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Influence of excited state decay and dephasing on phonon quantum state preparation
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The coupling between single-photon emitters and phonons opens many possibilities to store and transmit
quantum properties. In this paper, we apply the independent boson model to describe the coupling between
an optically driven two-level system and a discrete phonon mode. Tailored optical driving allows not only to
generate coherent phonon states, but also to generate coherent superpositions in the form of Schrödinger cat states
in the phonon system. We analyze the influence of decay and dephasing of the two-level system on these phonon
preparation protocols. We find that the decay transforms the coherent phonon state into a circular distribution in
phase space. Although the dephasing between two exciting laser pulses leads to a reduction of the interference
ability in the phonon system, the decay conserves it during the transition into the ground state. This allows to
store the phonon quantum state properties in the ground state of the single-photon emitter.
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I. INTRODUCTION

The link between nanophotonics and phononics has re-
cently been gaining more and more attention. The reason
is that many promising studies have shown that phonons—
besides giving rise to dephasing of optical transitions in
nanosystems [1,2]—offer a robust and controllable way to
act on nanosystems. It has been demonstrated that externally
excited surface acoustic waves [3–6] or coherent bulk acoustic
waves [7] can be used to tune the transition energies of single-
photon emitters, such as excitons in quantum dots or defect
centers in diamond [8]. For example, based on this modulation
of the transition energy, the output of a semiconductor micro-
cavity laser can be either enhanced or completely switched off
[9,10].

The coupling between electrons and phonons can also be
utilized in the opposite way. As a consequence of rapid op-
tical excitations of such single-photon emitters, phonons are
generated [11]. Whereas the excitation of acoustic phonons
leads to the emission of phonon wave packets [12–14], longi-
tudinal optical (LO) phonons are characterized by a negligible
dispersion and, therefore, cannot leave the region of creation.
In Ref. [15], it was shown that a single ultrafast optical
excitation may lead to the generation of coherent LO phonon
states whereas two-pulse sequences can be used to generate
Schrödinger cat states. Considering the LO phonon energies,
which are in the range of tens of meV for typical III–V
semiconductors [16] or even at a few hundreds of meV for
hexagonal boron nitride [17], the phonon-related timescales
are typically much faster than characteristic radiative decay
or dephasing times of the corresponding single-photon emit-
ters. Therefore excited state decay and dephasing are usually
neglected in this context.

However, LO phonons are not the only discrete vibration
mode that can be coupled to single-photon emitters. In the
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field of optomechanics, the eigenmodes of micrometer-sized
solid-state resonators are investigated [18,19]. Compared to
LO phonon modes where the atomic masses determine the
characteristic frequencies, the large resonators have huge
masses resulting in very small frequencies [20–23]. The cou-
pling between such resonators and single-photon emitters has
already been studied theoretically [24,25] and experimentally
[23,26]. Because of the low oscillator frequencies, here the
decay timescales of the single emitters become comparable
with the phonon-related timescales. Hence, when consider-
ing phonon state preparation protocols by optical excitation
of quantum dot excitons or defect centers interacting with
large resonator systems, spontaneous decay, e.g., by photon
emission, and dephasing have to be taken into account. In this
paper, we systematically discuss this influence. We will show
that, although excited state decay and dephasing only act on
the electronic system, depending on the excitation conditions,
they may strongly influence the quantum state of the coupled
phonons. This influence also opens up new possibilities to
generate specific phonon quantum states.

II. THEORY

A. Model

We consider a two-level system (TLS), representing the
single-photon emitter, coupled to a single discrete phonon
mode. Since the energy of the phonon mode is typically much
lower than the transition energy of the TLS and phonons,
therefore, do not lead to transitions between the ground and
the excited states, we describe the optically driven coupled
emitter-phonon system by the standard single-mode indepen-
dent boson Hamiltonian,

H = h̄�|x|〈x| − [M · E(t )|x〉〈g| + M∗ · E∗(t )|g〉〈x|]
+ h̄ωphb†b + h̄g(b + b†)|x〉〈x|, (1)

where |g〉 and |x〉 denote the ground and excited states of
the TLS, respectively, and h̄� is the transition energy. The
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bosonic operators b and b† act on a single-phonon mode
with energy h̄ωph and corresponding oscillation period tph =
2π/ωph. The optical transitions, treated in terms of the usual
rotating-wave and dipole approximations, are mediated by
the dipole matrix element M and the optical field E(t ). The
phonon coupling to the TLS is treated via the pure dephas-
ing mechanism with the coupling strength g, taken to be
real.

In addition we include excited state decay, e.g., by means
of radiative decay due to the coupling to the photon vacuum,
and pure dephasing, e.g., due to the influence of a fluctu-
ating environment, which are both assumed to be Marko-
vian processes described by two phenomenological Lindblad
dissipators [27],

Di(ρ) = ηi
[
(AiρA†

i ) − 1
2 {A†

i Ai, ρ}], (2a)

with

Axd = |g〉〈x|, ηxd = �, (2b)

Apd = |x〉〈x|, ηpd = 2β̃. (2c)

Here, � is the excited state decay rate, labeled as xd and β̃

is the pure dephasing rate labeled as pd.

B. Equations of motion

Based on the Hamiltonian (1) and the Lindblad dissipators
(2), the equation of motion for the density matrix of the
coupled electron-phonon system reads

d

dt
ρ = 1

ih̄
[H, ρ] + Dxd(ρ) + Dpd(ρ). (3)

As has been discussed in Ref. [28] for the single-mode case
and in Ref. [29] for the multimode case, the quantum state
of the coupled electron-phonon system can be completely
described in terms of three generating functions for phonon-
assisted density matrices defined according to

Y (−α∗, α, t ) = 〈|g〉〈x| exp(−α∗b†) exp(αb)〉, (4a)

C(−α∗, α, t ) = 〈|x〉〈x| exp(−α∗b†) exp(αb)〉, (4b)

F (−α∗, α, t ) = 〈exp(−α∗b†) exp(αb)〉. (4c)

Based on the general equation of motion (3), the equations
of motion for the generating functions can be derived leading
to

ih̄Ẏ = h̄[� + ωph(α∂α − α∗∂α∗ )

+ g(α + ∂α − ∂α∗ )]Y

+ M · E(2C − F ) − ih̄βY, (5a)

ih̄Ċ = h̄[ωph(α∂α − α∗∂α∗ ) + g(α + α∗)]C

+ M∗ · E∗Y − M · EY T − ih̄�C, (5b)

ih̄Ḟ = h̄ωph(α∂α − α∗∂α∗ )F + h̄g(α + α∗)C, (5c)

where β = β̃ + �/2 and Y T (−α∗, α, t ) = Y ∗(α∗,−α, t ).
Following Ref. [28], by introducing Y (α, t ) = Y (−α∗, α, t )
(and corresponding definitions for C and F ), the di-
mensionless phonon coupling strength γ = g/ωph and the

polaron-shifted transition energy � = � − γ 2ωph and using
the transformations,

Y (α, t ) = exp(i�t + γαeiωpht )Y (αeiωpht − γ , t ), (6a)

C(α, t ) = exp[i2γ Im(αeiωpht )]C(αeiωpht , t ), (6b)

F (α, t ) = F (αeiωpht , t ), (6c)

E (t ) = 1

h̄
M · E(t )ei�t , (6d)

the partial derivatives with respect to α and α∗ can be
eliminated. The resulting equations of motion for the case
without excited state decay and dephasing can be found in
Refs. [28,30]. Including decay and dephasing is straightfor-
ward. For arbitrary shapes of the driving electric field, they
can be solved numerically.

In Ref. [29], it was shown that in the limit of excitation by
an arbitrary sequence of ultrafast optical pulses the equations
of motion for Y , C, and F can be solved analytically. From a
physical point of view, the ultrafast limit is reached if the pulse
duration is much shorter than any phonon-related timescale,
here, in particular, much shorter than the phonon oscillation
period tph. In this case, the phonon influence on the dynamics
during the excitation is negligible, and the pulse sequence can
be mathematically well approximated by a series of δ pulses
at times t j ,

E (t ) =
∑

j

θ j

2
ei�t j+iϕ j δ(t − t j ) =

∑
j

θ j

2
eiφ j δ(t − t j ), (7)

with θ j being the pulse area, ϕ j being the carrier-envelope
phase, and φ j is the total phase of the jth pulse arriving at
t = t j .

Following the derivation in Ref. [29] but additionally in-
cluding the decay rate � for the excited state occupation
and the total dephasing rate β = �/2 + β̃ for the interband
coherence, we can split the time evolution into recursion
relations that: (i) link the transformed generating functions at
t−

j immediately before pulse j with the ones at t+
j directly after

this pulse and (ii) connect these functions at t+
j with the ones

immediately before the subsequent pulse at t−
j+1.

Between the pulses: (i) the coherence function Y decays
due to the dephasing constant β, (ii) the excited state occu-
pation function C decays due to the decay constant �, and
(iii) the phonon function F is modified due to the excited state
occupation. Denoting, e.g., the coherence function just before
and after the pulse j by Y

±
j = Y (t±

j ) and correspondingly for
the other functions, the connection between the functions just
after pulse j and immediately before pulse j + 1 read

Y
−
j+1 = e−β(t j+1−t j )Y

+
j , (8a)

C
−
j+1 = e−�(t j+1−t j )C

+
j , (8b)

F
−
j+1 = F

+
j + C

+
j

∫ t j+1

t j

e−�(t−t j )
∂

∂t
exp(−i2γ Im[αeiωpht ])dt .

(8c)

Due to the ultrashort pulse limit, the recursion relations
across the pulses are not influenced by decay and dephasing.
Therefore, they agree with those derived in Ref. [29], reduced
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FIG. 1. Schematics of the system and its temporal evolution.
(a) Mutual influence of the generating functions caused by a laser
pulse with phase φ [Eq. (A1)] and during the evolution between
the pulses [Eq. (8)]. The labels at the arrows indicate the phase
that is transferred in the respective coupling. (b) Illustration of the
phonon potentials associated with the ground state |g〉 (blue) and the
excited state |x〉 (red) of the TLS. The phonon state is depicted by
the green dots. Laser excitation and decay induce transitions between
the electronic states.

to the single-mode case. For completeness, these relations,
in the notation of the present paper, are summarized in the
Appendix in Eq. (A1). Note that, in particular, the phonon
function F is not changed during the pulses.

Figure 1(a) schematically shows the interplay among the
three generating functions Y, C, and F as described by
Eqs. (8) and (A1). The arrows reflect the influence of a laser
pulse with phase φ and the couplings induced by the phonons.
The labels at the arrows indicate the order of φ entering the
coupling. We see, for example, that the phonon function F
is only driven by the excited state occupation C, whereas it
influences both the occupation C and the coherence Y .

C. Wigner representation

We are primarily interested in the properties of the phonon
system. As its central quantities, we define the displacement u
and momentum p via the quadratures,

u = (b + b†), p = 1

i
(b − b†), (9)

with their eigenfunctions u|U 〉 = U |U 〉 and p|�〉 = �|�〉. In
Fig. 1(b), it is schematically shown that the phonon system is
split into two subsystems, one associated with each state of
the TLS. The phonons attributed to the excited state |x〉 have
an equilibrium displacement, which is shifted with respect to
the ground state |g〉 by 2γ [15]. The laser pulse excitation
mediates transitions between the two subsystems, whereas
the decay of the excited state acts only in one way from
|x〉 to |g〉.

A useful tool to study the quantum state of the phonon
system is the Wigner function, which is defined via the
phonon density matrix as

W (U,�) = 1

4π

∫ 〈
U + X

2

∣∣∣∣ρph

∣∣∣∣U − X

2

〉
e−iX�/2dX, (10)

with ρph = TrTLS(ρ) where we take the trace with respect to
the TLS. It is especially handy as it can directly be calculated

from the generating function F via the Fourier transform,

W (U,�) = 1

4π2

∫
e−|α|2/2F (α)ei[Re(α)�+Im(α)U ]d2α. (11)

The Wigner function is a quasiprobability distribution in the
phase space spanned by U and �. Although it can take
negative values, the calculation of expectation values of all
operators which can be expressed as (symmetrized) functions
of u and p is performed, as in the case of common probability
density functions. For example, it is

〈u〉 =
∫∫

UW (U,�)dU d�, (12a)

or

〈u2〉 =
∫∫

U 2W (U,�)dU d�. (12b)

By performing the same transform as in Eq. (11) but with
C(α) instead of F (α), we isolate the part of the phonon state
that is associated with the excited state Wx(U,�). With this,
we can also identify the part of the ground state Wg from

W = Wg + Wx. (13)

III. RESULTS

In the following sections, we will discuss the influence
of excited state decay and dephasing on the properties of
the generated phonon state. Before addressing specific exci-
tation scenarios, let us briefly come back to the schematic in
Fig. 1(a). There it is seen that the phonon function F , while
influencing both other functions C and Y , is only influenced
by the occupation function C. This tells us that, in the case of
excitation by a single ultrashort pulse, the phonon dynamics
cannot be influenced by pure dephasing processes. In contrast,
in the case of excitation by multiple pulses, pure dephasing
occurring between the pulses influences the light-induced
TLS dynamics of later pulses and, thus, indirectly also the
phonon properties.

To clearly identify the role of excited state decay and pure
dephasing processes on the dynamical phonon state, we start
by considering a single laser pulse excitation and afterwards
move to two-pulse excitations where we will first investigate
the influence of each process separately and finally look at
their combined effect.

A. Single-pulse excitation

As it has been discussed in Ref. [15] without considering
excited state decay and dephasing, a single-pulse excitation
of the TLS with a pulse area of θ = π instantaneously shifts
the equilibrium position of the entire phonon system. The
initial phonon vacuum state, thus, becomes a coherent phonon
state that oscillates around a displaced equilibrium position in
phase space at (U,�) = (2γ , 0). Considering an excitation at
t = 0 with pulse area θ but taking into account a nonvanishing
decay rate �, the characteristic phonon function F (t ) after the
pulse, i.e., for t � 0, reads

F (α, t ) = 1 − i2γωph sin2

(
θ

2

) ∫ t

0
e−�t ′

Re[αeiωph (t ′−t )]

× exp{i2γ Im[αe−iωpht (1 − eiωpht ′
)]}dt ′. (14)
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FIG. 2. Partition of the phonon Wigner function into the (a) ex-
cited state and (b) ground state subspace. The corresponding sub-
space Wigner functions are shown at five different times after excita-
tion by a π pulse. The system parameters are γ = 2, � = 0.5ωph.

Inserting this in Eq. (11) leads to the corresponding Wigner
function of the phonon system.

As schematically shown in Fig. 1(b), the phonon state is
partially attributed to the ground state |g〉 of the TLS and
the rest to the excited state |x〉. The pulse area θ in Eq. (14)
determines to which amount the system is brought into the
excited state and, therefore, which fraction of the phonon
state switches into the shifted potential. A nonvanishing decay
rate of the excited state makes the phonons go back to the
unshifted potential associated with the ground state of the TLS
as depicted in Fig. 1(b).

Let us start by considering the excitation by a pulse with
θ = π in a system with an electron-phonon coupling con-
stant γ = 2 and an excited state decay constant � = 0.5ωph.
Snapshots of the Wigner functions describing the dynamics
of the phonons corresponding to the excited state Wx and
to the ground state Wg are plotted for five different times in
Figs. 2(a) and 2(b), respectively. A π pulse completely inverts
the system, therefore, immediately after the pulse (t = 0+),
the phonon system is completely attributed to the excited state.
The initial state is a coherent state in this subspace, which
rotates around the shifted equilibrium position (black circle),
much like in the case without decay. The excited state decay
leads to a gradual damping of the phonon state in the excited
state subspace. The ground state contribution Wg in Fig. 2(b) is
more involved. Starting with an empty phase space at t = 0+,
the Wigner distribution builds up during the dynamics. The
excited state successively decays into the ground state, which
adds contributions to Wg at the point in phase space where
the coherent state in the excited state in Fig. 2(a) is located.
Subsequently, these contributions continue to rotate, but since
the equilibrium position for Wg is the origin (U,�) = (0, 0),
this rotation occurs on circles around the origin. Interestingly,
at the last considered time t/tph = 1/2, they all lie on the
lower half of the circle reflecting the trajectory of Wx. Indeed,
it is clearly seen that at this time we obtain a Wigner function
Wg distributed along the circular shape of this trajectory.

The total phonon Wigner function is the sum of the ground
and the excited state contributions [Eq. (13)]. Snapshots of
this function are shown at four different times for the same
case as discussed above in Fig. 3(a). For short times after
the laser pulse excitation (t/tph = 1/4), a large fraction of
the distribution moves on the marked circle and keeps its
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FIG. 3. Phonon Wigner function at four different times after
excitation by a single π pulse for an electron-phonon coupling γ = 2
and decay constants (a) � = 0.5ωph and (b) � = 2ωph.

Gaussian form. However, the influence of the decay already
manifests in a curved tail connecting the main Gaussian part
with the origin of the phase space. The reason for this shape is
simply the sum of the two contributions Wg and Wx discussed
before. After half a phonon period (t/tph = 1/2), the fraction
of the Gaussian on the marked circle has become weaker
whereas the curved tail has gained weight. This process goes
on until the excited state has entirely decayed into the ground
state. After a full phonon period at t = tph in Fig. 3(a), the
Wigner function is distributed along a circle of the same size
as the marked one but shifted in the opposite U direction.
At this time, the excited state occupation is 〈|x〉〈x|〉 ≈ 0.1%
meaning that a large fraction of the phonon state already
oscillates around (0,0). When the TLS has entirely decayed
into the ground state, the Wigner function will rotate stable in
shape around the origin of the phase space.

When we increase the decay rate to � = 2ωph, the phonon
state’s dynamics expressed in terms of the Wigner function is
depicted in Fig. 3(b). Without any decay, the Wigner function
would move stable in shape on the black circle around the
shifted origin at (U,�) = (2γ , 0) = (4, 0). However, we find
that, already in the first shown time step (t/tph = 1/4), the
largest part of the distribution has left the marked circle of the
coherent state. The reason is that the TLS has already decayed
by almost 80% into the ground state. The overall shape of the
Wigner function is similar to the one in Fig. 3(a) but with a
shorter tail, i.e., it has a larger weight near the origin of the
phase space.

Figure 4(a) summarizes the influence of the excited state
decay on the phonon state by showing the Wigner function for
different values of the decay constant at t/tph = 10 when the
TLS has completely decayed. The Wigner function is located
on a circle which rotates around the origin. At integer values
t/tph = n as shown here, the circle is a mirror image of the
trajectory of the coherent state without decay (black circle),
whereas at half-integer values t/tph = n + 1

2 , it coincides with
this trajectory. For decay constants much smaller than the
phonon oscillation period, the Wigner function is essentially
homogeneously distributed along the circle, whereas for in-
creasing decay constants, it becomes more and more concen-
trated on a part of the circle. Finally, if the decay is much
faster than the oscillation period, the excited state occupation
has already decayed before the phonons could react on the
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FIG. 4. (a) Phonon Wigner function after excitation by a single
π pulse at the time t/tph = 10, i.e., after the excited state occupation
has completely decayed for an electron-phonon coupling γ = 2 and
five different values of the decay constant �. (b) Expectation value
of the displacement 〈u〉 as a function of time after the laser pulse for
the same values of �. The dashed line shows the expectation value
for the case without decay (i.e., � = 0).

excitation. Therefore, in this case the phonons essentially
remain in the initial vacuum state.

The Wigner function reflects the full quantum state of the
phonon system. The resulting temporal evolution of the mean
displacement is depicted in Fig. 4(b) for the same parameters
as in part (a) of the figure. The dashed line displays the
dynamics of the mean displacement for vanishing excited
state decay. As discussed above, the phonons form a coherent
state with a displacement oscillating around 2γ , i.e., in the
present case around 〈u〉 = 4. Including excited state decay, the
equilibrium position of the phonons returns to zero. Therefore,
at long times, all solid curves in Fig. 4(b) oscillate around
zero. For weak damping (dark lines), we clearly see this
transition between an oscillation around almost four initially
and around zero finally, whereas the peak-to-peak amplitude
of the oscillation remains essentially the same. With increas-
ing excited state decay, the oscillation amplitude decreases
because the excited state occupation decays before a complete
oscillation around the shifted equilibrium is finished. Once
the TLS has returned to its ground state, there is no more
coupling to the phonons [see Eq. (1)]. Thus, in the present
model, the oscillations in Fig. 4(b) remain undamped. They
would only be damped by taking into account phonon-phonon
interactions, i.e., anharmonicities, in the Hamiltonian.

B. Two-pulse excitation

1. Pure dephasing

From Eqs. (8) and (A1), we know that the phonon state is
only driven by the excited state occupation. Therefore, in a
single-pulse excitation the dephasing has no influence on the
phonon state. The same holds for phase φ of the laser pulse,
which does not enter in Eq. (14) after a single pulse. However,
in Ref. [15], it was shown that by an excitation with two pulses
the phonon system can be brought into a statistical mixture
of two Schrödinger cat states. Cat states are superpositions
of coherent states. The interference between these coherent
phonon states can be controlled by the relative phase of the

−8 −4 0 4 8

−8

−4

0

4

8

Π

(a)
γ = 2

β̃ = 0 ωph

−8 −4 0 4 8

γ = 2

β̃ = 0.1 ωph

−8 −4 0 4 8

γ = 2

β̃ = 0.5 ωph

−0.04

−0.02

0.00

0.02

0.04

−4 −2 0 2 4
U

−4

−2

0

2

4

Π

(b)
γ = 0.5

−4 −2 0 2 4
U

γ = 0.5

−4 −2 0 2 4
U

γ = 0.5

−0.04

−0.02

0.00

0.02

0.04

FIG. 5. Phonon state after a two-pulse excitation. The pulse areas
are θi = π/2, the delay is t2 − t1 = tph/2, and the depicted time
is t/tph = 3/4 after the second pulse. (a) Wigner function for the
coupling strengths (a) γ = 2 and (b) γ = 0.5. The pure dephasing
rate increases from β̃ = 0 (left) via 0.1ωph (center) to 0.5ωph (right).

laser pulses �φ = φ1 − φ2. To study the influence of a pure
dephasing contribution, i.e., a nonvanishing β, whereas keep-
ing � = 0, we consider the same two-pulse excitation as in
Ref. [15] but with β = β̃ �= 0. Having a look at the schematic
of the generating functions in Fig. 1(a), we find that the
coherence function Y has no direct influence on the phonon
state F . Therefore, once a phonon state is prepared by a pulse
sequence and the population function C is not affected by any
decay, the phonon state behaves periodically with the phonon
frequency ωph, and the dephasing has no impact. But, in the
case of a two-pulse excitation, the coherence function Y be-
tween the two pulses can act on the phonon state indirectly via
C. To visualize the influence of a nonvanishing pure dephasing
rate on the generation of phonon cat states, in Fig. 5, we plot
the Wigner function after a pulse sequence with pulse areas
θ1 = θ2 = π/2, delay t2 − t1 = π/ωph = tph/2, and relative
phase �φ = π/2. The phonon state is depicted at t/tph = 3/4
after the second laser pulse excitation. In Fig. 5(a), we choose
a large coupling strength of γ = 2 and increase the pure
dephasing rate from β̃ = 0 (left) via 0.1ωph (center) to 0.5ωph

(right). The typical structure of the Schrödinger cat states con-
sisting of two Gaussians with a striped structure between them
is visible. The striped pattern is oriented along the connection
line between the two Gaussians; it takes positive and negative
values and is a direct consequence of the quantum-mechanical
interference between the two coherent states in the phonon
system. We observe two such cat states, one in each electronic
subspace (ground and excited states). When increasing the
dephasing rate, we find that the interference features faint,
which nicely illustrates the loss of coherence during the time
interval between the laser pulses. It should be noted that, once
a quantum coherence is generated in the phononic system, it
is unaffected by the pure dephasing processes acting on the
excited state of the TLS. The reason is that the phonon state
is only driven by the occupation function C, which is not
affected by the dephasing. Additionally, the pure dephasing
does not alter the coherent phonon states, which still appear
as symmetric Gaussians.
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FIG. 6. EIFs SU (blue) and S� (red) as functions of time after the
second pulse. The phonon coupling strength is γ = 0.5, and the pure
dephasing rate increases from dark to bright lines. The dashed line is
the limiting case of a statistical mixture, i.e., β̃ � ωph.

In Ref. [15], it was also shown that these mixtures of cat
states in the phonon system can exhibit squeezing, i.e., the
quantum fluctuations of displacement or momentum can fall
below the respective vacuum value. This is possible when
the coupling strength between the phonon and the TLS is
small enough, e.g., γ = 0.5. This effect strongly depends on
the relative phase between the two laser pulses �φ and is a
consequence of the quantum interferences. Under the right
conditions, the different contributions of the Wigner function
overlap in phase space in such a way that the distribution
becomes narrower than the vacuum state. Of course, the
Heisenberg uncertainty relation has to be fulfilled, therefore,
this squeezing of the Wigner function is always accompanied
by a broadening in the perpendicular direction. This effect is
visible in Fig. 5(b) where we show the same Wigner functions
as in Fig. 5(a) but for γ = 0.5. In the case of no pure dephas-
ing β̃ = 0 (left), the two slightly negative contributions lead to
an additional narrowing of the distribution. When increasing
the dephasing rate, these negative parts vanish, and the Wigner
function becomes entirely positive. It directly follows that
the squeezing vanishes because without any interferences,
the phonon state is a statistical mixture of coherent states
and all quantum effects that could lead to a reduction of the
fluctuations disappear.

To obtain an overview of the influence of pure dephasing
on the quantum fluctuations of the phonon states, we consider
the excitation-induced fluctuations (EIFs) of the displacement
and the momentum defined by [15,31]

SU = (�u)2 − (�uvac)2

γ 2
, (15a)

S� = (�π )2 − (�πvac)2

γ 2
. (15b)

In Fig. 6, these quantities are plotted as functions of time t
after the second pulse. The blue curves show SU , the red ones
show S�, and the pure dephasing rate increases from dark to

bright colors from β̃ = 0 via 0.1ωph to 0.5ωph. As already
discussed in the context of the Wigner functions, we find that
the squeezing shrinks, i.e., the negative values reduce. At the
same time, also the maximal positive values of the fluctuations
get smaller when increasing the dephasing. This shows that
the influence of the quantum interference not only leads to
the reduction, but also causes increased fluctuations. This
is in direct correspondence with the Heisenberg uncertainty
principle. For the largest considered dephasing rate of β̃ =
0.5ωph, the incoherent limit of a statistical mixture of all
four coherent states (dashed lines) is almost reached. The
minimum of the momentum’s EIF is S� = 0 whereas the
displacement’s EIF remains always positive as is expected
for the statistical mixture of four coherent states oscillating
around equilibrium positions shifted in the U direction [32].

2. Influence of excited state decay on cat state dynamics

The considered generation mechanism of phonon cat
states, in general, leads to a state which is partly attributed
to the ground state |g〉 and partly to the excited state |x〉. The
phonon state attributed to the ground state oscillates stable
in shape because it is not affected by decay and dephasing.
Therefore, from the mixture of cat states, the one in the
ground state will not change once it is generated. But the state
attributed to the excited state will be affected by the decay into
the ground state. Although in the considered system it is not
possible to generate an ideal cat state only in the excited state,
in the following, we will study the evolution of such a state to
understand the influence of the excited state decay. In the next
section, we will then analyze the full dynamics including the
generation of the cat states.

Mathematically, we can initialize such an ideal cat state by
applying two laser pulses with delay t2 − t1 = tph/2, pulse ar-
eas θ1 = θ2 = π/2, relative phase �φ = π/2, and disregard-
ing decay and dephasing during the phonon state preparation.
As already discussed, this excitation scheme will generate
one cat state in each electronic subspace. In order to isolate
the one that belongs to the excited state, we set F (α, t =
0) = C(α, t = 0) as initialization after the second pulse. This
removes the phonon state associated with the ground state
because C(α) carries the entire phonon state attributed to the
excited state [30]. Note that, after this procedure, the phonon
state is not normalized any longer. For the dynamics following
this initialization, we consider again a nonvanishing decay rate
to investigate the transition into the ground state. In this case,
the dephasing has again no influence on the phonon dynamics.

Figure 7 shows snapshots of the Wigner function’s dy-
namics for an initial cat state in the excited state subspace at
t = 0 and a decay rate of � = 0.2ωph. The natural propagation
of the phonon state in the excited state is a rotation around
the shifted equilibrium position at (U,�) = (4, 0), which
is the center of the interference term. The rotating dynamics of
the Wigner function is accompanied by a continuous flow
into the ground state, i.e., into the unshifted phase space. Be-
cause the decay is rather slow compared to the phonon period,
the Wigner function evolves into a double-ring structure in the
shape of an 8 rotating around its center. For the last depicted
time t/tph = 5/2, the system has not yet completely decayed,
and we find four interference terms, two at (0,±4), one at
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FIG. 7. Excited state decay induced decay of a cat state. Snap-
shots of the Wigner function’s dynamics for a cat state prepared in
the excited state |x〉. The decay rate is � = 0.2ωph, and the coupling
strength is γ = 2.

the original position of the cat state’s interference (4,0), and a
very weak one at (−4, 0). Already, after the second time step
at t/tph = 1/2, it can be seen that the interference term of the
cat state is transferred together with the coherent contributions
into the ground state subsystem as it clearly appears as striped
structure around (0,−4). This and the interference on the
opposite side of the origin survive the decay process and
remain even after the full decay.

Figure 8 shows the Wigner function at the time t/tph = 9.5,
i.e., at a time when the excited state occupation has completely
decayed, for different values of the decay constant �. Such
as in the case of the single coherent state [see Fig. 4], we
observe a transition from a ringlike structure for a decay time
much longer than the oscillation period to a more localized
structure for very short decay times. Here, the ringlike struc-
ture consists of two circles attached to each other. For small
values of the decay constant, we observe interference patterns
in the regions around (U,�) = (0,±4). When increasing the
decay constant, the distribution of the Wigner function along
the circles becomes more and more inhomogeneous. Inside
the left circle, an interference pattern builds up whereas the
patterns between the circles fade away, first in the region of
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FIG. 8. Phonon Wigner function resulting from the excited state-
induced decay of a cat state at the time t/tph = 9.5, i.e., after the
excited state occupation has completely decayed for an electron-
phonon coupling γ = 2 and five different values of the decay con-
stant �.
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4

FIG. 9. Schematic of the Wigner function in the ground state sub-
space at times t/tph = n + 1

2 (n � 1). The four horizontally aligned
cat states are examples for cat states resulting from decay processes
at different times. The numbers indicate the time of the decay (in
units of t/tph). For a continuous decay, the interference patterns are
continuously distributed along the dotted circle.

positive � and then also for negative �. For the very strong
decay corresponding to � = 5ωph, the initial cat state in the
excited state subspace is almost instantaneously transferred to
the ground state subspace by keeping the entire interference
between the two peaks. Whereas the initial cat state rotated
along the solid circle around the shifted equilibrium position
of the excited state subspace, the final cat states rotate around
the ground state equilibrium position at the origin.

The previous discussion clearly explains why, in Fig. 8, in
the limit of very strong decay, there is an interference pattern
around (U,�) = (−4, 0), but we still have to understand why
this pattern vanishes for weak decay and other patterns at
(U,�) = (0,±4) show up. This behavior results from the
continuous transfer of the cat state from the excited state
subspace to the ground state subspace. So we can imagine
the distribution as the sum of many cat states transferred to the
ground state at different times. At half-integer times t/tph =
n + 1

2 , the two Gaussians of each of these cat states are aligned
horizontally, and they are all separated by �U = 8, i.e., the
diameter of the two circles. Thus, we obtain a superposition
of interference patterns which are all aligned horizontally but
shifted vertically. This is indicated in Fig. 9 where the position
at times t/tph = n + 1

2 (n � 1) of the cat states resulting from
decay processes at four different times t/tph = 0, 1

4 , 1
2 , 3

4 are
plotted schematically together with their respective interfer-
ence patterns. Since the decay processes occur continuously,
the interference patterns are continuously distributed along the
dotted circle. Due to the continuous superposition of these
vertically shifted interference patterns, inside the solid and
dashed circles there is a destructive interference, which re-
moves the interference patterns in these regions. In contrast, at
the top and the bottom of the dotted circle, there is a stationary
phase of the interference pattern due to the horizontal slope of
the circles resulting in constructive interference. This explains
why, in the case of weak decay, when the distribution of the
Wigner function along the circles is almost homogeneous, in-
terference patterns remain around (U,�) = (0,±4), whereas

024306-7



HAHN, GROLL, KUHN, AND WIGGER PHYSICAL REVIEW B 100, 024306 (2019)

−8

−4

0

4

8

Π

t/tph = 0+ 1/4 1/2

−8 −4 0 4 8
U

−8

−4

0

4

8

Π

3/4

−8 −4 0 4 8
U

1

−8 −4 0 4 8
U

9/2

0.01

0.00

−0.01
0.01

0.00

−0.01

FIG. 10. Cat state generation with excited state decay and de-
phasing. Snapshots of the Wigner function’s dynamics during the
first phonon period after the second laser pulse (t = 0 → t = tph) and
at the time t/tph = 9/2 (bottom right). The decay rate is � = 0.2ωph,
and the coupling strength is γ = 2.

they vanish around (U,�) = (±4, 0) as it was produced at a
later time. With increasing the decay constant, the decay at
later times is continuously reduced, which first leads to the
vanishing of the interference pattern around (U,�) = (0, 4)
and finally around (U,�) = (0,−4), whereas the pattern
around (U,�) = (−4, 0) remains because of the negligible
vertical shift of the contributing cat states.

3. Cat state generation with excited state decay and dephasing

Finally, we go a step further and study the influence of a
nonvanishing decay rate � also during the generation process
of the phononic Schrödinger cat states. We do not consider
an additional pure dephasing as the decay already has a
dephasing influence on the coherence function with β = �/2.
With what we have learned so far, we expect a more complex
structure of the Wigner functions of the phonon states after the
second laser pulse because the single contributions will not be
coherent anymore and the characteristic tail structures from
Sec. III A will appear.

For the dynamics of the Wigner function shown in Fig. 10,
we consider a decay rate of � = 0.2ωph. We see that, after the
second laser pulse at t = 0, the Gaussians are accompanied by
a half circle distribution as a result of the decay between the
two laser pulses. Despite the nonvanishing decay rate, still a
major part of the phonon state is coherent, and interferences
between these states build up in the following dynamics.
As discussed in Sec. III B 2, the phonon part attributed to
the ground state is not affected by the decay, whereas the
part in the excited state decays as previously explained, i.e.,
it evolves into the eight-shaped structure. Compared to the
shape-invariant cat state in the ground state subspace, the
overall amplitude of this part of the Wigner function is rather
small because the distribution covers a larger area in phase

space. So the main contribution of the phonon state after the
full decay of the excited state is a single cat state as depicted
in Fig. 10 at t/tph = 9/2.

It is now possible to bring this state into the excited
state potential by applying a third laser pulse with pulse
area of θ3 = π , which entirely inverts the TLS. When this is
performed at full phonon periods after the second pulse, i.e.,
at t/tph = n (n > 4), it leads to approximately the situation
artificially prepared in Fig. 7 at t = 0. After the following
decay into the ground state, the entire phonon state will have
evolved into the eight-shaped distribution depicted in Fig. 8
at the end of the relaxation. Any other choice of the time or
pulse area for the third exciting laser pulse will lead to a more
complex combination for the phonon cat state in the excited
state, meaning that only one of the two coherent states will
move on the circle depicted in the figures. The other one will
move on a larger circle around the same center.

IV. CONCLUSIONS

We have studied an optically driven single-photon emitter
coupled to a single discrete phonon mode. Under the assump-
tion that the decay and dephasing timescale of the TLS is in
the range of the phonon period, we have systematically ana-
lyzed the preparation of phonon quantum states by ultrafast
optical excitations of the TLS. After a single-pulse excitation,
only the decay rate has an impact on the phonon state.
During the decay of the excited state, the Wigner function
of the phonon state transforms from a coherent Gaussian
into a ring-shaped structure, which reduces the amplitude
of the lattice displacement. For a two-pulse excitation, also
the dephasing between the two pulses acts on the phonon
state. For strong dephasing rates, the phonon system loses its
coherence, and the interferences representing the Schrödinger
cat states vanish. This also removes the possibility of the
phonon state to exhibit squeezing. When taking into account
decay and dephasing during a two-pulse excitation, more
complex Wigner functions emerge, and we have shown that
interferences in the phonon system can be transferred from the
excited state subspace of the TLS to its ground state subspace.
Because of destructive interference of cat states transferred to
the ground state subspace at different times, the interference
patterns may be blurred in some regions of phase space. At
the same time they survive in other regions. Our paper shows
that there is a subtle interplay among different timescales,
in particular, the phonon oscillation period, the decay and
dephasing times, and the delay of the exciting laser pulses,
which can be used to tailor the final phonon quantum state.

APPENDIX

The recursion relations connecting the values of the char-
acteristic functions Y , C, and F immediately before and after
the pulse j, i.e., from t−

j to t+
j , read

Y
+
j (α) = 1

2
[1 + cos(θ j )]Y

−
j (α) + sin2

(
θ j

2

)
Y

−∗
j (2γ e−iωpht j − α) exp{i2φ j + 2γ Re[(αeiωpht − γ )]}

+ [F
−
j (α − γ e−iωpht j ) − 2C

−
j (α − γ e−iωpht j )e−i2γ Im(αeiωph t j )]

i

2
sin(θ j ) exp(iφ j + γαeiωpht j ), (A1a)
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C
+
j (α) = C

−
j (α) + exp[i2γ Im(αeiωpht j )]

[
sin2

(
θ j

2

)
{F−

j (α) − 2C
−
j (α) exp[−i2γ Im(αeiωpht j )]} − i

2
sin(θ j ){Y −

j (α + γ e−iωpht j )

× exp[−iφ j − (γ 2 + γαeiωpht j )] − Y
−∗
j (−α + γ e−iωpht j ) exp[iφ j − (γ 2 − γα∗e−iωpht j )]}

]
, (A1b)

F
+
j (α) = F

−
j (α). (A1c)
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