1 fs, where tαβ
i j is the hopping integral between NNs.

Thus, the electronic motion tends to wash out any change
in the orbital angular momentum, irrespectively of its origin.
The results show that the hopping-induced rapid quenching of
Lz applies equally well to an enhancement of Lz due to the
laser absorption (σ = +) and to the spin-to-orbital angular
momentum transfer due to SOC in the excited states. This
explains why the time dependencies of Lz(t ) for the different
laser polarizations are very similar after the pulse passage.
The differences in the excited state for different σ , which are
clearly visible in Lz(t ) for short times, have only a modest
effect on the slower spin dynamics [see Fig. 5(a)]. The latter
is actually governed by the spin-to-orbital transfer of angular
momentum and the above-mentioned L-quenching electronic
motion. As we shall see, the dependence of Sz(t ) on the laser
polarization is mainly due to the changes in the absorption
efficiency for different σ . One concludes that the pd model
explains from a microscopic perspective the experimentally
observed weak sensitivity of the UFD effect on the laser
polarization [77].

In the present calculations, the same fluence F =
40 mJ/cm2 has been used for all electric-field polarizations.
The obtained degrees of excitation, as measured by nph =
�E/h̄ω and the long-time demagnetization �Sz/S0

z , are quan-
titatively similar for all σ [see the inset in Fig. 5(a)]. Further-
more, Fig. 5(a) shows that the time dependences of Sz(t ) for
different σ can all be reasonably well fitted with exponential
functions having the same demagnetization time τdm = 19 fs
(dashed curves). Our calculations show no significant effect
of the laser polarization ε̂ on τdm.

In order to investigate the interplay between spin-orbit
coupling and laser-ferromagnet interaction, it is interesting to
consider pulse durations τp that are larger than the timescale
of the SOC (h̄/|ξ | � 10 fs) for different laser polarizations.
Figure 6 shows the time dependencies of Sz and Lz in an equi-
lateral triangle (Ne = 4 electrons) which is excited with a laser
pulse having τp = 20 fs and λ = 1051 nm. One observes that
Sz(t ) and Lz(t ) depend significantly on the considered polar-
ization. In the case of Lz, the polarization-dependent changes
resulting from direct optical absorption vanish very rapidly as
the pulse passes (t > τp = 20 fs). As already discussed, this
is due to the rapid electron delocalization in the lattice [see
Fig. 6(b)]. In contrast, the differences in Sz(t ) for the different
considered ε̂ remain significant during several hundreds of
femtoseconds [see Fig. 6(a)], well beyond the point where
the electric field has vanished. The results also show that at
long times the circular σ = − (σ = +) pulse induces a more
(less) efficient demagnetization �Sz/S0

z than the linear σ = 0
pulse. The actual values of �Sz/S0

z for different ε̂ correlate
well with the average number of absorbed photons, as shown
in the inset of Fig. 6(a). As for shorter pulses, the demagneti-
zation time τdm = 27 fs is found to be essentially independent
of ε̂.
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FIG. 6. Time dependence of the average (a) spin moment Sz

and (b) orbital moment Lz corresponding to an excitation with a
τp = 20 fs laser pulse, having a wave length λ = 1051 nm and a
polarization ε̂ which is in-plane linear (σ = 0), right circular (σ =
+) and left circular (σ = −). See also the caption of Fig. 5.

The small polarization dependence of the long-time de-
magnetization degree �Sz/S0

z can be interpreted qualitatively
in terms of the orbital occupations. Let us first recall that the
initial state before the pulse absorption has a small positive
orbital moment Lz � 0.17 h̄ per atom. This means that the 3d
orbitals with m > 0 are in average more likely occupied than
the orbitals with m < 0. This introduces an asymmetry in the
absorption of left and right polarized light (dichroism). Since
the orbital polarization of the final 4p states is negligible,
and the optical matrix elements are invariant upon reversing
the circular polarization and the sign of the initial-state m, a
higher laser absorption is expected when the average occu-
pation of the dominant initial states is larger. In the case of
left (right) circularly polarized light the m → m − 1 (m →
m + 1) selection rule implies that the absorption is dominated
by the initial states having m > 0 (m < 0). Consequently,
for Lz > 0 the absorption cross section for left-circularly
polarized light should be somewhat larger. Our results confirm
this trend and can be interpreted accordingly. For example, for
a τp = 5 fs laser pulse we obtain that the average number of
absorbed photons is nph = 0.83 for left-circularly polarized
pulses, while it is about nph = 0.67 for linearly or right-
circularly polarized pulses. Similarly, for a τp = 20 fs laser
pulse we obtain nph = 0.96 for left polarization, nph = 0.88
for linear polarization, and nph = 0.70 for right polarization.
The insets in Figs. 5 and 6 show the already discussed linear
dependence between �Sz/S0

z and nph. In fact, the slopes of the
straight dashed lines in the insets of Figs. 5(a) and 6(a) are the
same as in Fig. 4(b). One concludes that the dependence of
�Sz/S0

z on the laser polarization is mainly a consequence of
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FIG. 7. Time dependence of the average spin moment Sz in an
equilateral triangle with Ne = 4 electrons resulting from laser-pulse
excitations having wave length λ = 1051 nm and pulse durations
τp = 1–50 fs. The full curves are obtained from the exact time evo-
lutions, while the dashed curves are the corresponding exponential
fits to Sz(t ). The laser fluences are such that the average number of
absorbed photons per atom is nph/Na = �E/(Nah̄ω) = 0.22 for all
τp. The inset shows the demagnetization time τdm and the long-time
demagnetization �Sz/S0

z as a function of τp.

the different absorption cross sections. It should be, however,
noted that the orbital magnetic moments 〈Lz〉 in TMs are
weak. In other words, the differences in the ground-state
occupations for positive and negative m are small. Therefore
the possibilities of taking advantage of dichroism in order to
tune the degree of excitation and �Sz/S0

z seem quantitatively
limited.

D. Pulse duration

The pulse duration τp is a central characteristic of the
laser excitation whose role on the dynamics deserves to be
investigated in some detail. To this aim, exact time propa-
gations have been performed for a triangle having Ne = 4
electrons, which is excited with a laser having λ = 1051 nm
and 1fs � τp � 50 fs. This covers the range from narrow
to broad pulses in comparison with the period of oscillation
of the field T = λ/c � 3.5 fs and the SO timescale h̄/|ξ | �
10 fs. Since the radiated energy is directly proportional to
the pulse duration τp, and the absorption efficiency depends
strongly on the frequency distribution of the field, comparing
the magnetization dynamics for the same fluence F and
different τp would be confusing. We have therefore scaled F
for each τp so that the absorbed energy �E and the average
number of absorbed photons nph = �E/h̄ω remain constant.
In this way, the role of the pulse duration can be effectively
assessed. Figure 7 shows the time dependence of the average
spin magnetization Sz(t ) for τp = 1–50 fs and F such that
nph/Na = 0.22. For relatively short pulses (τp < 10 fs), the
decrease of Sz(t ) takes place sharply after the pulse passage.
The excitation is sudden, since the electronic system has no
time to evolve from a magnetic point of view (τdm � 20 fs
and h̄/|ξ | � 10 fs for |ξ | = 80 meV). However, as the pulse
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duration is increased, one observes that a significant part of the
demagnetization occurs while the laser field is still on. This is
particularly clear for τp = 50 fs, in which case almost half of
the long-time demagnetization has already taken place when
the laser pulse reaches its maximum at t = 0 (see Fig. 7).

The demagnetization time τdm and the degree of demag-
netization �Sz/S0

z are obtained by fitting the exact calculated
time dependencies of Sz (full curves) for each τp with simple
exponential functions. The results, given in the inset of Fig. 7,
show that �Sz/S0

z = 0.62–0.68 is essentially independent of
the pulse duration, provided that nph is kept constant. This
holds even for pulse durations which are much longer than the
spin-orbit time scale (τp > h̄/|ξ | � 10 fs), which is consistent
with the fact that the long-time demagnetization �Sz/S0

z is
controlled primarily by the number of laser-induced single-
particle excitations or absorbed photons (see Sec. III B). At
least in these examples, the simultaneous action of the laser
field and the spin-orbit interactions does not affect the degree
of demagnetization at long times. Moreover, no significant
interference effects between the laser field and the spin-orbit
interactions are seen in Sz(t ) and Lz(t ).

The inset of Fig. 7 also shows the corresponding demagne-
tization timescales, which increase from τdm � 20 fs for very
short pulses (τp � 5 fs) to τdm � 38 fs for τp = 50 fs. This
trend can be qualitatively understood by recalling that longer
pulses imply a narrower spectral distribution D� (ε) and thus
a slower time evolution of the many-body excited state |�〉.
Moreover, in the limit of very short pulses, τdm � 20 fs re-
mains approximately constant since after a sudden excitation
the demagnetization rate is controlled by the SOC. The results
confirm that the laser-induced UFD of TMs reflects primar-
ily the intrinsic dynamical behavior of the itinerant-electron
many-body system, even in cases where the pulse duration
is longer than the characteristic SOC timescale h̄/ξ and the
demagnetization time τdm.

IV. CONCLUSION

The laser-triggered dynamics of itinerant-electron mag-
netism has been investigated in the framework of a many-
body pd Hamiltonian which describes electron delocalization,
Coulomb interactions, spin-orbit interactions and the coupling
to the laser field on the same footing. The time-dependent
many-body state of the system |�(t )〉 has been exactly calcu-
lated by applying a numerical short-time Lanczos propagation
method on small cluster models with parameters appropriate
for Ni. Starting from the ground state |�0〉, the time evolution
of |�(t )〉 has been followed during and after the laser pulse.
The relevant observables, in particular the average spin mo-
ment Sz(t ) and orbital moment Lz(t ), have been obtained for a
wide range of representative excitation parameters: fluence F ,
wave length λ, linear and circular polarizations ε̂, and pulse
duration τp. For all considered excitations, cluster models and
band fillings, one observes that Sz(t ) decreases rapidly after
the pulse passage reaching values close to its long-time limit
S∞

z in a very short characteristic demagnetization time τdm of
the order of 20–100 fs. The actual value of τdm is found to
scale with 1/ξ 2, where ξ is the spin-orbit coupling strength,
which controls the slowest electronic spin-to-orbital angular-
momentum transfer. Furthermore, the observed general trends

show that whenever the main ingredients of itinerant-electron
magnetism are present, namely, band formation, strong intra-
atomic 3d Coulomb interactions and spin-orbit coupling,
the ultrafast demagnetization effect should take place. One
concludes that the ultrafast demagnetization of ferromagnetic
TMs reflects the intrinsic many-body dynamical behavior of
itinerant magnetism. The universality of the effect has been
theoretically demonstrated.

The present investigations indicate that ultrafast demagne-
tization can be regarded as an essentially local process which
involves mainly the atomic spin and orbital d-electron degrees
of freedom and their immediate local environment. While
this justifies small-cluster modelizations, it is also clear that
one would like to improve on this limitation by consider-
ing larger clusters and extended systems, not least in order
to quantify the importance of intermediate- and long-range
dynamical effects. Besides the possible consequences on the
electronic correlations, improving on the cluster model would
allow us to obtain a more quantitative account of the laser
absorption efficiency, which has been shown to be crucial
for predicting Sz(t ). Such improvements will most certainly
involve mean-field or functional-integral static approxima-
tions of the Coulomb interactions, whose validity could be
checked by comparison with the exact results reported in this
work. Moreover, our study suggests that the laser-induced
ultrafast demagnetization effect, being an essentially local
phenomenon, should also take place in ferromagnetic small
clusters, nanoparticles and granular systems. It would be
therefore most interesting to perform cluster-specific studies
of ultrafast demagnetization in order to reveal its size and
structural dependence.

Finally, from the fundamental perspective of understanding
the underlying physical mechanisms of UFD, it is important
to recall that there are other forms of spin-lattice relaxations
(e.g., electron-phonon coupling) which have been ignored
in the present electronic model and which are expected
to contribute to the magnetization dynamics [14,23–29].
It would be therefore very interesting to incorporate these
contributions into the present many-body model, in order to
quantify their role at the same level as the spin-orbit, Coulomb
and hopping electronic effects. In addition, other excitation
methods, for instance, involving hot electron injection, mixed
thermalized states and indirect optical excitation, should also
be investigated in order to challenge the reliability of the
present model and the universal character of the ultrafast
demagnetization effect.

APPENDIX A: INTERATOMIC HOPPING INTEGRALS

The present Appendix describes the interatomic hopping
integrals tαβ

jk , which define the single-particle operator Ĥ0 and
its band structure as given by Eq. (2). The matrix elements
tαβ

jk are determined by applying the two-center approximation
[50], which has found countless successful applications in the
description of the electronic structure of solids [79]. Since
only the 3d and 4p valence bands are taken into account
in the model, all hopping elements tαβ

jk in Ĥ0 are obtained
in terms of the seven independent Slater-Koster parameters
(ddσ ), (ddπ ), (ddδ), (ppσ ), (ppπ ), (pdσ ), and (pdπ ). The

024402-12



TUNING THE LASER-INDUCED ULTRAFAST … PHYSICAL REVIEW B 100, 024402 (2019)

corresponding expressions for tαβ

jk are [50]

t4p0,4p0
jk = λ2

z (ppσ ) + (
1 − λ2

z

)
(ppπ ),

t4p0,4p±1
jk = ∓λz(λx ± iλy)[(ppσ ) − (ppπ )]/

√
2,

t4p±1,4p±1
jk = [(

1 − λ2
z

)
(ppσ ) + (

1 + λ2
z

)
(ppπ )

]
/2,

t4p+1,4p−1
jk = −(λx − iλy)2[(ppσ ) − (ppπ )]/2,

t4p0,3d0
jk = λz

[(
3λ2

z − 1
)
(pdσ ) + 2

√
3
(
1 − λ2

z

)
(pdπ )

]
/2,

t4p0,3d±1
jk = ∓(λx ± iλy)

[√
3λ2

z (pdσ ) + (
1 − 2λ2

z

)
(pdπ )

]
/
√

2,

t4p0,3d±2
jk = λz(λx ± iλy)2[

√
3(pdσ ) − 2(pdπ )]/

√
8,

t4p±1,3d0
jk = ∓(λx ∓ iλy)

[(
3λ2

z − 1
)
(pdσ ) − 2

√
3λ2

z (pdπ )
]
/
√

8,

t4p±1,3d±1
jk = λz

[√
3
(
1 − λ2

z

)
(pdσ ) + 2λ2

z (pdπ )
]
/2,

t4p±1,3d±2
jk = ∓(λx ± iλy)

[√
3
(
1 − λ2

z

)
(pdσ ) + 2

(
1 + λ2

z

)
(pdπ )

]
/4,

t4p±1,3d∓1
jk = −λz(λx ∓ iλy)2[

√
3(pdσ ) − 2(pdπ )]/2,

t4p±1,3d∓2
jk = ∓(λx ∓ iλy)3[

√
3(pdσ ) − 2(pdπ )]/4,

t3d0,3d0
jk = (

3λ2
z − 1

)2
(ddσ )/4 + 3λ2

z

(
1 − λ2

z

)
(ddπ ) + 3

(
1 − λ2

z

)2
(ddδ)/4,

t3d0,3d±1
jk = ∓λz

√
3(λx ± iλy)

[(
3λ2

z − 1
)
(ddσ ) + 2

(
1 − 2λ2

z

)
(ddπ ) − (

1 − λ2
z

)
(ddδ)

]
/
√

8,

t3d0,3d±2
jk =

√
3(λx ± iλy)2

[(
3λ2

z − 1
)
(ddσ ) − 4λ2

z (ddπ ) + (
1 + λ2

z

)
(ddδ)

]
/
√

32,

t3d±1,3d±1
jk = [

3λ2
z

(
1 − λ2

z

)
(d, d; σ ) + (

4λ4
z − 3λ2

z + 1
)
(ddπ ) + (

1 − λ4
z

)
(ddδ)

]
/2,

t3d±1,3d±2
jk = ∓λz(λx ± iλy)

[
3
(
1 − λ2

z

)
(ddσ ) + 4λ2

z (ddπ ) − (
3 + λ2

z

)
(ddδ)

]
/4,

t3d+1,3d−1
jk = −(λx − iλy)2[3λ2

z (ddσ ) + (
1 − 4λ2

z

)
(ddπ ) + (

λ2
z − 1

)
(ddδ)

]
/2,

t3d±1,3d∓2
jk = ∓λz(λx ∓ iλy)3[3(ddσ ) − 4(ddπ ) + (ddδ)]/4,

t3d±2,3d±2
jk = [

3
(
1 − λ2

z

)2
(ddσ ) + 4

(
1 − λ4

z

)
(ddπ ) + (

λ4
z + 6λ2

z + 1
)
(ddδ)

]
/8, and

t3d+2,3d−2
jk = (λx − iλy)4[3 (ddσ ) − 4(ddπ ) + (ddδ)]/8, (A1)

where ẑ has been chosen as the m-quantization axis, and λμ =
�Rjk · μ̂/Rjk denotes the direction cosine of the interatomic
vector �Rjk = �Rj − �Rk (μ̂ = x̂, ŷ or ẑ). Notice that the hopping
elements which are not explicitly given can be obtained by
applying the relation tαβ

jk = tαβ ( �Rjk ) = [tβα (− �Rjk )]∗. Further
details may be found in Ref. [50].

As described in Sec. II, the pd model has been simplified
in order to keep the dimension of the many-body Hilbert
space and the numerical effort involved in the exact time
evolution tractable. Thus the 3d orbitals are approximated by
three degenerate levels having |m| � 1 and the 4p orbitals
by a single level having m = 0. This reduction of the number
of bands implies that only the four Slater-Koster parameters
(ddσ ), (ddπ ), (ppσ ), and (pdσ ) are necessary in order
to determine all hopping integrals tαβ

jk . The corresponding

expressions for tαβ

jk are

t4p0,4p0
jk = (ppσ ),

t4p0,3d0
jk = λz(pdσ ),

t4p0,3d±1
jk = ∓(λx ± iλy)(pdσ )/

√
2,

t3d0,3d0
jk = λ2

z (ddσ ) + (
1 − λ2

z

)
(ddπ ),

t3d0,3d±1
jk = ∓λz(λx ± iλy)[(ddσ ) − (ddπ )]/

√
2,

t3d±1,3d±1
jk = [(

1 − λ2
z

)
(ddσ ) + (

1 + λ2
z

)
(ddπ )

]
/2, and

t3d+1,3d−1
jk = −(λx − iλy)2[(ddσ ) − (ddπ )]/2. (A2)
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The values of the Slater-Koster parameters are given in the
main text.

APPENDIX B: ELECTRIC DIPOLE MATRIX ELEMENTS

The dominant intra-atomic dipole matrix elements 〈α|�r|β〉
characterizing the interaction ĤE with the laser field [see
Eqs. (7) and (8)] can be expressed in terms of the irreducible
spherical tensor operator T̂ (k)

q of rank k = 1 and components
q given by

T̂ (1)
+1 = − 1√

2
(x̂ + iŷ),

T̂ (1)
−1 = 1√

2
(x̂ − iŷ),

T̂ (1)
0 = ẑ.

(B1)

The elements of T̂ (1)
q between the atomic orbitals |nlm〉 hav-

ing principal quantum number n, orbital angular momentum
l and z-axis projection m are given by the Wigner-Eckart
relation [80]

〈nlm|T̂ (k)
q |n′l ′m′〉 = 〈l ′k; m′q|lm〉 〈nl||T̂ (k)||n′l ′〉√

2l ′ + 1
, (B2)

where 〈nl||T̂ (k)||n′l ′〉 is the reduced matrix element and the
scalar products 〈l ′k; m′q|lm〉 are the Clebsch-Gordan coeffi-
cients. Thus the matrix element 〈nlm|T̂ (k)

q |n′l ′m′〉 in Eq. (B2)
can be interpreted as a projection resulting from the addition
of the angular momenta �l ′ and �k to �l (�l ′ ⊕ �k = �l). Since
〈nl||T̂ (1)||n′l ′〉 is independent of m′, q, and m, all the dipole
matrix elements entering ĤE are characterized by a single
parameter 〈3d||T̂ (1)||4p〉, the dependence on m, m′ and q
being given by the known Clebsch-Gordan coefficients. Since
the operator ĤE is given by a product of �̂r and �E , the matrix

element 〈3d||T̂ (1)||4p〉 gives a measure of the strength of
the coupling between the electronic translational degrees of
freedom and the external electric field �E [see Eqs. (7) and (8)
of the main text].

The nonvanishing dipole matrix elements then read

〈3dm|x̂|4pm′〉 = (δm,m′−1 − δm,m′+1)(
√

|m|/12 + δm,0/6)

×〈3d||T̂ (1)||4p〉,
〈3dm|ŷ|4pm′〉 = i(δm,m′−1 + δm,m′+1)(

√
|m|/12 + δm,0/6)

×〈3d||T̂ (1)||4p〉,
〈3dm|ẑ|4pm′〉 = δm,m′ (|m|/

√
6 + δm,0

√
2/9)〈3d||T̂ (1)||4p〉.

(B3)

In the case of circular polarization ε̂±, the relevant matrix
elements are

〈4pm′|ε̂± · �̂r|3dm〉 = ±δm′,m±1(
√

|m|/6 +
√

2δm,0/6)

×〈3d||T̂ (1)||4p〉∗. (B4)

Taking into account the reduction of the local orbital
degeneracy introduced in Sec. II, the nonvanishing electric-
dipole matrix elements are simplified as follows. For linear
electric-field polarization, they read

〈3dm|x̂|4p0〉 = −m〈3d||T̂ (1)||4p〉/
√

2,

〈3dm|ŷ|4p0〉 = i(1 − δm,0)〈3d||T̂ (1)||4p〉/
√

2, (B5)

〈3dm|ẑ|4p0〉 = δm,0〈3d||T̂ (1)||4p〉,
while for circular polarization they are given by

〈4p0|ε̂± · �̂r|3dm〉 = ±δm,∓1〈3d||T̂ (1)||4p〉∗. (B6)

The value of 〈3d||T̂ (1)||4p〉 is given in the main text.
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