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Quantum transport in non-Hermitian impurity arrays
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We study the formation of band gap bound states induced by a non-Hermitian impurity embedded in a
Hermitian system. We show that a pair of bound states emerges inside the band gap when a parity-time (PT )
imaginary potential is added in strongly coupled bilayer lattices and the bound states become strongly localized
when the system approaches the exceptional point. As a direct consequence of such PT impurity-induced bound
states, an impurity array can be constructed and protected by energy gap. The effective Hamiltonian of the
impurity array is non-Hermitian Su-Schrieffer-Heeger type and hosts Dirac probability-preserving dynamics. We
demonstrate the conclusion by numerical simulations for the quantum transport of wave packet in right-angle
bends waveguide and Y -beam splitter. Our finding provides an alternative way to fabricate quantum device by
non-Hermitian impurity.
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I. INTRODUCTION

Throughout physics, stable or equilibrium phenomena can
be understood by bound state, ranging from quantum to clas-
sical objects. In quantum physics, a bound state is a localized
state of a particle subject to a real valued potential, which
may be the result of the presence of other particles. The
concept of bound state is ubiquitous in numerous branches of
physics, such as optics and condensed matter. In experiment,
engineering bound state can be generated by artificial defects
in photonic crystals and an array of defects, which are known
as coupled-resonator optical waveguides providing almost
lossless guiding, and bending of wave packet [1–11]. By
introducing artificial defects, various photonic crystal devices
can be realized for the applications in a wide variety of
fields. Nowadays a complex potential is not forbidden since
non-Hermitian quantum mechanics has emerged as a versatile
platform for fabricating functional devices in a non-Hermitian
regime. The main mechanism is based on the existence of
imaginary potential, which has been investigated theoretically
[12–30] and realized in experiment [31–40] as an ideal build-
ing block of non-Hermitian systems. A non-Hermitian term
has a distinguishing feature that differs from a Hermitian one
and can be exemplified by a simple two level system. An
extra pseudo-Hermitian non-Hermitian term always shrinks
the level spacing, while a nontrivial Hermitian perturbation
always leads to the repulsion of the two levels. Presumably,
midgap levels can be generated by adding non-Hermitian
impurity on a Hermitian gapped system.

In this paper, we study the possibility of a quantum channel
generated by an array of non-Hermitian defects. Based on
the Bethe ansatz solution we show that a pair of bound
states emerges inside the band gap when a parity-time (PT )
imaginary potential is added in a strongly coupled bilayer.
Such bound states are protected by energy gap, especially
as the bound-state energy tends to zero when the system
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approaches the exceptional point (EP). Consequently, an im-
purity array can be constructed in the midgap and provides a
low-loss waveguide since other Hermitian degrees of freedom
are adiabatically eliminated when we consider the dynamics
in the impurity array. In addition, we show that the effec-
tive Hamiltonian of the impurity array is equivalent to a
non-Hermitian Su-Schrieffer-Heeger (SSH) system and obeys
chiral-time (CT ) symmetry. This ensures quasiorthogonality
of the midgap modes in the framework of Dirac inner product,
and therefore the Dirac probability-preserving dynamics in
the waveguide. Therefore, although the waveguide is engi-
neered by non-Hermitian impurities, it acts as a conditional
Hermitian device. We demonstrate the conclusion by numer-
ical simulations for the quantum transport of wave packet in
right-angle bends waveguide and Y -beam splitter. Our finding
provides an alternative way to fabricate quantum device by
non-Hermitian impurity.

This paper is organized as follows. In Sec. II, we present
the main ideas of the non-Hermitian-impurity induced waveg-
uide. In Sec. III, we provide a concrete example to illustrate
our theory. Section IV demonstrates the dynamics of waveg-
uide in the concrete system. Finally, our conclusion is given
in Sec. V.

II. FORMALISM

Consider a bilayer system [Fig. 1(a)], composed of two
identical lattices but with opposite on-site energies. The inter-
layer tunneling is non-Hermitian and sparse, which is referred
to as non-Hermitian impurity. The Hamiltonian is given by

H = H0 + HT ,

H0 =
∑
〈i, j〉

∑
σ=±

(κi ja
†
i,σ a j,σ + H.c.) +

∑
j

∑
σ=±

σ�a†
j,σ a j,σ ,

HT = i
∑

j

Tj (a
†
j,+a j,− + H.c.), (1)

where σ corresponds to the + and − layers and {iTj} is a
set of imaginary intralayer hopping parameters. Figure 1(a)
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FIG. 1. (a) Schematic illustration of a two-layer tight-binding
lattice with non-Hermitian imaginary tunneling. (b) Band structures
for H0 and H . In the absence of the interlayer tunneling, a gap in
order of 2� opens. When a single tunneling iTj switches on, two
isolated energy levels can be achieved around the midgap.

is the schematic illustration of the model. We consider the
region with � � |κi j |, which ensures the energy gap of order
� between two (+/−) energy bands for the system H0. In the
following, we show that HT may induce local states within the
energy gap.

In the absence of HT , the states of H0 are extended states
spreading the probability over the two layers. In the limit
case with |Tj | ∼ � � |κi j |, each non-Hermitian tunneling iTj

may induce two isolated energy levels around the midgap,
which have the form ±

√
�2 − (Tj )2 . It is responsible for the

non-Hermiticity of the impurity, since a real tunneling cannot
form the isolated levels within the energy gap, but beyond
the two bands. Figure 1(b) is the band structure for H0 and
H . We note that the eigenvalues of H are real or imaginary,
i.e., the EPs only appear at zero energy. Considering the
case with a single nonzero Tj , there are two isolated levels
within the gap and such two bound states coalesce to a
single state (1/

√
2)(a†

j,− + ia†
j,+)|vac〉 at the EP when � =

|Tj |. If there are many such nonzero tunneling Tj within the
unbroken region and the corresponding bound states overlap
with each other, sub-bands within the gap will form and a
non-Hermitian-impurity induced waveguide is achieved for a
array of impurity.

To demonstrate the main idea, we consider an example
model, which consists of two infinite chains with a single
non-Hermitian tunneling. The corresponding Hamiltonian has
the form

Hchain =
∞∑

j=−∞

∑
σ=±

[(κa†
j,σ a j+1,σ + H.c.) + σ�a†

j,σ a j,σ ]

+ iT (a†
0,+a0,− + a†

0,−a0,+), (2)

where σ = + or − is the index that respectively labels the
position in the top or bottom chains and j is the in-chain
site index. Parameters κ and T of this model are intra- and
interchain hopping strengths. The schematic illustration is
shown in Fig. 2(a). Bethe ansatz method shows that there are
two bound states around the center with the eigenvector (see
Appendix 1)

|ψB〉 = C
∞∑

j=−∞
(eiπ je−β+| j|a†

j,+)|vac〉

−C
2κ

iT
sinh β+

∞∑
j=−∞

(e−β−| j|a†
j,−)|vac〉. (3)

FIG. 2. (a) Schematic illustration of a bichain lattice with op-
posite chemical potentials ±� and a single non-Hermitian tunnel-
ing iT . The intra- and interlayer hopping strengths are κ and iT ,
respectively. (b) Profile of one of the two bound states for single
imaginary tunneling iT . The ordinates of blue (solid) and red (dash)
lines are real and imaginary numbers, which represent the wave
function of the top and bottom chains, respectively. The parameters
are � = 5, κ = 1, and T = 4. Panels (c1) and (c2) are profiles of
two of the four bound states for double imaginary tunneling iT .
The parameters are � = 5, κ = 1, and T = 4. Panels (d1)–(d3)
are profiles of three of the ten bound states induced by multi(five)
impurities with parameters � = 5, κ = 1, and T = 4. The results
are obtained by numerical diagonalization and the wave functions
are Dirac normalized.

Here C is the normalization coefficient, which is determined
in the context of Dirac or biorthogonal inner products. Profile
of the bound state is shown in Fig. 2(b). The corresponding
eigenenergy is

EB = −2κ cosh β+ + � = 2κ cosh β− − �, (4)

where β± are positive real numbers and fulfill the equations

cosh β− + cosh β+ = �/κ,

sinh β+ sinh β− = T 2/(2κ )2. (5)

We note that two bound states coalesce to a single one

∣∣ψEP
B

〉 = C
∞∑

j=−∞
(eiπ je−β| j|a†

j,+ + i e−β| j|a†
j,−)|vac〉 (6)

at EP with β = ln [�/(2κ ) +
√

�2/(4κ2) − 1] and T = Tc =√
�2 − (2κ )2. When T > Tc, the bound-state energy becomes

an imaginary number. This exact solution indicates that stable
bound states can be formed by the non-Hermitian impurity.
In the case of multi-impurities, the above exact solution is
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FIG. 3. (a) Schematic illustration of a bilayer square lattice
model with κ (gray line) and � (black line) are intra- and interlayer
hopping strengths; the non-Hermitian imaginary potentials ±iγ are
indicated by the blue (iγ ) and yellow (−iγ ) dots, and the white dots
indicate zero on-site potentials. (b) The waveguide path [red dash
lines in (a)] forms a non-Hermitian ladder model.

still applicable when the distance between two neighboring
impurities is sufficiently large. Nevertheless, the overlap of
the wave functions occur and extended states form within the
region of the impurity array. Figures 2(c) and 2(d) are plots
of several typical bound states for two and five imaginary
impurities. For n impurities, the system supports 2n bound
states confined to the region of the array. Consequently, the
midgap sub-bands may form for large n.

This result has many implications. (i) Similar to the Her-
mitian regime, imaginary impurities can induce local bound
states with real energies. (ii) In contrast to a Hermitian im-
purity, energy levels of imaginary impurity can be protected
by band gap and coalesce at EP. (iii) Deliberately designed
impurity array can take the role of waveguide. It allows a
variety of non-Hermitian models with various geometries and
a wide range of parameters to be candidates of waveguides. In
the next section, we will show its application in an example.

III. BILAYER SQUARE LATTICE

The bound states induced by non-Hermitian impurities can
be employed to construct sub-bands in the energy gap, which
constitute the channel for specific transport of particle, as a
waveguide in a Hermitian system. In the Hermitian realm,
the waveguides of most kinds of discrete systems have been
well studied. It is usually done by destroying the translational
symmetry. In the present work, our strategy is doing the same
thing but by adding non-Hermitian terms. In the following, we
will present an example that implements a 1D waveguide over
a square lattice along any desired path.

We consider a bilayer square lattice model which is shown
in Fig. 3(a). The Hamiltonian can be written as the Hermitian
part H0 and non-Hermitian part HT ,

H = H0 + HT . (7)

The corresponding Hermitian Hamiltonian has the form

H0 = H1 + H2 + H12,

Hλ = κ
∑

j,l

α
†
j,l,λ(α j+1,l,λ + α j,l+1,λ) + H.c., (8)

H12 = �
∑

j,l

α
†
j,l,1α j,l,2 + H.c.,

where λ = 1 or 2 is the index that respectively labels the
position in the top or bottom layers and ( j, l ) is the in-plane
site index. Parameters κ and � of this model are intra- and in-
terlayer hopping strengths. And the distribution of imaginary
potentials is given as the form

HT = i
2∑

λ=1

∑
j,l

(−1)λ+ j+lγ jlα
†
j,l,λα j,l,λ. (9)

By taking the linear transformations

a†
j,l,± = 1√

2
(α†

j,l,1 ± α
†
j,l,2), (10)

the Hamiltonian Eq. (8) can be written as

H0 = κ
∑

j,l

∑
σ=±

a†
j,l,σ (a j+1,l,σ + a j,l+1,σ ) + H.c.

+�
∑

j,l

∑
σ=±

σa†
j,l,σ a j,l,σ . (11)

We note that the bond (antibond) state of a rung can only
be transited to the bond (antibond) state next to it with
hopping strength κ . Therefore, it can be decomposed into two
independent single layer square lattices with on-site potentials
� and −�, respectively.

Accordingly, the non-Hermitian term reads

HT = i
∑

j,l

(−1) j+l+1γ j,l (a
†
j,l,+a j,l,− + H.c.), (12)

which takes the role of interlayer imaginary tunneling. Obvi-
ously, the present model is a concrete example of the system
depicted in Eq. (1). The obtained result is applicable to a wide
kind of systems.

IV. DYNAMICS IN WAVEGUIDE

Before proceeding, we present a general non-Hermitian
model which exhibits Dirac-probability preserving dynamics.
Considering a chiral symmetric system, the Hamiltonian can
be written in the block off-diagonal form [41]

H =
(

0 D
D† 0

)
, (13)

where D as an arbitrary N × N matrix. The basis in H can
be a complete set of site states for a bipartite lattice. Based
on H as the original Hermitian Hamiltonian, a non-Hermitian
Hamiltonian H is generated as the form

H = H + iγ σz ⊗ IN , (14)

where σz is the Pauli matrix and IN denotes the N × N identity
matrix. The chiral symmetry of H ensures its eigenvalues
and eigenvectors have the following properties. (i) The eigen-
values are always in pairs, i.e., the spectrum has the form
{εn, ε−n} with ε−n = −εn. (ii) The corresponding eigenvector
{|φn〉, |φ−n〉} obeys

|φn〉 = (σz ⊗ IN )|φ−n〉. (15)

It turns out that (see Appendix 2) the spectrum of H has
the form {εn, ε−n} with

ε±n = ±(
ε2

n − γ 2
)1/2

(16)
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and the eigenvector of |ϕ±n〉 can be mapped directly from
|φ±n〉

|ϕ±n〉 = M±n|φ±n〉 (17)

with the mapping matrix

M±n =
(

a±nIN 0
0 IN

)
, (18)

where a±n = [ε±n + iγ ]/ε±n is a complex number with unit
modulus, |a±n| = 1, for real ε±n.

Obviously, M±n is a unitary matrix when the spectrum is
fully real. Remarkably, it can be proved that eigenvector set
{|ϕ±n〉} obeys a quasiorthonormal relation under the Dirac
inner product, i.e.,

〈ϕm|ϕn〉 = δmn, (19)

for mn > 0 and εmεn 	= 0. It indicates that the non-Hermitian
system acts as a Hermitian one when only one of the sub-
spaces with positive or negative spectrum is concerned. A
direct conclusion is that the evolved state in one of the
subspace of H maintains the preservation of Dirac probability,
exhibiting the Hermitian dynamic behavior.

Based on the above analysis, the bilayer system is a can-
didate for waveguide allowing quantum transport with proba-
bility preserving. We take the waveguide array by a collection
of sites {( j, l )} and setting γ j,l = γ , but zero for the rest of
sites. In this paper, the set of sites {( j, l )} is selected under the
rule: it forms a non-Hermitian ladder system, described by the
Hamiltonian

Hladd = κ
∑
λ=1,2

N∑
n=1

α
†
n,λαn+1,λ + �

N∑
n=1

α
†
n,1αn,2 + H.c.

+
N∑

n=1

(−1)niγ (α†
n,1αn,1 − α

†
n,2αn,2). (20)

The scheme is schematically illustrated in Fig. 3(b). There
are numerous configurations for the path to connect any
two distant locations. When the parameters are in the range
γ ∼ � � |κ|, the subsystem Hladd decouples from the bilayer
system. The dynamics in the waveguide array is governed
by the Hamiltonian Hladd. In certain parameter regions, Hladd

possesses a fully real spectrum and obeys the Hermitian
dynamics since it has the form of Eq. (14).

The system Hladd can be regarded as an extended non-
Hermitian SSH chain with long-range hopping term (see
Appendix 3). It turns out that such a model shares the same
dynamic behaviors with the simplest non-Hermitian SSH
chain within a certain parameter region (strong dimerization
limit), which has been studied in the previous works [42–44].
It is expected that the dynamics of a non-Hermtian SSH chain
emerges in the bilayer squrare lattice with preengineered
imaginary impurities.

To see waveguide dynamics in the bilayer square lattice
system, we perform the numerical simulations. The initial
state is taken as the bilayer Gaussian wave packet, which has
the form

|ψ (0)〉 = �−1/2
∑
λ=1,2

N∑
n=1

e−α2(n−Nc )2/2eikcnα
†
n,λ

|vac〉, (21)

where n is the site index along the waveguide array, Nc is
the center of the Gaussian wave packet, kc is the central mo-
mentum, and � = 2

√
π/α is the Dirac normalization factor.

According to previous work [42–44], the wave packet should
propagate along the array without spreading approximately,
if the sub-bands are sufficiently separated from the bilayer
bands. The evolved state has the form

|ψ (t )〉 = e−iHt |ψ (0)〉, (22)

which can be computed by exact diagonalization.
The probability distribution at position (i, j) at time t is

defined by the sum of the Dirac probabilities of the top and
bottom layers

p(i, j, t ) =
∑
λ=1,2

|〈i, j, λ|ψ (t )〉|2, (23)

where |i, j, λ〉 denotes the position state. To demonstrate the
efficiency of the waveguide, we define the function

P(i, j) = p(i, j, t )max[∑
t p(i, j, t )

]
max

∑
t

p(i, j, t ) (24)

to record the trace of the wave packet. The simulation is
performed for the systems far from EP, i.e., the positive and
negative waveguide bands are well separated, and two kinds
of waveguide configurations: (i) a single path waveguide with
two right-angle bends and (ii) a beam splitter with two right-
angle bends. Their schematics are shown in Fig. 4(a) and
Fig. 5(a). The initial state is a Gaussian wave packet with cen-
tral momentum kc = −π/2. Since it only relates to a single
sub-band in the large gap limit, it is expected that the time
evolution exhibits a probability preserving behavior approxi-
mately. For case (i), the numerical simulation results indicate
that the wave packet propagates along the designed waveguide
array path as expected. For (ii), it shows that the wave packet
splits into two parts after passing through the joint. In both
cases, the wave packet is confined within the defects well and
transmitted efficiently around the corners. These numerical re-
sults demonstrate and verify our theory for quantum transport
in a non-Hermitian impurity array.

V. CONCLUSION AND DISCUSSION

In summary, we have studied the formation of band gap
bound states induced by a non-Hermitian impurity embedded
in a Hermitian system. We have shown that a pair of bound
states emerges inside the band gap when a PT imaginary
potential is added in a strongly coupled bilayer and the bound
states become strongly localized when the system approaches
the exceptional point. Inspired by this, we construct an impu-
rity array which can be described by a non-Hermitian SSH
type effective Hamiltonian which possesses CT symmetry.
We establish a theory for a non-Hermitian impurity-induced
waveguide, which paves the way for the non-Hermitian device
design. As a supplementary material (Appendix 2) for our
theory, we first provide a rigorous proof for the features of
a CT -symmetric system, including the reality spectrum and
quasiorthogonality of the Dirac inner product. We would like
to point out that such two conclusions are independent of
other requirements for the original Hermitian system, such
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iγ -iγ x
y

FIG. 4. (a) Schematic illustration of the waveguide path, which is obtained by taking the nonzero non-Hermitian imaginary potentials ±iγ
along the path. (b)–(e) Numerical simulations of the dynamics in waveguide. The initial state is a bilayer Gaussian wave packet. Probability
distribution at t = 0, t = Tt/2, and t = Tt are shown in (b), (c), and (d), respectively. (e) The trace of the wave packet. Parameters for the
system are t = 1, � = 15, and γ = 11; the size of the system is 100 × 60 × 2. Parameters for the initial state Eq. (21) are α = 0.4, Nc = 10,
and kc = −π/2. The total duration of the simulation is Tt = 42J−1, where J is the scale of the Hamiltonian and we take J = 1.

as translational symmetry. Thus a variety of non-Hermitian
models with various geometries is allowed. The numerical
simulations for the quantum transport of the wave packet
in right-angle bends waveguide and Y -beam splitter have
demonstrated this point.
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APPENDIX

In this Appendix we present the Bethe ansatz solution
for the Hamiltonian from Eq. (2) and properties of the non-
Hermitian ladder system.

1. Bound states induced by non-Hermitian impurity

For a single-tunneling non-Hermitian Hamiltonian (2), the
bound-state Bethe ansatz wave function has the form

|ψB〉 =
∑
σ=±

∞∑
j=−∞

Cσ (−σ )| j|e−βσ | j|a†
j,σ |vac〉, (A1)

where βσ is a positive real number, indicating the strength
of localization around the non-Hermitian tunneling iT . The
Schrödinger equation Hchain|ψB〉 = EB|ψB〉 with bound-state
energy EB gives

EB = −2κ cosh β+ + �

= 2κ cosh β− − �, (A2)

iγ -iγ

x
y

FIG. 5. (a) Schematic illustration of the beam splitter waveguide. In order to get high transmission rate, we take κ → κ/
√

2 for the
hopping (labeled by green arrows) connecting the joint. (b)–(e) Numerical simulations of the dynamics in waveguide. The initial state is a
bilayer Gaussian wave packet. Probability distribution at t = 0, t = Tt/2, and t = Tt are shown in (b), (c), and (d), respectively. (e) The trace
of the wave packet. Parameters for the system are t = 1, � = 15, and γ = 11; the size of the system is 100 × 60 × 2. Parameters for the initial
state Eq. (21) are α = 0.4, Nc = 10, and kc = −π/2. The total duration of the simulation is Tt = 32J−1, where J is the scale of the Hamiltonian
and we take J = 1.
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at | j| � 1, and

(� − 2 e−β+
κ − EB)C+ + iTC− = 0,

iTC+ + (−� + 2 e−β−
κ − EB)C− = 0, (A3)

at j = 0. The existence of a bound-state solution requires∣∣∣∣(� − 2 e−β+
κ − EB) iT

iT (−� + 2 e−β−
κ − EB)

∣∣∣∣ = 0. (A4)

Then evanescent coefficient βσ can be determined by

cosh β− + cosh β+ = �/κ,

sinh β+ sinh β− = T 2/(2κ )2, (A5)

and Eq. (A3) leads to

Cσ = 2σκ

iT
sinh β−σC−σ . (A6)

Then the wave function can be written as

|ψB〉 =
∞∑

j=−∞
(eiπ je−β+| j|a†

j,+)|vac〉

− 2κ

iT
sinh β+

∞∑
j=−∞

(e−β−| j|a†
j,−)|vac〉, (A7)

where the normalization coefficient is neglected since it
should be valued in the frameworks of Dirac or biorthonormal
inner product in practice. We note that Eq. (A5) is symmetric
under the operation β+ � β−. Thus, if (β+, β−) = (x, y) is
a solution with the eigenvalue EB, then (β+, β−) = (y, x)
corresponds to another solution with eigenvalue −EB. Ac-
cordingly, when we take T = Tc =

√
�2 − (2κ )2, we have

βc = β+ = β− with

βc = ln[�/(2κ ) +
√

�2/(4κ2) − 1] (A8)

and two bound states coalesce to a single state

∣∣ψEP
B

〉 =
∞∑

j=−∞
(eiπ je−βc| j|a†

j,+ + i e−βc| j|a†
j,−)|vac〉, (A9)

with the eigenenergy EEP
B = 0, indicating the occurrence of

EP. We note that |ψEP
B 〉 has the identical Dirac probability

distributions on the two chains.
In strong localization limit with e2βσ � 1, we have the

approximate solutions(
β−
β+

)
=

(
ln(�/κ + √

�2 − T 2/κ )
ln(�/κ − √

�2 − T 2/κ )

)

or

(
ln(�/κ − √

�2 − T 2/κ )
ln(�/κ + √

�2 − T 2/κ )

)
, (A10)

which are still in agreement with the symmetry of Eq. (A5).

2. Dirac probability preservation

Consider a Hermitian Hamiltonian with chiral symmetry,

H =
(

0 D
D† 0

)
, (A11)

where D is an arbitrary N × N matrix. The Schrödinger
equation is

H |φ±n〉 = ε±n|φ±n〉 (A12)

and obeys

ε−n = −εn, |φn〉 = (σz ⊗ IN )|φ−n〉, (A13)

due to the chiral symmetry

{σz ⊗ IN , H} = 0. (A14)

A non-Hermitian Hamiltonian H can be generated as the form

H = H + iγ σz ⊗ IN , (A15)

where σz is the Pauli matrix and IN denotes the N × N
identity matrix. We note that a non-Hermitian term breaks the
chiral symmetry, but H has CT symmetry. The corresponding
Schrödinger equation is

H|ϕ±n〉 = ε±n|ϕ±n〉 (A16)

and obeys

ε±n = ±(
ε2

n − γ 2)1/2
, |ϕ±n〉 = M±n|φ±n〉, (A17)

with the mapping matrix

M±n =
(

a±nIN 0
0 IN

)
, (A18)

where a±n = [ε±n + iγ ]/ε±n fulfills |a±n| = 1 for real ε±n

and is purel imaginary for imaginary ε±n. For real ε±n, the
factor a±n can be written in the form of a±n = eiθn , with
θn = arctan (γ /ε±n). This can be shown as the following.

Actually, from

HM±n =
(

IN 0
0 a±nIN

)
H, (A19)

we have H |ϕ±n〉 = (HM±n)|φ±n〉, and

H |ϕ±n〉 = ε±n

(
IN 0
0 a±nIN

)
|φ±n〉

= ε±n

(
(a±n)−1IN 0

0 a±nIN

)
|ϕ±n〉. (A20)

Therefore, from

H|ϕ±n〉 = (H + iγ σz ⊗ IN )|ϕ±n〉 (A21)

and a±n = (ε±n + iγ )/ε±n, ε±n = ±(ε2
n − γ 2)1/2, we have

ε±n(a±n)−1 + iγ = ε±na±n − iγ = ε±n, which leads to

H|ϕ±n〉 = ε±n|ϕ±n〉. (A22)

The mapping relation between vectors |φn〉 and |ϕn〉 can result
in many interesting and useful applications. In general, set
{|φn〉} obeys an orthogonal relation in the framework of the
Dirac inner product, while set {|ϕn〉} does not due to the
non-Hermiticity of H. We will show that {|ϕn〉} still obeys a
Dirac orthogonal relation within one of the subspace (n > 0
or n < 0).

We start with the eigenvector of Hermitian Hamiltonian H ,
which has the form

|φn〉 =
(

An

Bn

)
, (A23)
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where An and Bn are two N × 1 vectors, representing the wave
function of sublattices A and B. {|φn〉} fulfills the orthogonal
normalization condition

〈φm |φn〉 = A†
mAn + B†

mBn = δmn. (A24)

The Schrödinger equation of |φn〉 has the form(
0 D

D† 0

)(
An

Bn

)
= εn

(
An

Bn

)
(A25)

or explicitly

DBn = εnAn,

D†An = εnBn. (A26)

Multiplying by A†
m or B†

m, respectively, we have

A†
mDBn = εnA†

mAn,

B†
mD†An = εnB†

mBn. (A27)

Considering the conjugation of the above Schrödinger equa-
tion (A26)

B†
mD† = εmA†

m,

A†
mD = εmB†

m, (A28)

Eq. (A27) together with Eq. (A28) gives

εmB†
mBn = εnA†

mAn,

εmA†
mAn = εnB†

mBn, (A29)

and consequently leads to

(εn + εm)(A†
mAn − B†

mBn) = 0. (A30)

In the case of mn > 0 and εnεm 	= 0, we have

A†
mAn − B†

mBn = 0. (A31)

Together with the orthogonal normalization condition
Eq. (A24), we obtain

A†
mAn = B†

mBn = 1
2δmn, (A32)

which means that eigenvector |φn〉 has the same Dirac proba-
bility in sublattices A and B.

This factor leads to an important conclusion for vector
{|ϕn〉}: different eigenstates in one of the subspace (mn > 0)
of H are still orthogonal. In fact, the mapping matrix gives

〈ϕm|ϕn〉 = 〈φm|M†
mMn|φn〉

= a∗
manA†

mAn + B†
mBn

= 1
2 (a∗

man + 1)δmn. (A33)

In addition, for full real spectrum we have

〈ϕm|ϕn〉 = δmn, (A34)

since Mn is unitary, i.e., |an| = |eiθn | = 1.
As an application, we will show that for any initial state in

one of the subspaces (n > 0 or n < 0) of the non-Hermitian
system H, the time evolution preserves the Dirac probability.
Considering an initial state in one of the subspaces with the

0 1 2
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FIG. 6. Spectra of (a) ladder model and (b) SSH model with the
core matrix Eq. (A39) and Eq. (A40) for different γ . The Parameters
are κ = 1, � = 5, and γ = 0, 2.5, 3.

form |ψ (t = 0)〉 = ∑N
n=1 Cn|ϕn〉 with

∑N
n=1 C∗

nCn = 1, the
evolved state can be written as

|ψ (t )〉 =
N∑

n=1

Cn exp (−iεnt )|ϕn〉. (A35)

In the condition of a full real spectrum, the Dirac probability
is

P(t ) = 〈ψ (t )|ψ (t )〉

=
N∑

m,n=1

C∗
mCn exp [i(εm − εn)t]〈ϕm |ϕn〉

= 1, (A36)

which maintains the preservation of the Dirac probability,
exhibiting the Hermitian dynamic behavior.

3. Non-Hermitian ladder and SSH models

In the condition of � � κ (strong dimerization limit),
the non-Hermitian ladder described by the Hamiltonian in
Eq. (20)

HLadd = κ
∑
λ=1,2

N∑
j=1

α
†
j,λα j+1,λ + �

N∑
j=1

α
†
j,1α j,2 + H.c.

+
∑

j

(−1)niγ (α†
j,1α j,1 − α

†
j,2α j,2) (A37)

is equivalent to a non-Hermitian SSH model

HSSH =
N∑

j=1

(�a†
j b j + 2κa†

j+1b j ) + H.c.

+ iγ
N∑

j=1

(a†
l al − b†

l bl ). (A38)

Actually, the core matrix of Hladd is

hladd
k =

(
iγ � + 2κ cos k

� + 2κ cos k −iγ

)
. (A39)

For HSSH, we have the core matrix

hSSH
k =

(
iγ � + 2κ e−ik

� + 2κ eik −iγ

)
, (A40)
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which has the same spectrum with

hk =
(

iγ
√

�2+4κ2+4�κ cos k√
�2+4κ2+4�κ cos k −iγ

)
.

(A41)

In the case of strong dimerization limit �2 � κ2, we have√
�2 + 4κ2 + 4�κ cos k ≈ � + 2κ cos k (A42)

or

hk ≈ hladd
k . (A43)

The spectra of ladder model and SSH model with several γ

are shown in Figs. 6(a) and 6(b), respectively. It indicates that
two spectra are almost identical.

[1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.
Meade, Photonic Crystals: Molding the Flow of Light (Princeton
University Press, Princeton, NJ, 2008).

[2] S. John, Strong Localization of Photons in Certain Disordered
Dielectric Superlattices, Phys. Rev. Lett. 58, 2486 (1987).

[3] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State
Physics and Electronics, Phys. Rev. Lett. 58, 2059 (1987).

[4] M. Skorobogatiy, G. Bégin, and A. Talneau, Statistical analysis
of geometrical imperfections from the images of 2D photonic
crystals, Opt. Express 13, 2487 (2005).

[5] R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, Two
Regimes of Slow-Light Losses Revealed by Adiabatic Reduc-
tion of Group Velocity, Phys. Rev. Lett. 101, 103901 (2008).

[6] S. Hughes, L. Ramunno, Jeff F. Young, and J. E. Sipe, Extrinsic
Optical Scattering Loss in Photonic Crystal Waveguides: Role
of Fabrication Disorder and Photon Group Velocity, Phys. Rev.
Lett. 94, 033903 (2005).

[7] E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe,
and L. Ramunno, Disorder-induced scattering loss of line-
defect waveguides in photonic crystal slabs, Phys. Rev. B 72,
161318(R) (2005).

[8] N. Le Thomas, V. Zabelin, R. Houdré, M. V. Kotlyar, and
T. F. Krauss, Influence of residual disorder on the anticrossing
of Bloch modes probed in k space, Phys. Rev. B 78, 125301
(2008).

[9] S. Mazoyer, J. P. Hugonin, and P. Lalanne, Disorder-Induced
Multiple Scattering in Photonic-Crystal Waveguides, Phys. Rev.
Lett. 103, 063903 (2009).

[10] S. Mazoyer, P. Lalanne, J. C. Rodier et al., Statistical fluctua-
tions of transmission in slow light photonic-crystal waveguides,
Opt. Express 18, 14654 (2010).

[11] L. O’Faolain, T. P. White, D. O’Brien et al., Dependence of
extrinsic loss on group velocity in photonic crystal waveguides,
Opt. Express 15, 13129 (2007).

[12] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian
Hamiltonians having PT Symmetry, Phys. Rev. Lett. 80, 5243
(1998); C. M. Bender, D. C. Brody, and H. F. Jones, Complex
Extension of Quantum Mechanics, ibid. 89, 270401 (2002).

[13] P. Dorey, C. Dunning, and R. Tateo, Spectral equivalences,
Bethe ansatz equations, and reality properties in PT-symmetric
quantum mechanics, J. Phys. A 34, 5679 (2001).

[14] A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry:
The necessary condition for the reality of the spectrum of a
non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002); A.
Mostafazadeh and A. Batal, Exact PT-symmetry is equivalent
to Hermiticity, J. Phys. A 36, 7081 (2003).

[15] M. Znojil, PT-symmetric harmonic oscillators, Phys. Lett. A
259, 220 (1999); PT-symmetric square well, 285, 7 (2001).

[16] H. F. Jones, On pseudo-Hermitian Hamiltonians and their Her-
mitian counterparts, J. Phys. A 38, 1741 (2005); Scattering from
localized non-Hermitian potentials, Phys. Rev. D 76, 125003
(2007).

[17] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H.
Musslimani, Theory of coupled optical PT-symmetric struc-
tures, Opt. Lett. 32, 2632 (2007).

[18] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Optical Solitons in PT Periodic Potentials,
Phys. Rev. Lett. 100, 030402 (2008).

[19] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, Beam Dynamics in PT Symmetric Optical
Lattices, Phys. Rev. Lett. 100, 103904 (2008).

[20] Y. N. Joglekar, D. Scott, M. Babbey, and A. Saxena, Robust
and fragile PT-symmetric phases in a tight-binding chain, Phys.
Rev. A 82, 030103(R) (2010).

[21] D. D. Scott and Y. N. Joglekar, Degrees and signatures of
broken PT symmetry in nonuniform lattices, Phys. Rev. A 83,
050102(R) (2011).

[22] Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Coherent Perfect
Absorbers: Time-Reversed Lasers, Phys. Rev. Lett. 105, 053901
(2010); Y. D. Chong, L. Ge, and A. D. Stone, PT-Symmetry
Breaking and Laser-Absorber Modes in Optical Scattering Sys-
tems, ibid. 106, 093902 (2011).

[23] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori,
PT-Symmetric Phonon Laser, Phys. Rev. Lett. 113, 053604
(2014).

[24] X. Z. Zhang, L. Jin, and Z. Song, Perfect state transfer in PT-
symmetric non-Hermitian networks, Phys. Rev. A 85, 012106
(2012).

[25] X. Z. Zhang, L. Jin, and Z. Song, Self-sustained emission in
semi-infinite non-Hermitian systems at the exceptional point,
Phys. Rev. A 87, 042118 (2013).

[26] X. Q. Li, X. Z. Zhang, G. Zhang, and Z. Song, Asymmetric
transmission through a flux-controlled non-Hermitian scatter-
ing center, Phys. Rev. A 91, 032101 (2015).

[27] S. Yao and Z. Wang, Edge States and Topological Invariants of
Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[28] T. Yoshida, R. Peters, and N. Kawakami, Non-Hermitian per-
spective of the band structure in heavy-fermion systems, Phys.
Rev. B 98, 035141 (2018).

[29] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai,
Symmetry-protected exceptional rings in two-dimensional cor-
related systems with chiral symmetry, Phys. Rev. B 99,
121101(R) (2019).

[30] T. Yoshida and Y. Hatsugai, Exceptional rings protected
by emergent symmetry for mechanical systems,
arXiv:1904.10764.

024305-8

https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1364/OPEX.13.002487
https://doi.org/10.1364/OPEX.13.002487
https://doi.org/10.1364/OPEX.13.002487
https://doi.org/10.1364/OPEX.13.002487
https://doi.org/10.1103/PhysRevLett.101.103901
https://doi.org/10.1103/PhysRevLett.101.103901
https://doi.org/10.1103/PhysRevLett.101.103901
https://doi.org/10.1103/PhysRevLett.101.103901
https://doi.org/10.1103/PhysRevLett.94.033903
https://doi.org/10.1103/PhysRevLett.94.033903
https://doi.org/10.1103/PhysRevLett.94.033903
https://doi.org/10.1103/PhysRevLett.94.033903
https://doi.org/10.1103/PhysRevB.72.161318
https://doi.org/10.1103/PhysRevB.72.161318
https://doi.org/10.1103/PhysRevB.72.161318
https://doi.org/10.1103/PhysRevB.72.161318
https://doi.org/10.1103/PhysRevB.78.125301
https://doi.org/10.1103/PhysRevB.78.125301
https://doi.org/10.1103/PhysRevB.78.125301
https://doi.org/10.1103/PhysRevB.78.125301
https://doi.org/10.1103/PhysRevLett.103.063903
https://doi.org/10.1103/PhysRevLett.103.063903
https://doi.org/10.1103/PhysRevLett.103.063903
https://doi.org/10.1103/PhysRevLett.103.063903
https://doi.org/10.1364/OE.18.014654
https://doi.org/10.1364/OE.18.014654
https://doi.org/10.1364/OE.18.014654
https://doi.org/10.1364/OE.18.014654
https://doi.org/10.1364/OE.15.013129
https://doi.org/10.1364/OE.15.013129
https://doi.org/10.1364/OE.15.013129
https://doi.org/10.1364/OE.15.013129
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1088/0305-4470/34/28/305
https://doi.org/10.1088/0305-4470/34/28/305
https://doi.org/10.1088/0305-4470/34/28/305
https://doi.org/10.1088/0305-4470/34/28/305
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1016/S0375-9601(99)00429-6
https://doi.org/10.1016/S0375-9601(99)00429-6
https://doi.org/10.1016/S0375-9601(99)00429-6
https://doi.org/10.1016/S0375-9601(99)00429-6
https://doi.org/10.1016/S0375-9601(01)00301-2
https://doi.org/10.1016/S0375-9601(01)00301-2
https://doi.org/10.1016/S0375-9601(01)00301-2
https://doi.org/10.1088/0305-4470/38/8/010
https://doi.org/10.1088/0305-4470/38/8/010
https://doi.org/10.1088/0305-4470/38/8/010
https://doi.org/10.1088/0305-4470/38/8/010
https://doi.org/10.1103/PhysRevD.76.125003
https://doi.org/10.1103/PhysRevD.76.125003
https://doi.org/10.1103/PhysRevD.76.125003
https://doi.org/10.1103/PhysRevD.76.125003
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevA.82.030103
https://doi.org/10.1103/PhysRevA.82.030103
https://doi.org/10.1103/PhysRevA.82.030103
https://doi.org/10.1103/PhysRevA.82.030103
https://doi.org/10.1103/PhysRevA.83.050102
https://doi.org/10.1103/PhysRevA.83.050102
https://doi.org/10.1103/PhysRevA.83.050102
https://doi.org/10.1103/PhysRevA.83.050102
https://doi.org/10.1103/PhysRevLett.105.053901
https://doi.org/10.1103/PhysRevLett.105.053901
https://doi.org/10.1103/PhysRevLett.105.053901
https://doi.org/10.1103/PhysRevLett.105.053901
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevA.85.012106
https://doi.org/10.1103/PhysRevA.85.012106
https://doi.org/10.1103/PhysRevA.85.012106
https://doi.org/10.1103/PhysRevA.85.012106
https://doi.org/10.1103/PhysRevA.87.042118
https://doi.org/10.1103/PhysRevA.87.042118
https://doi.org/10.1103/PhysRevA.87.042118
https://doi.org/10.1103/PhysRevA.87.042118
https://doi.org/10.1103/PhysRevA.91.032101
https://doi.org/10.1103/PhysRevA.91.032101
https://doi.org/10.1103/PhysRevA.91.032101
https://doi.org/10.1103/PhysRevA.91.032101
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.98.035141
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
http://arxiv.org/abs/arXiv:1904.10764


QUANTUM TRANSPORT IN NON-HERMITIAN IMPURITY … PHYSICAL REVIEW B 100, 024305 (2019)

[31] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Observation of PT-Symmetry Breaking in Complex Optical
Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[32] C. E. Rüter et al., Observation of parity–time symmetry in
optics, Nat. Phys. 6, 192 (2010).

[33] W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao,
Time-reversed lasing and interferometric control of absorption,
Science 331, 889 (2011).

[34] Y. Sun, W. Tan, H.-Q. Li, J. Li, and H. Chen, Experimental
Demonstration of a Coherent Perfect Absorber with PT Phase
Transition, Phys. Rev. Lett. 112, 143903 (2014).

[35] L. Feng et al., Experimental demonstration of a unidirectional
reflectionless parity-time metamaterial at optical frequencies,
Nat. Mater. 12, 108 (2013).

[36] B. Peng et al., Parity–time-symmetric whispering-gallery mi-
crocavities, Nat. Phys. 10, 394 (2014).

[37] L. Chang et al., Parity-time symmetry and variable optical iso-
lation in active-passive-coupled microresonators, Nat. Photon.
8, 524 (2014).

[38] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Single-
mode laser by parity-time symmetry breaking, Science 346, 972
(2014).

[39] H. Hodaei et al., Parity-time-symmetric microring lasers,
Science 346, 975 (2014).

[40] M. Wimmer et al., Observation of optical solitons in
PT-symmetric lattices, Nat. Commun 6, 7782 (2015).

[41] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[42] W. H. Hu, L. Jin, Y. Li, and Z. Song, Probability-preserving
evolution in a non-Hermitian two-band model, Phys. Rev. A 86,
042110 (2012).

[43] K. L. Zhang, P. Wang, G. Zhang, and Z. Song, Simple har-
monic oscillation in a non-Hermitian Su-Schrieffer-Heeger
chain at the exceptional point, Phys. Rev. A 98, 022128
(2018).

[44] K. L. Zhang, P. Wang, and Z. Song, Exceptional-point-
induced lasing dynamics in a non-Hermitian Su-Schrieffer-
Heeger model, Phys. Rev. A 99, 042111 (2019).

024305-9

https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1126/science.1200735
https://doi.org/10.1126/science.1200735
https://doi.org/10.1126/science.1200735
https://doi.org/10.1126/science.1200735
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nmat3495
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258479
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1038/ncomms8782
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevA.86.042110
https://doi.org/10.1103/PhysRevA.86.042110
https://doi.org/10.1103/PhysRevA.86.042110
https://doi.org/10.1103/PhysRevA.86.042110
https://doi.org/10.1103/PhysRevA.98.022128
https://doi.org/10.1103/PhysRevA.98.022128
https://doi.org/10.1103/PhysRevA.98.022128
https://doi.org/10.1103/PhysRevA.98.022128
https://doi.org/10.1103/PhysRevA.99.042111
https://doi.org/10.1103/PhysRevA.99.042111
https://doi.org/10.1103/PhysRevA.99.042111
https://doi.org/10.1103/PhysRevA.99.042111

