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Theoretical strength and prediction of structural defects in metallic glasses
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Theoretical strength plays a pivotal role in gauging the maximum stress and inferring structural defects in
crystalline materials. However, its very existence and the expected prediction of possible defects in amorphous
solids remain elusive. Here, by using a finite deformation theory, we obtain the theoretical strengths for several
bulk metallic glasses under pure shear loading. The theoretical strengths obtained are only several times larger
than the experimental yield stresses; in contrast, they are three or four orders of magnitude higher in crystalline
materials. This striking closeness between the theoretical and experimental strengths suggests the absence of any
extended structural defects that can substantially reduce the intrinsic strength in the amorphous metals. Instead,
the atoms have to sever each individual bond to deform. Further investigation reveals that the deformation
occurring at the theoretical stress proceeds with the mechanical instability with a vanishing shear modulus,
or a mechanical spinodal. We deduce from these results that, different fundamentally from crystalline solids,
there are no extended structural defects in the amorphous solids and the plastic deformation must be local and
sensitive to sample conditions.
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I. INTRODUCTION

Theoretical strength refers to the maximum stress that a
material can withstand. For crystalline materials, the max-
imum strength is achieved when they do not contain ex-
tended structural defects [1–5]. Traditionally, there are two
ways to obtain the theoretical strength. One is from the
mean-field theory such as the Frenkel model [1] and the
other by using the nonlinear elasticity theory [5]. Ab initio
quantum calculation is a modern approach [6–9] which relies
on numerical modeling rather than the analytical theories.
Experimentally, the maximum strength comes only from those
materials without or with less detrimental crystal defects or
imperfections, such as crystal whiskers [10]. The theoretical
strength predicted from Frenkel’s model is three or four orders
of magnitude higher than the observed values measured in
real crystalline materials in the experiments. Nevertheless, it
was the revelation of the existence of the theoretical strength
that ignited the search and discovery of the crystal defect, i.e.,
dislocations [11,12]: In order to reconcile the huge difference
between the theoretical and experimental yield strength the
concept of dislocation, an extended crystal structural defect,
was introduced.

In amorphous solids, the concept of theoretical strength
and the familiar routine of predicting structural defects from
the theoretical strength face many fundamental challenges.
Firstly, amorphous solids are topologically disordered down
to atomic scales. Therefore, defining a structural “defect” in
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an amorphous solid becomes conceptually difficult. Secondly,
without the long-range order like in crystalline materials, it is
technically impossible to set up an analytical theory like the
Frenkel model that is premised on the translational crystalline
symmetry [1]. Thirdly, the modern quantum computation,
which has enjoyed a great success in crystalline materials
because of their translational symmetry, will run into many
difficulties in modeling amorphous solids, one of which is
the size effect. Without the translational symmetry, one is
required to have a large enough sample to produce statistically
reliable results such as the theoretical strength. However,
current computing capability limits the number of atoms to
a few hundred atoms, which is far fewer than that required to
be free of the size effect [13]. Due to these reasons, there is
little progress in the exploration of the theoretical strength in
amorphous solids. Consequently, the expected prediction of
the structural defects has not been carried out.

In this work, we use a finite deformation theory to obtain
the desired theoretical strengths for several bulk metallic
glasses under pure shear loading. The chief result is that the
theoretical strengths obtained analytically are only several
times higher than the experimentally measured yield or frac-
ture stresses (see Table I). Note that, in general, yielding and
fracture in the amorphous solids occur at the same point in
experiments. This striking closeness between the theoretical
and experimental strength strongly suggests the absence of
any extended structural defects that could substantially re-
duce the intrinsic strength in the amorphous metals. Further
investigation reveals that yielding occurring at the theoreti-
cal strength proceeds with the mechanical instability with a
vanishing mechanical response function represented by the
shear modulus. In other words, failure in metallic glasses
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TABLE I. The theoretical Strengths (τmax) and the corresponding shear strains (ηmax) of the three bulk metallic glasses from the finite
deformation theory. τ0.2% is the yield stress evaluated using the 0.2% offset strain method in order to compare with the experimentally measured
yield stress. G0 is the shear modulus in the undeformed state.

Relaxed Unrelaxed 0.2% Offset strain Experiment
(GPa) (GPa) (GPa) (GPa) Relaxed

Theoretical strength and strain τmax ηmax τmax ηmax τ0.2% τ τmax/G0

Zr52.5Ti5Cu17.9Ni14.6Al10 4.79a 0.11a 5.22a 0.12a 1.25 2.5–3.5b 0.152a

5.24c 0.11c 7.01c 0.16c 1.016d, 0.842e 0.166c

Pd40Cu30Ni10P20 3.40a 0.07a 4.60a 0.1a 1.41 0.82d 0.095a

3.82c 0.08c 6.02c 0.12c 1.41–1.85b 0.107c

Zr41.2Ti13.8Cu12.5Ni10Be22.5 6.09c 0.11c 8.74c 0.17c 1.52 3.1b, 0.95d 0.160c

aFrom the current theory with up to the fourth-order terms of the strains included.
bThe maximum shear stresses from the nanoindentation [25,26,29].
cFrom the current theory with the third-order terms of the strains included.
dThe maximum shear stresses estimated from a tensile tests [27,30,31].
eThe maximum shear stresses estimated from a shear deformation [28].

at the maximum stress resembles a mechanical “spinodal”
transition: At the failure point, the atomic displacement or
deformation becomes an unstable event. Any local deforma-
tion initiated can spread out with little resistance to forming
larger deformation zones. We argue that due to this particular
mechanism, the deformation and failure of metallic glasses
must be local and sensitive to sample conditions, which is
fundamentally different from crystalline materials.

II. THEORY

To obtain the maximum stress, the theoretical stress-strain
relation needs to be obtained analytically. In the finite de-
formation theory, this relationship is furnished by a series
expansion of the free energy F of the system under deforma-
tion beyond the second-order strain terms (see Appendix A)
[14]. Since metallic glasses are known experimentally to have
large elastic strain limits in the range of 2%–3%, the expan-
sion to the third or fourth order is necessary and naturally
justified.

Specifically, to obtain the shear stress as a function of the
applied shear strain we subject metallic glass samples to a
pure shear deformation with the strain tensor⎛

⎝η11 η12 0
η21 η22 0
0 0 η33

⎞
⎠,

where η12 = η21 = η is the applied shear strain on a shear
plane and η11, η22, and η33 are the normal strains along the
x, y, and z (or 1, 2, and 3) directions. The normal strains are
induced by the applied shear strain. Here, the normal strains
are obtained when we allow the shear-induced normal stresses
going to zero, or relaxed out (see Appendix B). Under these
conditions, the shear stress can be obtained analytically as a
function of the shear strain, as well as the induced normal
strains; that is, σ12 = f (η)|η11,η22,η33 . The explicit expression
for the stress-strain relation is given in Eq. (A3) in Appendix
A. The procedure of acquiring σ12 is given in Appendix B.
Therefore, the theoretical strength can be obtained from the
shear stress-strain curve at the point of the maximum stress.

To extract the underlying mechanisms of the deforma-
tion at the theoretical stress, we need another mechanical
quantity, the elastic constant matrix C, which is the Hessian
or the second-order derivatives of the free energy F with
respect to the deformation strains (see Appendix C). C is
related to the mechanical response function of the system
to the applied deformation strain, which is defined by the
tensor Bi jkl = ∂σi j/∂ηkl + O(η). The response function B is
similar to the familiar magnetic susceptibility for magnetic
materials under applied magnetic field [15,16]. Under large
deformation, the elastic response function B becomes strain
dependent. Its magnitude and trend of variation with the
applied stress or strain tell us not only how “strong” a material
is when deformed but also the mode of deformation, i.e.,
the eigenstrains, as well as the possible defects either pre-
existing or caused by the external applied loading. For these
reasons, B is called the elastic stiffness coefficient, which
is related to the elastic constant C′

i jkl in the deformed state
[see Eqs. (D1) in Appendix D] and applied stress τi j , Bi jkl =
C′

i jkl + (δikτ jl + δ jkτil + δilτ jk + δ jlτik − 2δklτi j )/2 [15–17],
where δi j is the Kronecker delta function. Here, the Einstein
summation convention is used.

Under an applied strain or stress, the elastic stiffness
coefficient B behaves in two different ways. One is that it
decreases but remains finite below and at the maximum stress,
and the other is that it approaches zero at the maximum
stress. In the former, the system is said to be stable up to
the maximum stress, although weakened mechanically; and
the latter indicates that the system experiences a mechanical
instability. In other words, at the instability point, with a small
increment of applied strain or stress, the system becomes
thermomechanically unstable with the development of a large,
unbounded deformation strain in its mechanical response.
This scenario corresponds to either failure or shear band
formation, which are the two natural consequences of the
instability in deformation of metallic glasses.

For a tensor quantity like B, the instability versus the
applied deformation strain is represented by the condition
|B̄i jkl | → 0 (see Appendix D), where B = (BT + B)/2 is the
symmetrized tensor B. Similar to the chemical spinodal,

024109-2



THEORETICAL STRENGTH AND PREDICTION OF … PHYSICAL REVIEW B 100, 024109 (2019)

TABLE II. The experiment data of the second-, third-, and fourth-order elastic constants in the undeformed state of the metallic glasses
measured using ultrasound [18–20].

Zr52.5Ti5Cu17.9Ni14.6Al10 Pd40Cu30Ni10P20 Zr41.2Ti13.8Cu12.5Ni10.0Be22.5

(GPa) (GPa) (GPa)

c11 155.7 216.9 164.68
c12 92.7 145.3 88.34
c44 31.5 35.8 38.17
c111 –1230.2 –2285.4 –1414.5
c112 –389.4 –695 –445.3
c123 –109 –227 –185.1
c144 –140.2 –234 –130.1
c155 –210.2 –397.6 –242.3
c456 –35 –81.8 –56.1
c1111 6926.9 -4062.7
c1112 1236.2 –1830
c1122 –1869.7 –3218.2
c1123 –582.6 –1026
c1144 –643.55 –1096.1
c1155 948.4 –372.1
c1255 454.7 –201
c1266 1250.7 161
c1456 398 181
c4444 –453.4 –799.7
c4455 –151.1 –266.6

we call this instability the “mechanical spinodal.” For a stable
system, the matrix of the elastic stiffness coefficient should
remain positive definitive, or the free energy hypersurface
should remain convex versus the strains [15,16]. The instabil-
ity condition, on the other hand, represents the concaveness
in the free energy hypersurface, which characterized by six
separate criteria, each of which corresponds to a possible
bifurcation of the system along a specific deformation path
[16] in the six-dimensional strain space [see Eqs. (D2a)–(D2f)
in Appendix D]. From the deformation mode and strain that
correspond to the first occurrence of the instability condition
approached in the system under shear, we can identify the
underlying deformation mechanism and whether this mecha-
nism is intrinsic to the failure corresponding to the maximum
stress.

Note that the finite deformation theory applies to the elastic
regime, albeit at large nonlinear strains. The prediction of
the defect process and the defects-related large deformation,
including plasticity, is beyond the scope of this work. We
can, however, predict the mechanical responses at the elastic
limit represented by the maximum stress and the instability.
In metallic glasses, the plastic deformation involving shear
band formation needs a separate treatment in addition to the
nonlinear elastic theory. Fortunately, our theory may even be
more relevant in practice since most metallic glasses fail or
yield at the end of an elastic limit.

III. METHODS

As shown in Appendixes A and B, in order to obtain
the stress-strain relations [Eq. (A1)], the elastic stiffness
coefficients [Eqs. (C1a)–(C1j)] and the instability conditions
[Eqs. (D2a)–(D2f)], the finite deformation theory needs

to be implemented with the input of the corresponding
second-, third-, and fourth-order elastic constants measured
from experiments. These elastic constants are measured
using ultrasound. For the second-order elastic constants, the
measurement is done in the undeformed state, i.e., when
there is no external shear strain or stress applied. For the
higher-order elastic constants, external deformation strains
need to be applied to the sample while the ultrasound is
transmitted in the sample. Various forms of deformation
strains have to be applied to the sample in order to obtain
the higher-order elastic constants. Under the prefixed
deformations, these elastic constants are measured from the
sound velocities. So far, these data are available for only a few
bulk metallic glasses, Zr52.5Ti5Cu17.9Ni14.6Al10(Vit105) [18],
Pd40Cu30Ni10P20 [19], and Zr41.2Ti13.8Cu12.5Ni10.0Be22.5(Vit1)
[20], although only up to the third-order elastic constants are
available for Vit1. The input elastic constants used in our
theory are listed in Table II and the procedure to implement
the theory using these constants is described in Appendix E.

Note that the elastic constants measured using ultra-
sound are adiabatic, while the input elastic constants needed
in the finite deformation theory are isothermal. However,
their difference is small at room temperature. For example,
for Vit105, CS

11 − CT
11 = CS

12 − CT
12 = BS − BT = TV β

CV
B2

T =
TV β

CP
BT BS , where T is temperature; V is volume; β is the

thermal expansion coefficient; Cp and Cv are the heat capacity
at constant pressure P and volume V, respectively; and Bs and
BT are the adiabatic and isothermal bulk modulus. Here, for
all quantities the superscript or subscript S stands for the adia-
batic and T for the isothermal condition. For Vit 105, at 300 K
the thermal expansion coefficient is 10−5 K−1 [21], the spe-
cific heat capacity at constant pressure is 1177 J g atom−1 K−1

[22], and the adiabatic bulk modulus Bs is 113.7 GPa [18].
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Hence, the difference between the adiabatic and isothermal
elastic constant CS

11 − CT
11 in metallic glass Vit105 is only

about 0.33 GPa. Therefore, we can ignore the difference
and instead use the experimentally measured adiabatic elastic
constants in our theory.

IV. RESULTS AND DISCUSSIONS

A. Theoretical stresses

Figure 1 shows the shear stress-strain relations ob-
tained analytically for the three bulk metallic glasses. For
Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20, the fourth-
order shear strain terms are included, while only up to the
third-order terms for Zr41.2Ti13.8Cu12.5Ni10Be22.5 are avail-
able. As shown, the shear stress-strain relations exhibit a
linear elastic regime in the small strain region. The theory is
also able to predict a larger nonlinear elastic regime. Since
the yielding occurs at a yielding stress with a large, nonlinear
strain, we need to determine the yield point by using the
conventional 0.2% strain offset method (Table I). This is
done by drawing a linear stress-strain line that has the shear
modulus determined near zero shear strain but with an offset
shift of 0.2% shear strain at zero stress. The interception of
the line with the stress-strain curve in Fig. 1 gives the yield
point. Beyond the yield point, the shear stress continues to
rise (nonlinearly) until it hits a maximum stress.

Note that different from the common observations in ex-
periments, the samples do not fail or fracture at the yielding
point nor at the maximum stress in the theory. This is because
we used the samples in the theory without any boundaries. A
boundaryless sample would continuously deform under shear.
Another reason is that the samples in the theoretical models
do not contain imperfections or surface cracks that can cause
premature failure initiated from these sites that leads to the
discontinuity in the stress-strain relation.

To illustrate the importance of relaxation of the shear-
induced internal normal stresses, in Fig. 1 we show the shear-
induced normal stresses when the samples are not allowed
to get rid of them by relaxation. One can see that the shear-
induced normal stresses are compressive in nature and their
magnitudes are comparable to the shear stress. Unlike the
shear stress that reaches a maximum and then decreases, the
compressive normal stresses keep rising with the shear strain.
In this case, therefore, the samples are affected effectively
by the increasing compression from the normal stresses in
addition to the applied shear. Therefore, the emergence of
strong shear-normal stress coupling is expected. As shown
below, the unique influence of the induced normal stress on
shear in the amorphous solids is demonstrated when we relax
these internal stresses.

Upon relaxation, which allows the samples to change sizes
along the normal stress directions, the normal stresses go to
zero. As a result, the normal strains are generated and the
shear stress-strain relation curve becomes less steep, although
for Vit105 the effect is smaller than the others. The relaxation
corresponds to the experimental condition where the induced
normal stresses are naturally relaxed during the designated
loading, such as shear stresses, if the samples are not confined
on the boundary. From the relaxed stress-strain relations, we

FIG. 1. The shear stress-strain relations and the induced
normal stresses for (a) Zr52.5Ti5Cu17.9Ni14.6Al10(Vit105), (b)
Pd40Cu30Ni10P20, and (c) Zr41.2Ti13.8Cu12.5Ni10.0Be22.5(Vit1) under
pure shear loading from the finite deformation theory. Note that for
Vit1, the theory has only up to the third-order terms in the shear
strain since the fourth-order elastic constants are not available. Leg-
end: “4u” denotes “the fourth-order theory with the normal stresses
unrelaxed”, “4r” “the fourth-order theory with the normal stresses
relaxed, and so on. The corresponding shear-induced normal stresses,
σ11, σ22(= σ11), and σ33, are calculated from the fourth-order theory
without stress relaxation in (a) and (b) and from the third-order
theory in (c).
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can obtain the theoretical shear strength by locating the max-
imum stress value on the curve and the corresponding strain.
The results are tabulated in Table I. To show the influence of
the internal normal stresses, we also give the maximum shear
stresses without relaxation of the internal normal stresses.

For glasses Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20

with the fourth-order terms considered, the critical shear
strengths are 4.79 and 3.40 GPa at the corresponding shear
strain of 0.11 and 0.07, respectively, with the shear-induced
normal stresses relaxed. Without relaxation, the strengths
are higher, namely, 5.22 and 4.60 GPa at the correspond-
ing strains of 0.12 and 0.1 which are also larger. For
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, since only up to the third-order
terms are included, the theoretical strength with relaxed and
unrelaxed normal stresses are much higher than the other
two systems, at 6.09 and 8.74 GPa with the corresponding
maximum strain at 0.11 and 0.17, respectively. It appears
that the inclusion of the fourth-order terms can also lead to
“relaxation,” or a softening effect.

To further test the effect of the fourth-order terms,
we deliberately omitted the fourth-order terms in
Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20 which have
both third- and fourth-order terms. The results are given
in Fig. 1 and Table I. These results indicate that, indeed,
both the relaxation of the normal stress and the inclusion
of the fourth-order terms of the shear strains have a similar
and significant impact on the maximum stress and strain:
The relaxation and the inclusion of the fourth-order terms
lower both the stress and strain. Note that traditionally,
however, only the third-order terms are considered in
nonlinear theories to introduce the so-called “anharmonic”
correction to the linear description of deformation [23,24].
Our work shows that the higher-order terms are important,
which act effectively as a relaxation to the stress and strain
from the lower-order theory. Therefore, higher-order terms
are necessary for obtaining reliable results, including the
theoretical strengths.

B. Mechanical instability conditions and deformation
mode at the maximum stress

Next, we take a look at the instability conditions via the
elastic stiffness coefficients versus the applied shear strain in
the three bulk metallic glasses. We found that all six stability
criteria [Eqs. (D2a)–(D2f) in Appendix D], i.e., the condition
for |B̄i jkl |, remain positive definitive (Fig. 2). They show the
decreasing trends as the shear deformation strain increases,
and all except the criterion in Eq. (D2f) remain positive before
and at the maximum stress. In other words, the instability,
which occurs when the stability criterion becomes zero, does
happen at the maximum shear strain. When the shear stability
criterion described in Eq. (D2f) is violated, or approaches zero
while other conditions are not, the material fails via a shear
instability.

Figure 2 shows a large decline in the shear stability
criterion described in Eq. (D2f) as the shear strain increases,
and the shear stability criterion reaches zero at exactly
the corresponding state of the maximum shear strain
and stress. Further analysis shows that the criterion in
Eq. (D2f) is directly related to the shear modulus of

FIG. 2. The elastic stiffness coefficients in Eq. (D2f) versus
applied shear strain for (a) Zr52.5Ti5Cu17.9Ni14.6Al10(Vit105), (b)
Pd40Cu30Ni10P20, and (c) Zr41.2Ti13.8Cu12.5Ni10.0Be22.5(Vit1) under
pure shear loading from the finite deformation theory. Note that for
Vit1, the theory has only up to the third-order shear strain since the
fourth-order elastic constants are not available. The insets in each
figure are the stability condition in Eq. (D2c), or the denominator
in the shear modulus G. For comparison, we also include the results
from the finite deformation theory with up to the third-order terms.
Legend: “4u” denotes “the fourth-order theory with the normal
stresses unrelaxed,” “4r” “the fourth-order theory with the normal
stresses relaxed,” and so on.
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the bulk metallic glasses under pure shear. Under the
deformation, the shear modulus depends on the deformation
strains and its analytical expression can be obtained as

G = − (B̄11+B̄12 )(B̄2
36−B̄33B̄66 )+2B̄16(B̄16B̄33−B̄13B̄36 )+2B̄13(B̄13B̄66−B̄16B̄36 )

(B̄11+B̄12 )B̄33−2B̄2
13

,
where the numerator is the shear stability criterion in
Eq. (D2f) and the denominator is that in Eq. (D2c). As shown
in the insets in Fig. 2, the condition in the denominator
remains finite and positive before and at the maximum stress.
Therefore, at the maximum strain and stress, all three bulk
metallic glasses become unstable with the vanishing of the
shear modulus; i.e., they experience a shear instability. In
other words, when the system reaches the maximum stress,
the failure deformation mode is shear.

The zero shear modulus at this point indicates vanishing
resistance to shear at the maximum stress. In other words, the
simultaneous vanishing of the shear modulus and the elastic
stiffness coefficient B at the maximum stress indicates that
the system can develop a large shear strain under a small
stress variation or perturbation, and the shear deformation
becomes unbounded or without resistance. This property re-
sembles a spinodal transition, albeit mechanical in nature. We
can reasonably believe that this mechanism may lie behind
the yielding and plastic deformation involving shear band
formation, although a precise description requires a separate
theoretical treatment.

C. Absence of extended structural defects, or presence of the
strong tendency of local mechanical deformation

Metallic glass is often regarded as strong with the shear
stress “approaching the theoretical strength” [32]. However,
little is known about the exact value of the theoretical strength.
Our theory gives an estimate of the theoretical shear strength
in bulk metallic glasses [33]. We found that the fully re-
laxed samples with no shear-induced internal normal stresses
present have their theoretical shear strength values are only
higher by less than an order of magnitude than the experimen-
tally known maximum values, i.e., yield or fracture stresses
(see Table I). This closeness between the theoretical and
experimental strengths is striking as compared with the crys-
talline materials where one often finds three to four orders of
magnitude difference [34]. Such a large difference prompted
the search for new deformation mechanisms in real crystalline
materials that would lower the theoretical strength. One of
these proposals is the dislocation [35–37]. Dislocations are an
extended structural defect with the faulty atomic arrangement
out of the perfect crystal order. It was confirmed later that
the motion of the dislocation fault lines on the atomic planes
causes yielding that requires much lower shear stress [38,39].
Therefore, it is concluded that the existence of the dislocations
is the origin of the much lower strength in real crystals.

However, the amorphous structure, such as metallic
glasses, is already heavily defected down to the atomic scales.
In other words, no two atoms have the same local atomic
packing environment. Such a disordered structure makes it
impossible to have any well-organized, extended structural
defects. Therefore, it is conceptually difficult to imagine any
atomic movement on the extended length scale involving a
large group of atoms in any “fault lines” such as dislocations,
or any other type of well-defined correlated motion of a

large number of atoms under shear stress. Instead, atoms
have to move individually according to the allowance of
their own environments. The outcome of this scenario is that
atoms have to move individually at the yielding point by
severing their atomic bonds with the rest of the atoms. This
action of “cutting” the individual atomic bonds, incidentally,
is the original proposal of the atomic mechanism of yielding
in perfect crystals [40]. In crystals, this mechanism leads
to extraordinarily high stresses, the theoretical strengths. In
this work, the closeness of the theoretical strength to the
experimental yield stress in metallic glasses suggests that this
“individual atom motion” is the mechanism. In other words,
this mechanism, rejected by the early works in crystalline
materials, may hold true in metallic glasses as each atom has
to move individually by executing shear deformation relative
to other atoms in each atom’s individual environment. This
unique deformation mechanism in the amorphous structure is
the reason why the experimental strength is so high and close
to the theoretical one.

Following the argument, we may deduce that there is
no extended structure defect that can substantially reduce
the theoretical strength in real metallic glasses. In this case,
metallic glasses must have a strong tendency to deform locally
whenever the local environment permits. This conclusion
leads us to several interesting explanations for the mechanical
behaviors in real metallic glasses:

Since the difference between the theoretical and actual
strength is small, it is very easy for a real metallic glass to
reach the theoretical strength, albeit in local regions. This can
be achieved via various stress concentrators such as sample
imperfections and other heterogeneities present in real glassy
materials. These imperfections and heterogeneities may func-
tion as the predominant deformation initiators and carriers:
Once the local deformation starts from these places where the
theoretical strength is reached, it spreads out to the rest of the
sample. As shown above, since the local deformation is driven
by the local stress, the rate of deformation is dominated by
the stress level there: Whenever the theoretical stress is ap-
proached, deformation occurs and grows. Unlike dislocations
in crystalline materials, these stress fields are local and easy
to change or adapt to the local environment. Thus, they do
not show strong interactions as the dislocations in crystalline
materials. This may well be the origin for the lack of work
hardening in metallic glasses at the yielding or the maximum
stress point.

This particular aspect of amorphous solids discussed above
lends support to our use of the finite deformation theory
to obtain the theoretical strength. In this theory, the only
input is the experimentally measured elastic constants. These
constants are measured from the acoustic sound waves in the
metallic glasses. When the samples are not subject to any ex-
ternal deformation strain, one obtains the second-order elastic
constants; when subject to the external strains, the acoustic
wave velocity gives the higher-order elastic constants. In both
cases, since the sound wavelength is far larger than the sizes
of any perceivable imperfections such as surface crack or
voids, the elastic constants measured are not significantly
affected by them. Thus, the theoretical strength obtained using
these constants is as if from the “imperfection-free,” or ideal
samples.
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On the other hand, since the samples are subject to
certain deformation strains during the measurement of the
higher-order elastic constants, any microscopic and nanoscale
changes induced by the deformation, such as the “shear
deformation zones” or “free volume” changes are present.
Although the external applied deformation strains do not
reach the yield point, these small and local deformations
already occur under the external loading. These small de-
formation zones are statistically factored in the measured
elastic constants. Therefore, the maximum stress obtained by
the finite deformation theory using these elastic constants
also reflects these internal structural changes intrinsic to the
amorphous materials.

D. Mechanical spinodal and related deformation mechanisms

The above-proposed deformation mechanism with each
atom deforming or cutting its bonds with other atoms in-
dividually at the maximum stress results in a rapid buildup
of internal free energy. If no other stress relief mechanism
exists, such as the dislocation in crystals, the individual atomic
deformation would drive the system to the instability point
where the free energy hypersurface loses its convexity. This
corresponds to the instability conditions |B̄i jkl | → 0 along the
shear path. Since Bi jkl is the second-order derivative of the
free energy with respect to the shear strain, the instability
indicates a mechanical spinodal transition, which is like a
continuous phase transition except without reversibility in our
mechanically deformed samples. We should mention once
again that this prediction is limited to the elastic regime
or at the limit of the elastic regime. The large deformation
behaviors in the plastic regime require different treatments.

In addition, we should mention that the metallic glasses in
the finite deformation theory are treated as homogeneous; i.e.,
no other stress concentrators or heterogeneities and surfaces
are present. In this sense, our model actually deals with a piece
of amorphous solid that has no macroscopic or mesoscopic
scale inhomogeneities with a size larger than the wavelength
of sound. As mentioned in the previous sections, however,
the effects from the smaller scale structural variation on the
nanometers are already factored in, in part, in the theory
via the measured second- and higher-order elastic constants,
which is equivalent to a mean-field model. Therefore, al-
though our sample is “homogeneous” and deformation is
“uniform,” the theory is able to predict that the deformation in
the sample occurs with the mechanism of “individual atomic
shear” when the elastic instability is reached at the maximum
strain. In pure shear, we show that the metallic glasses become
mechanically unstable at the maximum stress via the shear
instability. That is, the free energy hypersurface becomes
buckled and changes from convex to concave along the defor-
mation path of the shear strain. Further consideration of the
inhomogeneous nature of the deformation in metallic glasses
requires us to develop a new theory. The local deformations
should be included explicitly, including the embryos and the
fully grown shear bands. This can be done, for example, with
the treatment in the Ginzburg-Landau type of theory [41].

In reality, the mechanical spinodal transition at the maxi-
mum strength depicted by the finite deformation theory may
occur in local regions. Among many factors that interfere and
disrupt the deformation path are the presence of microcracks,
surface imperfections, voids from casting and processing, and
other structural and chemical concentration heterogeneities.
These “imperfections” are not extended structural defects but
can act as the stress concentrators and promotors for local
deformation. Due to the strong tendency of local deformation
in amorphous solids, once the local stress reaches the critical
stress in these regions, deformation occurs there. In other
words, yielding occurs when the local instability condition is
violated. This mechanism allows us also to explain why the
strength of real metallic glasses is so close to the theoretical
value.

V. CONCLUSIONS

The long-sought-after theoretical strength of metallic
glasses is obtained by using a finite deformation theory. By
including the higher-order terms of the deformation strains in
the free energy, we are able to describe the stress-strain rela-
tion and the maximum stress that occurs at large deformation
strains. The result shows that the theoretical strength is only
a few times larger than the experimental failure stress. The
small difference is dwarfed by the vast difference between
the theoretical and experimental strengths on the order of
three to four orders of magnitude in crystalline materials.
This striking closeness between the two in amorphous metals
suggests the absence of any extended structural defects that
can substantially reduce the intrinsic strength difference.

In addition, we found that deformation at the theoretical
strength proceeds with the mechanical instability, i.e., the
vanishing mechanical response function and a mechanical
spinodal transition. This phenomenon resembles that in the
second-order phase transitions where the curvature of the free
energy hypersurface becomes concave and the mechanical
deformation becomes a runaway process. In light of the
above results, we argue that the deformation mechanism in
the disordered materials differs fundamentally from that in
crystals; that is, failure in amorphous solids should proceed
individually in each atom by severing its bonds with the rest
of the atoms, and thus the deformation must be local and
sensitive to sample conditions.
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APPENDIX A

In the framework of the finite deformation theory, the stress in any state x from the state X in a solid under deformation can
be expressed as [14]

σi j (x) = 1

V (x)

∂F (x)

∂ςi j

∣∣∣∣
x

= V (X )

V (x)

∂ηkl

∂ςi j

1

V (X )

∂F (x)

∂ηkl

∣∣∣∣
X,η′

= V (X )

V (x)
aika jl

1

V (X )

∂F (x)

∂ηkl

∣∣∣∣
X,η′

= V (X )

V (x)
aika jl

[
τkl (X ) + C(X )klmnηmn + 1

2C(X )klmnpqηmnηpq

+ 1
6C(X )klmnpqrsηmnηpqηrs + · · ·

]
, (A1)

where V (X ) = V0 and V (x) = V are the volume of the sample in undeformed state X and deformed state x. ai j and F(x) are
the component of the deformation gradient matrix and the free energy. ηi j is the Lagrangian strain. Equation (A1) is obtained
directly by using the relation between the Cauchy stress and the second Piola-Kicrhhoff stress, which is σ = J−1aτaT , or more
specifically σi j (x) = V (X )

V (x) akial jτkl (x), where τi j (x) = 1
V (X )

∂F (x)
∂ηi j

|X,η′ is the Piola-Kirchhoff stress; J = det(a) = V (x)
V (X ) . The free

energy F can be expressed as in the Taylor expansion in terms of the Lagrangian strain η; the expression for F with up to
fourth-order terms in η is

F (X, η, T ) = F (X, 0, T ) + V (X )

[
τi j (X )ηi j + 1

2!Ci jkl (X )ηi jηkl + 1
3!Ci jklmn(X )ηi jηklηmn

+ 1
4!Ci jklmnpq(X )ηi jηklηmnηpq + · · ·

]
, (A2)

where τi j (X ), Ci jkl , Ci jklmn(X ), and Ci jklmnpq(X ) are the second Piola-Kirchhoff stress and the second-, third-, and fourth-order
elastic constants in the undeformed state. In this work, we use the experimentally measured elastic constants up to the fourth
order in several bulk metallic glasses as inputs in the finite deformation theory (see Appendix E).

For pure shear deformation, the general strain tensor and deformation gradient matrix can be expressed as⎛
⎝η11 η12 0

η21 η22 0
0 0 η33

⎞
⎠

and

a =
⎛
⎝1 + η11 − 1

2

(
η2

11 + η2
12

)
η12(1 − η11) 0

η12(1 − η11) 1 + η11 − 1
2 (η2

11 + η2
12) 0

0 0 1 + η33 − 1
2η2

33

⎞
⎠,

respectively. The volume ratio equals to the determinant of the deformation gradient matrix, which is V
V0

= det(a). The normal
strains in the relaxed case, η11, η22, and η33, are induced by the shear deformation. Due to the symmetry in xy plane, we have
η11 = η22. By substituting the above-mentioned strain and the deformation gradient matrix into Eq. (A1), we can obtain the
relation between the pure shear stress and strain which is expressed explicitly as

σ12 = 1

V (x)

∂F

∂ς12

∣∣∣∣
x

= V (X )

V (x)

∑
kl

a1ka2l

[
1

V (X )

∂F

∂ηkl

∣∣∣∣
X,η′

]

= V (X )

V (x)

{
a11a21

[
1

V (X )
∂F
∂η11

∣∣
X,η′

] + a12a22
[

1
V (X )

∂F
∂η22

∣∣
X,η′

]
+a11a22

[
1

V (X )
∂F
∂η12

∣∣
X,η′

] + a12a21
[

1
V (X )

∂F
∂η21

∣∣
X,η′

]
}

, (A3)

where 1, 2, and 3 are used to label the coordinate axes x, y, and z. The shear is on the x-y plane with the surface normal along
the z direction.

With the same scheme, the components of the internal normal stresses in a pure shear sample can be obtained from Eq. (A1),
which are

σ11 = 1

V

∂F

∂η11

∣∣∣∣
x

= V0

V

[
a11a11

(
1

V0

∂F

∂η11

∣∣∣∣
X,η′

)
+ a12a12

(
1

V0

∂F

∂η22

∣∣∣∣
X,η′

)
+ 2a11a12

(
1

V0

∂F

∂η12

∣∣∣∣
X,η′

)]
, (A4a)

σ22 = 1

V

∂F

∂η22

∣∣∣∣
x

= V0

V

[
a21a21

(
1

V0

∂F

∂η11

∣∣∣∣
X,η′

)
+ a22a22

(
1

V0

∂F

∂η22

∣∣∣∣
X,η′

)
+ 2a21a22

(
1

V0

∂F

∂η12

∣∣∣∣
X,η′

)]
= σ11, (A4b)

σ33 = 1

V

∂F

∂η33

∣∣∣∣
x

= V0

V

(
a33a33

1

V0

∂F

∂η33

∣∣∣∣
X,η′

)
. (A4c)
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For metallic glasses under pure shear deformation, the strain derivatives of internal energy in the above expressions are

1

V0

∂F

∂η11

∣∣∣∣
X,η′

= C11η1 + C12(η2 + η3) + 1

2
C111η

2
1 + 1

2
C112

(
2η2

1η2 + 2η1η3 + η2
2 + η2

3

)

+C123η1η3 + 1

2
C155η

2
6 + 1

6
C1111η

3
1 + 1

6
C1112

(
3η2

1(η2 + η3) + η3
2 + η3

3

)
+ 1

2
C1122η1

(
η2

2 + η2
3

) + 1

2
C1123

(
2η1η2η3 + η2

2η3 + η2η
2
3

) + 1

2
C1155η1η

2
6

+ 1

2
C1255η3η

2
6 + 1

2
C1266η2η

2
6, (A5a)

1

V0

∂F

∂η22

∣∣∣∣
X,η′

= 1

V0

∂F

∂η11

∣∣∣∣
X,η′

, (A5b)

1

V0

∂F

∂η33

∣∣∣∣
X,η′

= C11η3 + C12(η1 + η2) + 1

2
C111η

2
3 + 1

2
C112

(
η2

1 + η2
2

)

+C112(η1η3 + η2η3) + C123η1η2 + 1

2
C144η

2
6 + 1

6
C1111η

3
3

+ 1

6
C1112

(
η3

1 + η3
2

) + 1

2
C1112η

2
3(η1 + η2) + 1

2
C1122η3

(
η2

1 + η2
2

)
+ 1

2
C1123

(
η2

1η2 + η1η
2
2 + 2η1η2η3

) + 1

2
C1144η3η

2
6 + 1

2
C1255

(
η2η

2
6 + η1η

2
6

)
, (A5c)

1

V0

∂F

∂η12

∣∣∣∣
X,η′

= C44η6 + C144η3η6 + C155(η1 + η2)η6

+ 1

2
C1144η

2
3η6 + 1

2
C1155

(
η2

1 + η2
2

)
η6 + C1255(η1η3 + η2η3)η6

+C1266η1η2η6 + 1

6
C4444η

3
6, (A5d)

where the Voigt notation is used for subscripts in the strains, such that 11→1, 22→2, 33→3, 23 and 32→4, 13 and 31→5, and
21 and 12→6.

Here we are going to use Eq. (A3) to study the pure shear deformation of metallic glasses. We will consider two different
deformed states associated with the pure shear. One is the pure shear without relaxing out the normal stresses, i.e., σ11 �= 0, σ22 �=
0, and σ33 �= 0, in which the normal strains are zero, i.e., η11 = 0, η22 = 0, and η33 = 0.We refer to this case as “unrelaxed.” As
the values of normal strains in the unrelaxed sample are zero, the components of the shear-deformation-induced internal normal
stress tensor can be expressed explicitly as

σ1(x) =
√

(1 − 2η12)

(1 + 2η12)

[
−(C11 − C12)η12 + 1

2
(C111 − C112)η2

12 + 1

6
(−C1111 + 4C1112 − 3C1122)η3

12 + · · ·
]
, (A6a)

σ2(x) =
√

(1 + 2η12)

(1 − 2η12)

[
(C11 − C12)η12 + 1

2
(C111 − C112)η2

12 + 1

6
(C1111 − 4C1112 + 3C1122)η3

12 + · · ·
]
, (A6b)

σ3(x) = 1√
(1 + 2η12)(1 − 2η12)

[
(C112 − C123)η2

12 + · · ·]. (A6c)

The second is to relax out all the normal stresses, i.e., σ11 = 0, σ22 = 0, and σ33 = 0, and we refer to this case as “relaxed.”
As a result of the normal stress relaxation, we have the induced normal strains, η11 �= 0, η22 �= 0, and η33 �= 0. In Appendix B,
we explain the procedure to get the normal strains and the shear stress in this case.

APPENDIX B

To obtain the shear stress-strain relation from Eq. (A1) or Eq. (A3) in the relaxed case, one first needs to get the shear-induced
normal strains, η11, η22, and η33, at each given applied shear strain η12. This is done by solving Eqs. (A4a)–(A4c) where the
shear-induced normal stresses σ11, σ22, and σ33 are set to zero. By solving these three auxiliary equations, (A4a)–(A4c), we
obtain η1, η2, and η3, as well the volume ratio V/V0 at each applied shear strain η12.

Then we substitute the normal strains η11, η22, and η33, the deformation gradient tensor a, and volume ratios V0
V back into

Eq. (A3). With these quantities, we can proceed to obtain the shear stress by using Eq. (A3).
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APPENDIX C

From the free energy in Eq. (A2), we can obtain the change of the elastic constants under pure shear deformation as follows
[14]:

C′
i jkl (x) = 1

V (x)

∂2F (x)

∂ςi j∂ςkl

∣∣∣∣
x

= V (X )

V (x)

∂ηmm

∂ςi j

∂ηpq

∂ςkl

1

V (X )

∂2F (x)

∂ηmm∂ηpq

∣∣∣∣
X,η′

= V (X )

V (x)
aima jnakpalq

1

V (X )

∂2F (x)

∂ηmm∂ηpq

∣∣∣∣
X,η′

= V (X )

V (x)
aima jnakpalq

[
Cmnpq(X ) + cmnpquv (X )ηuv

+ 1
2Cmnpquvrs(X )ηuvηrs + · · ·

]
. (C1a)

With the deformation gradient matrix a and the strain tensor, the nonzero components of the elastic constant matrix are

C′
11 = C′

1111 = V (X )

V (x′)

∑
kl

a1ka1l a1ma1n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11a11a11a11
1

V (X )

∂2F

∂η2
11

+ 2a11a11a12a12
1

V (X )

∂2F

∂η11∂η22

+a12a12a12a12
1

V (X )

∂2F

∂η2
22

+ 4a11a11a11a12
1

V (X )

∂2F

∂η12∂η11

+4a11a12a12a12
1

V (X )

∂2F

∂η12∂η22

+ 4a11a12a11a12
1

V (X )

∂2F

∂η2
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1b)

C′
22 = C′

2222 = V (X )

V (x′)

∑
kl

a2ka2l a2ma2n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a21a21a21a21
1

V (X )

∂2F

∂η2
11

+ 2a21a21a22a22
1

V (X )

∂2F

∂η11∂η22

+a22a22a22a22
1

V (X )

∂2F

∂η2
22

+ 4a21a21a21a22
1

V (X )

∂2F

∂η12∂η11

+4a21a22a22a22
1

V (X )

∂2F

∂η12∂η22

+ 4a21a22a21a22
1

V (X )

∂2F

∂η2
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1c)

C′
33 = C′

3333 = V (X )

V (x′)

∑
kl

a3ka3l a3ma3n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

(
a33a33a33a33

1

V (X )

∂2F

∂η2
33

)
, (C1d)

C′
12 = C′

1122 = V (X )

V (x′)

∑
kl

a1ka1l a2ma2n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎝

a11a11a21a21
1

V (X )

∂2F

∂η2
11

+ a11a11a22a22
1

V (X )

∂2F

∂η11∂η22

+a12a12a22a22
1

V (X )

∂2F

∂η2
22

+ a12a12a21a21
1

V (X )

∂2F

∂η22∂η11

⎞
⎟⎟⎟⎠, (C1e)

C′
13 = C′

1133 = V (X )

V (x′)

∑
kl

a1ka1l a3ma3n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎝

a11a11a33a33
1

V (X )

∂2F

∂η33∂η11

+ a12a12a33a33
1

V (X )

∂2F

∂η22∂η33

+2a11a12a33a33
1

V (X )

∂2F

∂η33∂η12

⎞
⎟⎟⎟⎠, (C1f)
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C′
23 = C′

2233 = V (X )

V (x′)

∑
kl

a2ka2l a3ma3n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎝

a21a21a33a33
1

V (X )

∂2F

∂η33∂η11

+ a22a22a33a33
1

V (X )

∂2F

∂η33∂η22

+2a21a22a33a33
1

V (X )

∂2F

∂η33∂η12

⎞
⎟⎟⎟⎠, (C1g)

C′
44 = C′

2323 = V (X )

V (x′)

∑
kl

a2ka3l a2ma3n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎝

a21a33a21a33
1

V (X )

∂2F

∂η2
13

+ a22a33a22a33
1

V (X )

∂2F

∂η2
23

+2a21a33a22a33
1

V (X )

∂2F

∂η13∂η23

⎞
⎟⎟⎟⎠, (C1h)

C′
45 = C′

1323 = V (X )

V (x′)

∑
kl

a1ka3l a2ma3n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎝

a11a33a21a33
1

V (X )

∂2F

∂η2
13

+ a12a33a22a33
1

V (X )

∂2F

∂η2
23

+(a11a33a22a33 + a12a33a21a33)
1

V (X )

∂2F

∂η13∂η23

⎞
⎟⎟⎟⎠, (C1i)

and

C′
66 = C′

1212 = V (X )

V (x′)

∑
kl

a1ka2l a1ma2n

(
1

V (X )

∂2F

∂ηkl∂ηmn

∣∣∣∣
X

)

= V (X )

V (x′)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11a21a11a21
1

V (X )

∂2F

∂η2
11

+ 2a11a21a12a22
1

V (X )

∂2F

∂η11∂η22

+a12a22a12a22
1

V (X )

∂2F

∂η2
22

+ 2a11a21a11a22
1

V (X )

∂2F

∂η12∂η11

+2a11a21a12a21
1

V (X )

∂2F

∂η21∂η11

+ 2a11a22a12a22
1

V (X )

∂2F

∂η12∂η22

+2a12a21a12a22
1

V (X )

∂2F

∂η21∂η22

+ a11a22a11a22
1

V (X )

∂2F

∂η2
12

a12a21a12a21
1

V (X )

∂2F

∂η2
21

+ 2a11a22a12a21
1

V (X )

∂2F

∂η21∂η12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C1j)

where the strain derivatives of the internal energy are

1

V (X )

∂2F

∂η2
11

∣∣∣∣
X

= C11 + C111η1 + C112(η2 + η3) + 1

2
C1111η

2
1 + C1112η1(η2 + η3)

+ 1

2
C1122

(
η2

2 + η2
3

) + C1123η2η3 + 1

2
C1155η

2
6,

1

V (X )

∂2F

∂η2
22

∣∣∣∣
X

= C11 + C111η2 + C112(η1 + η3) + 1

2
C1111η

2
2 + C1112η2(η1 + η3)

+ 1

2
C1122

(
η2

1 + η2
3

) + C1123η1η3 + 1

2
C1155η

2
6,

1

V (X )

∂2F

∂η2
33

∣∣∣∣
X

= C11 + C111η3 + C112(η1 + η2) + 1

2
C1111η

2
3 + C1112η3(η1 + η2)

+ 1

2
C1122

(
η2

1 + η2
2

) + C1123η1η2 + 1

2
C1144η

2
6,
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1

V (X )

∂2F

∂η11∂η22

∣∣∣∣
X

= C12 + C112(η1 + η2) + C123η3 + 1

2
C1112

(
η2

1 + η2
2

) + C1122η1η2

+ 1

2
C1123

(
2η1η3 + 2η2η3 + η2

3

) + 1

2
C1266η

2
6,

1

V (X )

∂2F

∂η11∂η33

∣∣∣∣
X

= C12 + C112(η1 + η3) + C123η2 + 1

2
C1112

(
η2

1 + η2
3

) + C1122η1η3

+ 1

2
C1123

(
2η1η2 + 2η2η3 + η2

2

) + 1

2
C1255η

2
6,

1

V (X )

∂2F

∂η22∂η33

∣∣∣∣
X

= C12 + C112(η2 + η3) + C123η1 + 1

2
C1112

(
η2

1 + η2
3

) + C1122η1η3

+ 1

2
C1123

(
η2

1 + 2η1η2 + 2η1η3
) + 1

2
C1255η

2
6,

1

V (X )

∂2F

∂η11∂η12

∣∣∣∣
X

= 1

V (X )

∂2F

∂η11∂η6

∣∣∣∣
X

= C155η6 + C1155η1η6 + C1255η3η6 + C1266η2η6,

1

V (X )

∂2F

∂η22∂η12

∣∣∣∣
X

= 1

V (X )

∂2F

∂η22∂η6

∣∣∣∣
X

= C155η6 + C1155η2η6 + C1255η3η6 + C1266η1η6,

1

V (X )

∂2F

∂η33∂η12

∣∣∣∣
X

= 1

V (X )

∂2F

∂η33∂η6

∣∣∣∣
X

= C144η6 + C1144η3η6 + C1255(η2η6 + η1η6),

1

V (X )

∂2F

∂η2
12

∣∣∣∣
X

= 1

V (X )

∂2F

∂η2
6

∣∣∣∣
X

= C44 + C144η3 + C155(η1 + η2) + 1

2
C1144η

2
3 + 1

2
C1155

(
η2

1 + η2
2

)

+C1255(η2η3 + η1η3) + C1266η1η2 + 1

2
C4444η

2
6,

1

V (X )

∂2F

∂η2
13

∣∣∣∣
X

= 1

V (X )

∂2F

∂η2
5

∣∣∣∣
X

= C44 + C144η2 + C155(η1 + η3) + 1

2
C1144η

2
2 + 1

2
C1155

(
η2

1 + η2
3

)

+C1255(η1η2 + η2η3) + C1266η1η3 + 1

2
C4455η

2
6,

1

V (X )

∂2F

∂η2
23

∣∣∣∣
X

= 1

V (X )

∂2F

∂η2
4

∣∣∣∣
X

= C44 + C144η1 + C155(η2 + η3) + 1

2
C1144η

2
1 + 1

2
C1155

(
η2

2 + η2
3

)

+C1255(η1η2 + η1η3) + C1266η2η3 + 1

2
C4455η

2
6,

and

1

V (X )

∂2F

∂η13∂η23

∣∣∣∣
X

= 1

V (X )

∂2F

∂η5∂η6

∣∣∣∣
X

= 0,

where C and C′ are the elastic constants in the undeformed and deformed state, respectively. For the unrelaxed sample, the
only nonzero strain is η6. While after the induced normal stresses are relaxed out (see Appendix B), the nonzero normal strains
are η1, η2, η3, and η6. For the given values of the shear and normal strains, we can obtain the elastic constant components by
Eqs. (C1a)–(C1j).

APPENDIX D

From the stresses in Eq. (A3), Eqs. (A6), and the elastic constants in Eqs. (C1a)–(C1j), we have the components of the elastic
stiffness constant matrix from the definition B̄i j = 1

2 (Bi j +BT
i j ), where Bi jkl =C′

i jkl +(δikτ jl +δ jkτil +δilτ jk +δ jlτik−2δklτi j )/2.
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Here, the components of the elastic stiffness matrix under pure shear loading are

B11 = B22 = C′
11 + σ11,

B12 = C′
12 − σ11,

B13 = B23 = C′
13 − (σ11 + σ33)/2,

B33 = C′
33 + σ33,

B44 = B55 = C′
44 + (σ11 + σ33)/2,

B45 = C′
45 + σ12/2,

B66 = C′
66 + σ11,

B16 = B26 = C′
16 + σ12/2,

B36 = C′
36 − σ12/2,

and
Bi j = 0, all others.

(D1)

For the case with the induced normal stress relaxed out, the normal stresses will be zero, i.e., σ11 = 0, σ22 = 0, and σ33 = 0.
The stability criterion |B̄| → 0 leads to the following six conditions:

B̄11 > 0, (D2a)

B̄2
11 − B̄2

12 > 0, (D2b)

(B̄11 + B̄12)B̄33 − 2B̄2
13 > 0, (D2c)

B̄44 > 0, (D2d)

B̄2
44 − B̄2

45 > 0, (D2e)

and

(B̄11 + B̄12)
(
B̄33B̄66 − B̄2

36

) − 2B̄16(B̄16B̄33 − B̄13B̄36) − 2B̄13(B̄13B̄66 − B̄16B̄36) > 0. (D2f)

By using the elastic stable criteria [(D2a)–(D2f)], we can obtain the elasticity stability conditions of the deformed sample under
the pure shear deformation.

APPENDIX E

In the finite deformation theoretical formulation, stresses and elastic constants are a function of the elastic constants in the
undeformed state and the applied shear strain. Using the input of second-, third-, and fourth-elastic constants measured in the
samples, we can obtain both the shear stress-strain and the elastic constants in any deformed state via Eqs. (A3) and (C1), as
well as the stability criterion via Eq. (D2). The input elastic constants are shown in Table II.
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