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Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble-Zurek mechanism
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We introduce a simple criterion for lattice models to predict quantitatively the crossover between the classical
and the quantum scaling of the Kibble-Zurek mechanism, as the one observed in a quantum φ4 model on a
one-dimensional lattice [Phys. Rev. Lett. 116, 225701 (2016)]. We corroborate that the crossover is a general
feature of critical models on a lattice, by testing our paradigm on the quantum Ising model in transverse field for
arbitrary spin s (s � 1/2) in one spatial dimension. By means of tensor network methods, we fully characterize
the equilibrium properties of this model, and locate the quantum critical regions via our dynamical Ginzburg
criterion. We numerically simulate the Kibble-Zurek quench dynamics and show the validity of our picture, also
according to finite-time scaling analysis.
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I. INTRODUCTION

Understanding the behavior of correlated matter when a
physical system is driven out of equilibrium is a problem of
paramount importance in classical and quantum mechanics,
material science, and engineering. In particular, the Kibble-
Zurek (KZ) mechanism, the description of quasiadiabatic
quenches across a phase transition, has been studied both
in classical and quantum scenarios, spanning length scales
from atomic sizes to galaxies [1–19]. With the advent of
quantum technologies—enabled by recent advancements in
experimental platforms based on atomic, molecular, and opti-
cal physics—the KZ mechanism keeps being practical as well
as fundamental. Indeed, quasiadiabatic or beyond-adiabatic
[9,20] quenches are still the most straightforward method
for realizing complex quantum phases of matter in real ex-
periments and to perform adiabatic quantum computations,
e.g., quantum annealing to solve classical hard problems
[21,22]. Similarly, from a theoretical perspective, the KZ
framework is a key scenario to deeply understand the in-
terface between the classical macroscopic and the quantum
microscopic world, especially in the context of critical phe-
nomena and phase transitions, where the two worlds display
quantitatively and qualitatively different emergent collective
behaviors.

One particular example of the interplay, or rather com-
petition, between the classical and the quantum KZ mech-
anism was recently numerically observed in Ref. [23], by
some of the authors, in quenches across the linear-zigzag
phase transition of ion Coulomb crystals. They showed that
two distinct regimes of quench times τQ emerge: A slow
regime where the scaling of defects with τQ is governed by
a quantum theoretical description, and a fast regime where
the defects scale according to a mean-field theory prediction,

equivalent to a classical (zero-temperature) phase transition
treatment. The crossover timescale between these two regimes
(classical and quantum) can be roughly estimated by means
of the Ginzburg criterion [24], i.e., by comparing the order
parameter with its own fluctuations.

In this work we argue that such a crossover is not limited
to a specific model: We show that this effect appears in
the paradigmatic example for second order quantum phase
transitions—the one-dimensional (1D) Ising model in trans-
verse field—for any spin representation s. We first fully
characterize the phase diagram, and then analyze the KZ
mechanism of the model focusing on the quantum-classical
crossover for 1

2 � s � 5. As the Ginzburg criterion delivers
imprecise quantitative predictions for s � 1/2 (see Appendix
E), we propose a simple argument based on the properties
at equilibrium, the dynamical Ginzburg criterion (DGC), to
better predict at which quench times τ×

Q the crossover is
expected to occur in lattice models. This prediction is practical
and quantitative, allowing an arbitrary experimental platform
to quickly test whether the crossover timescales are reach-
able within the platform specifications and typical coherence
times.

II. THE KIBBLE-ZUREK ARGUMENT

The KZ picture predicts a scaling law of the density of
defects n during a linear quench across a phase transition, as
a function of the quench rate (or the total quench time τQ)
[1,2]. It is based on the assumption that at quasiequilibrium
the system has a response timescale τR(t ) which scales as
τR ∝ |h − hc|−νz with the distance from the critical point hc

of the driving parameter

h(t ) = hc + t�h/τQ, (1)
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controlling the Hamiltonian H (h). During the quench, the
system follows the adiabatic trajectory as long as the relax-
ation time τR is shorter than the driving timescale τD, that
is, the inverse relative rate of change of any scaling quantity
q of the system: τD = |q/q̇|. For a linear ramp quench, we
thus obtain τD ∝ |t |. As the system response slows down,
we encounter a specific instant t̂ (freeze-out time) when the
system abandons the adiabatic trajectory: The dynamics of the
order parameter thus freezes out, and the density of defects
n in the order is given by the equilibrium correlation length
ξ at this instant, n̂ = ξ−1[h(t̂ )] ∝ |h(t̂ ) − hc|ν . This occurs
when the response becomes slower than the driving, i.e.,
when τD(t̂ ) � τR(t̂ ). Combining all scaling laws delivers t̂ ∝
τ

νz/(1+νz)
Q , or equivalently |ĥ − hc| ∝ τ

−1/(1+νz)
Q with ĥ = h(t̂ ),

and in turn n̂ ∝ τ−κ
Q with the KZ exponent κ = ν/(1 + νz).

In this expression, ν and νz are the scaling exponents of
length scales and timescales, respectively, and they depend on
whether the order parameter is ruled by a classical or quantum
critical scaling.

A. The quantum scaling

In the quantum regime, outside of a quantum critical point,
the energy gap remains finite and directly determines the
relaxation timescale [7,8,25]. Precisely, at quasiequilibrium
where the system occupies mostly the ground state of the in-
stantaneous Hamiltonian H (t ), the slowest response timescale
of the system is given by τR � h̄/Egap(t ), where Egap is
the energy difference between the first excited state and the
ground state of H . Egap is an equilibrium property, and near
the critical point it scales with the control parameter, i.e., the
external field h, as Egap = ϕ|h − hc|νz. Equivalently, it scales
with the correlation length of the order parameter as Egap ∝
ξ−z. Consequently, the relaxation timescale τR scales with
the critical exponents {z, ν} from the quantum critical point
at equilibrium, which can be extracted by the corresponding
conformal field theory based on dimensionality and symmetry
breaking. For the universality class of the quantum Ising
model in one spatial dimension, these exponents are ν = z =
1, regardless of the local spin representation s, as verified
numerically in Appendix D. The KZ exponent of the quantum
regime is thus κ = 1/2.

B. The classical scaling

Conversely, in the mean-field (or classical) regime, the
scaling exponents of the relaxation timescale τR are well
described within Landau theory [26], and explicitly evaluated
in Ref. [27]. A simplified, intuitive picture to understand this
exponent can be obtained by considering a continuum clas-
sical field model, and the effective time-dependent Ginzburg
equation for the order parameter φ [28,29]. Specifically, by
requesting that the Ginzburg equation scales covariantly, we
are able to identify the corresponding scaling exponents for
τR and ξ with respect to h′ = h − hc. The Ginzburg equation
for a model with Ising criticality, a Z2 symmetry breaking, is
the one obtained from the Lagrangian of the φ4 model and
reads [29]

∂2
t φ − ∂2

x φ + h′φ + φ3 = 0, (2)

where we consider both noise and damping to be negligible.
We now perform the scale transformation

h′ → λh′, φ → λβφ, x → λ−νx, t → λ−νzt, (3)

and require covariance of the Ginzburg equation. This delivers
ν = 1/2 and z = 1 (as well as β = 1/2). The KZ exponent
of the classical regime is therefore κ = 1/3, quantitatively
different from the quantum case.

III. THE DYNAMICAL GINZBURG CRITERION

We adopt the following criterion to predict whether around
a given quench time τQ we expect to see the quantum or the
classical scaling: We first estimate quantitatively the corre-
lation length at equilibrium ξ̂ = ξ (ĥ) at the freeze-out point
ĥ for that specific quench time τQ. If this correlation length
is larger than the lattice spacing a [ξ̂ (τQ) � a], then we
expect to observe the quantum KZ scaling. Conversely, if
it is smaller [ξ̂ (τQ) � a] we expect to see the classical KZ
scaling. We motivate this criterion based on the following
argument: Consider a quantum system where the correlation
length ξ for some order parameter is smaller than the lattice
constant. Then, the properties of such order are not ruled by
entanglement, but only by local quantities. If the entangle-
ment does not play a role, then the mean-field picture is a
reliable description for this type of order. Therefore, during
the quench, if the system is not given sufficient time to build
up quantum correlations leading to a ξ̂ larger than the lattice
constant, then, at freeze-out, the mean-field description of the
order is still valid: We expect to observe the classical KZ
scaling resulting from the scaling exponents of the mean-field
(Ginzburg) picture. Conversely, if the quench times τQ are
sufficiently large so that ξ̂ is larger than a, then the order
properties at freeze-out are ruled by entanglement, thus the
quantum KZ scaling will emerge.

To make this argument quantitative, we start by estimat-
ing the dynamical quantum critical region, i.e., the value of
external field h× at which ξ̂ (h×) = a at equilibrium, which
lies in the disordered phase (see Fig. 1). We perform this
estimation via numerical simulations at equilibrium. Then
we exploit τR � h̄/Egap and Egap � ϕ|h − hc|νz, where the
scaling prefactor ϕ is calculated numerically. For estimating
the driving timescale τD we adopt τD � |ε(t )/ε̇(t )| = |t |,
where ε(t ) = h(t ) − hc [7]. Under these assumptions the KZ
equation τD(t̂ ) = τR(t̂ ) becomes

t̂ = h̄ |ĥ − hc|−νz/ϕ. (4)

Using the definition of the driving parameter h(t ) from Eq. (1),
the freeze-out time can also be expressed as

t̂ = (ĥ − hc) τQ/�h. (5)

Combining Eqs. (4) and (5) yields

τQ = h̄|�h|
ϕ|ĥ − hc|1+νz

, (6)

which allows to quantify the crossover quench time as

τ×
Q = h̄|�h|

ϕ|h× − hc|1+νz
, (7)
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FIG. 1. Phase diagram of the quantum Ising model (8) in 1D as a
function of the external field h and the inverse spin 1/s. The black
dots represent the phase transition points at the thermodynamical
limit estimated via the von Neumann entropy (see Appendix B),
while the solid black curve crossing them shows the fit hc(s) =
hc(∞) − ã(| ln s| − b̃)/s. These points separate the ferromagnetic
phase, with white background, from the paramagnetic phase, with
colored background. The crosses with error bars show the DGC
points h×, estimated numerically via DMRG. The dashed line is a
power-law fit in 1/s of the deviation h×(∞) − h×(s). The color in
the paramagnetic phase encodes the single-site entanglement entropy
SVN(ρ j ).

discriminating timescale regimes where the quantum
(τQ � τ×

Q ) or the classical (τQ � τ×
Q ) KZ scaling will

respectively emerge. As an additional requirement to
actually observe the classical KZ scaling, the quench must
start outside the dynamical quantum critical region or the
mean-field description will never be valid: This translates
to a condition on the parametric quench interval, which
reads |�h| � |h× − hc|. The parametric DGC point h× is
thus a relevant point in the phase diagram, representing
where the correlation length is equal to the lattice spacing, at
equilibrium in the disordered phase.

IV. NUMERICAL RESULTS

In the following we discuss numerical results corroborat-
ing the validity of the DGC criterion. We consider a one-
dimensional lattice of spin-s sites with the Ising Hamiltonian,
with ferromagnetic interaction and transverse field h > 0,

H (s, h) = − 1

s2

L∑
j=1

Sx
j S

x
j+1 + h

s

L∑
j=1

Sz
j, (8)

where Sμ
j are the spin-s matrices at site j, satisfying

[Sk
j , Sl

j′ ] = iSm
j εklmδ j j′ and Sx

j
2 + Sy

j
2 + Sz

j
2 = s(s + 1)1, with

h̄ = 1 henceforth. The prefactors 1/s and 1/s2 ensure that the
whole class of Hamiltonians H (s, h) yields exactly the same
mean-field treatment for all s (see Appendix A). We carry out
simulations for the model in Eq. (8) using DMRG for tree
tensor networks for ground-state properties [30–32], and the
time-evolving block decimation (TEBD) algorithm [33,34]
featuring RSVD compression [35,36] for out-of-equilibrium

dynamics, respectively. We adopt a tensor network (TN)
encoding which protects the Z2 parity symmetry

� = exp

⎛
⎝iπ

L∑
j=1

(
s − Sz

j

)⎞⎠. (9)

The system size L in the simulations is chosen large enough
to guarantee that finite size effects do not affect the presented
results.

A. Equilibrium simulations

We perform equilibrium simulations to characterize the
phase diagram for all s, in order to detect the DGC point
h×(s), in addition to the critical point hc(s). While the critical
exponents ν = 1 and z = 1 are independent of s in proximity
of hc, it can be shown that order correlations scale as 1/s (see
Appendix C). Moreover, hc increases monotonically with s,
with extrema at the limiting cases hc(1/2) = 1 and hc(∞) =
hMF

c = 2, where hMF
c is the critical point of the mean-field

treatment of the model, which is independent of s (see
Appendix A). The exact form of the dependence of the
deviation from the mean-field value ε(s) = hMF

c − hc(s) on
the strength of the quantum fluctuations has been shown to
be given by [37]

ε(s) = ã

s
(|ln s| − b̃), (10)

where ã, b̃ are nonuniversal fit constants. In Fig. 1 we nu-
merically verify this behavior by plotting the location of the
critical points for various values of s, together with the fitted
function. The resulting fit parameters are ã ≈ 0.28 and b̃ ≈
−2.4. Additionally, we highlight the critical region by plotting
the von Neumann entropy SVN(ρ j ) of the single-body reduced
density matrix ρ j , in the paramagnetic phase: We observe
that only inside the critical region the entropy grows above
10%. Finally, Fig. 1 contains the location of the DGC points,
obtained from the condition ξ (h×) = a = 1. Here ξ is the
correlation length derived from the ferromagnetic correlation
matrix Cj,k = 〈Sx

j S
x
k 〉/s2. We numerically estimate ξ via

ξ =
√√√√∑

r=1

(r − 1)2C(r)

/∑
r=1

C(r), (11)

where

C(r) = 1

L − r

L−r∑
j=1

Cj, j+r (12)

is the spatially averaged correlation function [38]. One can
show (see Appendix C) that h×(s → ∞) = 2 cosh(1). For
finite s, the trend towards this limit value seems to be well
approximated by a power-law decay h×(s) = h×(s → ∞) −
c̃ s−η̃, yielding fitted constants c̃ ≈ 0.31 and η̃ ≈ 0.52. Re-
markably, the DGC delivers a finite interval [2, 2 cosh(1)] of
the quantum critical region in the quasiclassical limit s → ∞,
in contrast to the traditional Ginzburg criterion.
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FIG. 2. Comparison between estimated and observed KZ
crossover quench times, for L = 128 and two different spins: s = 1/2
(top panel) and s = 5 (bottom panel). Both panels show the crossover
between the classical KZ scaling κ � 1/3 and the quantum KZ
scaling κ � 1/2, which allows us to identify the observed crossover
quench time τ̄×

Q , where the two power laws intersect (blue arrow).
The red arrow shows the estimated crossover quench time, obtained
from Eq. (7) via the DGC. Data points are shown for different
bond dimensions m and numbers of TEBD time steps n, in order
to demonstrate numerical convergence of the simulation data. The
plateau at extremely short timescales corresponds to the sudden-
quench defect bound, given by the initial correlation length ξ (hini )
(green arrow).

B. Out-of-equilibrium simulations

We performed numerical simulations of the many-body dy-
namics generated by the linearly quenched Ising Hamiltonian
of Eq. (8). We considered various values of s and system
sizes L of the order of 102 sites, using a fixed quench interval
from hini = 30 (deep in the paramagnetic phase) to hfin = 0.5
(in the ferromagnetic phase). We use the correlation length
ξ of the final state as inverse defect measure. The results of
the simulations, for two different values of the spin quantum
number (s = 1/2 and s = 5), are reported in Fig. 2. Both
scenarios deliver the predicted behavior: For small quench
durations, the fitted KZ exponent is very close to κ = 1/3,
while for long quenches it is very close to κ = 1/2. The
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FIG. 3. Finite-time scaling of the (inverse) density of defects
during the quench, for s = 1/2. The curves show the correlation
length as a function of time, for various total quench times τQ,
where the axes have been rescaled according to Eq. (13) for two
different sets of critical exponents: the classical ones (top panel)
and the quantum ones (bottom panel). As expected, only the curves
corresponding to quench times shorter (longer) than the crossover
quench time, signaled by warm colors (cold colors), collapse into a
main trend, while the other curves are outliers.

observed crossover quench time τ̄×
Q between the two regimes

is well approximated by the τ×
Q estimated from Eq. (7), where

ϕ has been determined for the accessible gap (see Appendix
D 3) [7].

To further strengthen our results, we perform a finite-time
scaling (FTS) analysis [39,40], the out-of-equilibrium analog
of the finite-size scaling analysis [41]. Within this framework,
we fully embrace the KZ approximation, according to which
the evolution is adiabatic until freeze-out, while the order
properties stay constant afterwards. In this picture, the time-
dependent correlation length ξ (t ) during the quench must
undergo the following scaling:

ξ (t ) � τ
ν

1+νz
Q f

(
t τ

− νz
1+νz

Q

)
, (13)

as long as ξ < L, where f (·) is a nonuniversal function.
This expression guarantees that t̂ , ξ (0), and ξ (t̂ ) scale with
τQ with the correct KZ exponents. In Fig. 3 we observe a
collapse of the curves ξ (t ) according to Eq. (13). Again, we
observe excellent agreement with our predictions: When using
the quantum critical exponents z = ν = 1 (classical critical
exponents z = 2ν = 1) we observe a collapse only of the
curves with quench times longer (shorter) than the estimated
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crossover τQ > τ×
Q (τQ < τ×

Q ), while the other curves being
clear outliers.

V. CONCLUSION

We proposed a general, yet simple criterion based on
quantitative equilibrium properties to predict the timescale at
which the crossover between a classical KZ scaling of defects,
and a quantum KZ scaling, is expected to occur for linear
quenches on nearest-neighbor interacting lattice models. Our
DGC simply discriminates whether the correlation length
at freeze-out is longer or shorter than the lattice constant,
resulting in a quantum or classical scaling, respectively. We
tested our conjecture on the spin-s quantum Ising model class
in 1D, and observed remarkable agreement with the DGC
estimation.

This study puts more solid ground on the phenomenon
of the quantum-classical KZ crossover. Moreover, the DGC
criterion is a ready-to-use estimator, for any quantum lat-
tice experiment of quench dynamics, to quickly understand
whether the quantum KZ regime is accessible within its
experimental specifications. We estimate that our conjecture
could be readily verified experimentally on atomic quantum-
simulator platforms, such as analog quantum simulators on
trapped ion architectures [42,43], or Rydberg atoms trapped
in arrays of optical tweezers [44] where recently the first
observation of a genuinely quantum KZ mechanism was made
[45].
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APPENDIX A: MEAN-FIELD EQUIVALENCE
OF THE SPIN-s ISING MODEL

In this Appendix we show that the single-body mean-field
(SBMF) solution of the spin-s Ising model in 1D, given by
Eq. (8), is independent of s. In the SBMF ansatz, the reduced
density matrices decompose into their single-body compo-
nents ρ j, j′ = ρ j ⊗ ρ j′ , which will be homogeneous ρ j =
ρ j′ ∀ j, j′ since the ferromagnetic interaction we consider does
not spontaneously break translational invariance. We now
prove that, regardless of the spin s, the critical point is always
at hMF

c = 2 and the order parameter is 〈O〉 = 1
2

√
4 − h2 for

h � 2 while 〈O〉 = 0 for h � 2, where O = 1
s Sx. To do this,

we first derive the spin-1/2 solution and then show that larger
spins lead to an analogous classical minimization functional.

1. Spin-1/2

In this scenario we explicitly write the single-spin density
matrix ρ j = 1

21 + �r
2 · �σ , where now �σ = 1

s
�S is the vector of

Pauli matrices, and O = σ x. Positivity of the density matrix
requires |�r| � 1, and clearly 〈σ x〉 = rx while 〈σ z〉 = rz. In
order to respect the bound r2

x + r2
z � |�r| � 1 we use the

parametrization rx = r cos θ and rz = r sin θ , with r ∈ [0, 1].
The SBMF functional to minimize then reads

〈H (1/2, h)〉MF = − 1

s2
〈Sx〉2 + h

s
〈Sz〉

= −〈σ x〉2 + h〈σ z〉 = −r2 cos2 θ + hr sin θ.

(A1)

The solution will definitely be in the interval θ ∈ [−π, 0],
since for any θ value within [0, π ], the angle θ ′ = −θ returns
an equal or better value of the functional. Within this interval,
both summands in the expression (A1) will be negative.
Therefore, the global minimum will be at r = 1, and the
coordinates of the optimal solution can be given analytically:

rmin = 1,

θmin =
{− arcsin

(
h
2

)
, for 0 � h � 2,

−π
2 , for h � 2,

(A2)

while the minimized energy functional is equal to

〈H (1/2, h)〉min
MF =

{
−1 − h2

4 , for 0 � h � 2,

−h, for h � 2,
(A3)

and the order parameter is 〈O〉 = 1
2

√
4 − h2. Interestingly,

the corresponding critical exponent β, which relates to the
spontaneous local order 〈O〉 ∼ (hc − h)β , corresponds to β =
1/2 for the SBMF transition, in contrast to the known β = 1/8
of the full quantum treatment [47].

2. Spin-s

Here we show that the SBMF treatment leads to minimiz-
ing a functional equivalent to Eq. (A1). We first prove that
|〈�S〉|2 � s2, which is strictly smaller than 〈|�S|2〉 = s(s + 1).
This is seen by setting �a = 〈�S〉 and then noticing that

�a · �a =
(

�a · �a
|�a|

)2

= 〈�S · �a/|�a|〉2. (A4)

Since now �a/|�a| is a vector of modulus one, we know that
�S · �a/|�a| is a rotated spin-s matrix, and its spectrum is between
−s and s. It follows that −s � 〈�S · �a/|�a|〉 � s, and therefore
〈�S · �a/|�a|〉2 = |〈�S〉|2 � s2. This means that

1

s2
〈Sx〉2 + 1

s2
〈Sz〉2 � 1 (A5)

regardless of s. And since Eq. (A2) is the most generic
solution of the functional (A1) under this constraint, we can
conclude that spin s cannot exhibit a better solution than
Eq. (A2). Moreover, let us now show that this solution exists
for every s: Specifically, we consider the spin-s subclass of
states

|θ〉 = ei(π/2−θ )Sy |m = +s〉 (A6)
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parametrized by θ ∈ [0, 2π ]. These states exhibit by construc-
tion 〈Sx〉 = s cos θ and 〈Sz〉 = s sin θ . The solution given by
Eq. (A2) thus exists and minimizes the SBMF functional,
which makes it the minimal solution for all s.

APPENDIX B: PROCEDURE FOR DETERMINING
THE CRITICAL POINT

The critical points hc shown in Fig. 1 haven been numeri-
cally obtained from TN simulations via the following proce-
dure: Precisely at the critical point, the von Neumann entropy
in a system of size L with periodic boundary conditions (PBC)
is known to scale like [48]

SVN(�) = c

3
log2[crd(�)] + c′

1 (B1)

as a function of the partition size �, with crd(�) =
L/π sin(π�/L). Here c is the conformal central charge (for
the Ising universality class we have c = 1/2) and c′

1 is a
nonuniversal constant. The strategy is now to fit the numerical
data to this expression for various values of the field strength
h, in order to probe agreement with the critical scaling. The
value of h where the fit displays maximal agreement, quanti-
fied by the fit’s root mean square deviation �RMS, represents
the location of the critical point hc. This procedure is shown in
Fig. 4, for two different values of s, and various system sizes
L and TN bond dimensions m.

APPENDIX C: ANALYTICAL SOLUTION FOR LARGE s
VIA HOLSTEIN-PRIMAKOFF TRANSFORMATION

We employ the Holstein-Primakoff (HP) transformation
[49]

Sz
j = a†

j a j − s,

S+
j =

√
2s a†

j

√
1 − a†

j a j/(2s), (C1)

S−
j =

√
2s

√
1 − a†

j a j/(2s) a j,

with S±
j = Sx

j ± iSy
j the raising and lowering operators as

usual, and a j (a†
j ) is a bosonic annihilation (creation) operator.

We expand the square roots in Eq. (C1) to lowest order:

S+
j �

√
2s a†

j , S−
j �

√
2s a j, (C2)

which is a good approximation for sufficiently large s.
Note that this transformation from a finite- to an infinite-
dimensional Hilbert space is only faithful for states which
populate exclusively one end of the level spectrum of Sz

j . Thus,
for the spin-s Ising model, this transformation is only useful
in the paramagnetic phase, while in the ferromagnetic phase
it fails to preserve the physics of the model. Via this transfor-
mation, we obtain from the original spin Hamiltonian defined
in Eq. (8) the following bosonic quadratic Hamiltonian:

HHP = − 1

2s

L∑
j=1

(a ja j+1 + a ja
†
j+1) + H.c.

+ h

s

L∑
j=1

a†
j a j − L h. (C3)
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FIG. 4. Determination of the critical field strength hc for s = 2
(top) and s = 20 (bottom), using different system sizes L and TN
bond dimensions m.

In order to diagonalize HHP, we first perform a transformation
to k space, using a new set of bosonic operators:

ãk = 1√
L

L∑
j=1

e−ik j a j, k ∈
{

2π

L
m | m = −L

2
· · · L

2
− 1

}
,

a j = 1√
L

∑
k

eik j ãk . (C4)

After applying this transformation, the Hamiltonian Eq. (C3)
becomes

H̃HP = 1

s

∑
k

[h − cos(k)]ã†
k ãk

− 1

2s

∑
k

(e−ik ãk ã−k + H.c.) − L h. (C5)

Finally, we use a Bogoliubov transformation [50]

bk = cosh(φ) ãk − sinh(φ) ã†
−k,

ãk = cosh(φ) bk + sinh(φ) b†
−k, (C6)

which diagonalizes H̃HP, if the parameter φ is chosen such
that it satisfies the relation tanh(2φ) = cos(k)/[h − cos(k)].
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FIG. 5. Comparison of the numerically determined GS energies
in the paramagnetic phase with the large-s HP result Eq. (C8), and
with the GS energies from the linear approximation elin

0 = −h. The
TN simulations have system size L, bond dimension m, and either
open (OBC) or periodic boundary conditions (PBC).

The resulting diagonal Hamiltonian then reads

HBog = h

s

∑
k

√
1 − 2 cos(k)/h b†

kbk

− h

4s

∑
k

(
√

1 − 2 cos(k)/h − 1)2 − L h. (C7)

From HBog one immediately obtains the ground state (GS)
energy per site e0 = E0/L. For L → ∞, i.e., in the thermo-
dynamic limit, it reads

e0 = 1

s

(
1

π

√
h(h + 2) E [4/(h + 2)] − h

2

)
− h, (C8)

where E [x] is the complete elliptic integral of the second kind

E [x] =
∫ π/2

0

√
1 − x sin2(θ ) dθ. (C9)

Figure 5 shows a comparison of the expression Eq. (C8)
with numerically determined GS energies in the paramagnetic
phase. We observe (see Fig. 5) that the GS energies obtained
from the HP approximation have an error of order O(1/s2),
i.e., they are the next-order correction to the linear GS energy
elin

0 = −h, which is exact in the limit h → ∞ and has an error
of O(1/s) for finite h.

10−3

10−2

10−1

2 10

|E
L

,m
g
a
p

−
E

a
p
p

g
a
p
|

h

s = 5, OBC

app =, L =, m =
HP, 128, 80
HP, 256, 80
HP, 512, 60
HP, 512, 80
lin, 128, 80
lin, 256, 80
lin, 512, 60
lin, 512, 80

10−4

10−3

10−2

10−1

100

0.01 0.1 1

∝ (1/s)ηlin

∝ (1/s)ηHP

|E
L

,m
g
a
p

−
E

a
p
p

g
a
p
|

1/s

h = 3.0, PBC

app =, L =, m =
HP, 128, 60
HP, 256, 60
HP, 256, 80

ηHP = 1.9
lin, 128, 60
lin, 256, 60
lin, 256, 80

ηlin = 0.9

FIG. 6. Comparison of the numerically determined energy gaps
with the large-s HP result Eq. (C10), and with the gaps predicted by
the linear approximation E lin

gap = (h − 1)/s.

According to HBog, the energy gap to the first excited state
is

Egap = h

s

√
1 − 2/h. (C10)

Figure 6 shows a comparison of this expression with numeri-
cal data, demonstrating again its improved accuracy over the
expression E lin

gap = (h − 1)/s, valid in the limit h → ∞.
The sequence of transformations outlined above also al-

lows to calculate the GS correlation function C(r). This
can be achieved by considering the expectation value
〈�0|

∑
j Sx

j S
x
j+r |�0〉/Ls2, where |�0〉 is the GS. After again

transforming the spin operators to the set of Bogoliubov
operators {bk}, {b†

k}, one readily obtains (for L → ∞)

C(r) = 1

2s

1

2π

∫ π

−π

cos(rk)√
1 − 2 cos(k)/h

dk. (C11)

The solution of this integral can be written as the following
series:

C(r) = 1

2s

√
h

h + 2

×
∞∑

n=r

[(2n)!]2

(n − r)! (n + r)! [n!]2

(
1

4(h + 2)

)n

.

(C12)

A comparison of this expression with correlation functions
obtained from TN simulations is shown in the top panel of
Fig. 7, for a fixed field strength h = 3. As expected, the larger
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FIG. 7. Top panel: Comparison of correlation functions from TN
simulations with the large-s HP result Eq. (C12) (orange points), for
fixed field strength h = 3 and two different spin quantum numbers
s = 2 (squares) and s = 50 (circles). The inset shows how ξr (as
defined in Eq. (C13) approaches the constant [arcosh(h/2)]−1 (gray
line) for r → ∞. Bottom panel: Comparison of the HP correlation
length Eq. (C14) with TN correlation lengths, as a function of the
field strength h and for various s. The inset shows the same data,
but now plotting the differences between the TN curves and the HP
curve.

the spin quantum number s, the better the agreement. Or,
in other words: Eq. (C12) becomes exact (but also trivial)
for s → ∞. One can show that the ratio C(r)/C(r + 1) ap-
proaches a constant for r → ∞, allowing one to calculate the
correlation length

ξr = 1

log[C(r)/C(r + 1)]
(C13)

by taking the limit r → ∞. This leads to

ξ (h) = 1

log[h/2 +
√

h2/4 − 1]
= 1

arcosh(h/2)
. (C14)

Note that this expression for ξ (h) does not contain s, meaning
that our lowest-order expansion of the HP transformation fails
to capture the s dependence of the correlation length. Never-
theless, Eq. (C14) is still quite useful because the convergence
of the numerical correlation lengths (determined from TN
simulations) to Eq. (C14) is rather fast with increasing s: This

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

s

zν = 1
zν

c = 1/2
c

FIG. 8. Universality of the phase transition: numerically deter-
mined central charge c and energy gap exponent zν as a function of
the spin quantum number s.

is demonstrated in the bottom panel of Fig. 7, where TN
data is compared to Eq. (C14). Moreover, Eq. (C14) allows
us to easily calculate the DGC point h× in the limit s →
∞: Since by definition ξ (h×) = 1, we immediately arrive at
h×(s → ∞) = 2 cosh(1).

APPENDIX D: EQUILIBRIUM PROPERTIES
OF THE SPIN-s ISING MODEL

Here we discuss in more detail the (zero temperature)
equilibrium properties of the spin-s Ising model as defined in
Eq. (8). Because of

[
Sa

j

s
,

Sb
j′

s

]
= iδ j j′εabc

Sc
j

s

1

s
, a, b, c ∈ {x, y, z}, (D1)

the quantum frustration of the Hamiltonian terms decreases
for increasing s, and the inverse spin 1/s can be interpreted
as an “effective h̄.” For s → ∞ this effective h̄ vanishes. The
“rescaled” spin operators Sa/s have a bounded spectrum of
equispaced eigenvalues in the interval [−1, 1], which in the
limit s → ∞ becomes continuous. These observations justify
the statement that for s → ∞ the spin-s Ising model becomes
quasiclassical: All operators commute with each other, and
the quantization of expectation values disappears. Via mean-
field theory, which becomes exact for infinitely large s, it
can be shown (see Appendix A) that for s → ∞ the model
has a critical point at |hc| = 2, separating the ferromagnetic
phase |h| < 2 with nonvanishing ferromagnetic local order
parameter

M =
√√√√ 1

L(L − 1)

∑
j �=k

〈
Sx

j S
x
k

〉
s2

(D2)

from the paramagnetic phase |h| > 2 with vanishing M at
L → ∞. The other limiting case, namely s = 1/2, can also
be solved analytically, via a mapping to free fermions [51].
The quantum phase transition in this case occurs at |hc| = 1.
For all other finite values of s we resort to numerical tensor
network (TN) simulations based on the DMRG algorithm
[31,52] in order to determine the critical point and other
quantities of interest.
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FIG. 9. Phase diagram as a function of the transverse field h
and the inverse spin 1/s: The critical points hc separate the fer-
romagnetic phase (h < hc) from the paramagnetic phase (h > hc).
The color in the paramagnetic phase indicates the magnitude of the
nearest-neighbor correlations, visualizing the vanishing of quantum
fluctuations for s → ∞ or h → ∞. The crosses mark the values
h× at which the correlation length ξ equals one lattice site, i.e.,
ξ (h ≶ h×) ≷ 1.

1. Quantum phase transition and critical behavior

We start by characterizing the quantum phase transition
of the model, occurring for all finite values of s. As a con-
sequence of scale invariance in the vicinity of the quantum
critical point, the physics of the model at the transition is
insensitive to microscopical details. It is therefore completely
determined by its underlying conformal field theory, which
in turn is determined by the model’s universality class. The
universality class of a model only depends on the symmetries
that are broken at the phase transition, and the dimensionality
of the model. Since the broken symmetry of the Ising model
is always Z2, and we are always working in one spatial
dimension, it is to be expected that the critical properties
of the model do not depend on s. In particular, the critical
exponents ν and z (determining the power-law scalings of
the correlation length ξ ∝ |h − hc|−ν and of the energy gap
Egap ∝ |h − hc|zν), as well as the central charge c, should be
constant. In Fig. 8 we verify that this is indeed the case:
For all values of s, the numerically determined values of the
aforementioned quantities are compatible with ν = 1, z = 1,
and c = 1/2, corresponding to the so-called Ising universality
class.

On the other hand, we have argued above that the strength
of the quantum fluctuations (the effective h̄) is proportional
to 1/s. This means that the interval around the critical point
where quantum fluctuations are predominant (critical region)
is shrinking for increasing s. Another immediate consequence
of reduced quantum fluctuations is a shift of the critical
point hc towards larger values: The smaller the quantum
fluctuations, the larger the transverse field strength hc required
to completely destroy the ferromagnetic order. In Fig. 9 we
show the shrinking of the critical region on the paramagnetic
side of the phase diagram by plotting the nearest-neighbor
correlations Cj, j+1 = 〈Sx

j S
x
j+1〉/s2. This serves as a witness

of quantum fluctuations because only their presence allows
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h× − hc = 1.1

ν = 0.90

lo
g
1
0
ξ

log10(h − hc)

s = 5

L =, m =
128, 80
256, 60
256, 80
512, 60
512, 80

1024, 80

FIG. 10. Numerically determined correlation lengths in the para-
magnetic phase, for s = 5 and various system sizes L and bond
dimensions m. The blue line is a power-law fit in order to determine
the critical exponent ν close to the phase transition.

Cj, j+1 to be nonvanishing in the paramagnetic phase. An
alternative way to evidence quantum fluctuations, namely via
an entanglement measure, is given by the color plot in Fig. 1.
There the von Neumann entropy SVN(ρ j ) of the single-body
density matrix ρ j is plotted. More precisely,

ρ j = Tr{1,...,L}\ j |�0〉〈�0|, (D3)

where |�0〉 is the ground state of the spin-s Ising Hamiltonian,
and the trace runs over all sites except j.

2. Behavior of the correlation length

Valuable information on the spatial extent of correla-
tions of a given ground state is provided by its correlation
length ξ . It can be obtained by considering the two-site
correlations Cj,k = 〈Sx

j S
x
k 〉/s2 and the corresponding correla-

tion function C(r) = Cj, j+r . In the paramagnetic phase this
correlation function decays exponentially, i.e., according to
C(r) ∝ exp(−r/ξ ), for r large enough. In Fig. 10 we show

Egap
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FIG. 11. Energy gap Egap in the paramagnetic phase, as a func-
tion of the transverse field h and the inverse spin 1/s.
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FIG. 12. Top panel: Numerically determined energy-gap open-
ing in the paramagnetic phase, for s = 5 and various system sizes
L and bond dimensions m. The blue line is a power-law fit in order
to determine the critical exponent zν close to the phase transition.
The inset shows the numerically determined ϕ(s), together with a
power law with fitted exponent η. Bottom panel: Ratio between the
accessible energy gap E ′

gap and the energy gap Egap, demonstrating
E ′

gap = 2Egap, apart from finite-size effects.

numerically determined correlation lengths ξ (h), using the
example s = 5. Close to the phase transition, i.e., for
|h − hc| � 1, this data can be used to determine the critical
exponent ν. The numerically determined value ν ≈ 0.9 is
indeed compatible with the quantum prediction ν = 1. On the
other hand, far from the phase transition, ξ tends to zero.
Based on the definition of the DGC outlined in Sec. III,
we determine h× via the condition ξ (h×) = 1: For h > h×,
quantum correlations are negligible and the ground state of
the model is very similar to a classical paramagnet.

3. Behavior of the energy gap

We now investigate the energy gap Egap = E1 − E0 (where
E0 is the ground state energy and E1 is the energy of the first
excited state), again as a function of both h and s. Figure 11
shows numerical data for Egap in the paramagnetic phase.
Egap(h) vanishes for s → ∞, as expected for a classical model
made from constituents with a continuous energy spectrum.
Or, stated differently, for s → ∞ excitations of arbitrarily
small energy are possible because quantization vanishes. For
all finite s, Egap(h) scales linearly in the field strength both in
immediate proximity to the phase transition, where

Egap(|h − hc| � 1) = ϕ(s) |h − hc| (D4)
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FIG. 13. Extension of Fig. 2, which includes the naive crossover
timescales τ̃×

Q (brown dashed arrows), predicted by using the mean-
field critical point h′

× = 2 as the phase crossover point.

(using zν = 1), and far from the phase transition, where

Egap(h � 1) = 1

s
(h − 1), (D5)

as can be seen, for example, from the HP treatment outlined in
Appendix C. We verified numerically that ϕ(s) > 1/s, i.e., for
intermediate values of h there is a transition from the steeper
slope ϕ(s) to the smaller slope 1/s [except for the limiting case
s = 1/2, where ϕ(s) = 1/s = 2]. This behavior is illustrated
in Fig. 12, using again the example s = 5. Moreover, in the
inset of Fig. 12 we show via a fit that ϕ(s) ≈ √

2/s.
Finally, we note that for accurate predictions of the

crossover quench time τ×
Q , the relevant quantity is the energy

difference E ′
gap between the ground state and the lowest ac-

cessible excited state (i.e., of equal parity) at the freeze-out
point, which in the paramagnetic phase of the Ising model is
about twice the gap [7]. In the thermodynamic limit L → ∞,
E ′

gap = 2Egap is strictly true for s = 1/2 [51] and s → ∞ (see
Appendix C), and we verified numerically that for h = h× it
remains practically exact in all of our simulations (see lower
panel of Fig. 12 for s = 5). Accordingly, in Eq. (7) we use
ϕ = 2ϕ(s).
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APPENDIX E: COMPARISON BETWEEN DGC
AND “TRADITIONAL” GINZBURG CRITERION

Here we show numerical evidence that our strategy for
estimating the crossover timescale τ×

Q , summarized by Eq. (7),
delivers better predictions than more naive approaches, at least
for the class of quantum models considered here. Specifically,
in Ref. [23] the crossover timescale τ×

Q was estimated by

using the mean-field critical point h′
× = hMF

c = 2 as the phase
crossover point, instead of the equilibrium point h× where
the correlation length matches the lattice spacing. In Fig. 13
we explicitly show that our estimator delivers more accurate
quantitative predictions of the crossover, especially in the case
of large spin s, where |h× − hc| and |h′

× − hc| differ by orders
of magnitude.
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