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The origin of diverse nematicity and their order parameters in Fe-based superconductors have been attracting
increasing attention. Recently, a new type of nematic order has been discovered in heavily hole-doped (nd = 5.5)
compound AFe2As2 (A = Cs, Rb). The discovered nematicity has B2g (=dxy) symmetry, rotated by 45◦ from the
B1g (=dx2−y2 ) nematicity in usual compounds with nd ≈ 6. We predict that the “nematic bond order,” which is
the symmetry breaking of the correlated hopping, is responsible for the B2g nematic order in AFe2As2. The Dirac
pockets in AFe2As2 is essential to stabilize the B2g bond order. Both B1g and B2g nematicity in A1−xBaxFe2As2

are naturally induced by the Aslamazov-Larkin many-body process, which describes the spin-fluctuation-driven
charge instability. The present study gives a great hint to control the nature of charge nematicity by modifying
the orbital character and the topology of the Fermi surface.

DOI: 10.1103/PhysRevB.100.020507

The electronic nematic state, which is the spontaneous
rotational symmetry breaking in the many-body electronic
states, appears in many Fe-based superconductors [1]. Above
the structural transition temperature TS, the electronic nematic
susceptibility develops divergently, observed as the softening
of shear modulus C66 [2,3], and the enhancements of the
low-energy Raman spectrum [4,5] and in-plane anisotropy of
resistivity �ρ [6]. The mechanism of nematicity and its order
parameter attract increasing attention, as a key to understand
the pairing mechanism of high-Tc superconductivity. The in-
timate relationship between nematicity and magnetism has
been discussed based on the spin-nematic scenarios [7–14]
and the orbital/charge-order scenarios [15–25].

Beyond the initial expectations, Fe-based superconduc-
tors exhibit very rich phase diagrams with nematicity and
magnetism. In FeSe, for example, the nematic order does
not accompany the magnetism at ambient pressure, whereas
this nonmagnetic nematic phase is suppressed and replaced
with the spin-density wave (SDW) phase by applying pres-
sure [26,27]. This phase diagram is understood in terms of
the orbital-order scenario by assuming the pressure-induced
dxy-orbital hole pocket [28]. In the orbital/charge-order sce-
nario, the orbital/charge order is driven by the spin fluctu-
ations, due to the Aslamazov-Larkin (AL) vertex correction
(VC) that describes the charge-spin mode coupling. The sig-
nificance of the AL process has been clarified by several
theoretical studies, especially by renormalization group stud-
ies [25,29–33]. However, the origin of the diverse electronic
states associated with charge, orbital, and spin degrees of
freedom is not fully understood.

Until recently, all the discovered nematic orders in Fe-
based superconductors have B1g (=dx2−y2 ) symmetry, along
the nearest Fe-Fe direction. Recently, however, nematic
order/fluctuation with B2g (=dxy) symmetry, rotated by 45◦
from the conventional B1g nematicity, has been discovered in
the heavily hole-doped (nd = 5.5) compound AFe2As2 (A =
Cs, Rb). Strong B2g nematic fluctuations and static order have

been discovered by the NMR study [34], the quasiparticle
interference by scanning tunneling microscopy (STM) [35],
and the measurement of in-plane anisotropy of resistivity [36]
in RbFe2As2 (Tc ∼ 2.5 K) and CsFe2As2 (Tc ∼ 1.8 K). No
SDW transition is observed in both compounds down to Tc

[36,37]. Surprisingly, both B1g and B2g nematic transitions
are observed in Y-based [38] and Hg-based [39] cuprate
superconductors, respectively, at the pseudogap temperature
T ∗. Theoretical studies of nematicity in cuprates have been
performed by many authors [29,40–47]. The discovery of
unexpected B2g nematicity in both Fe-based and cuprate su-
perconductors puts a severe constraint on the mechanism of
nematicity.

In this Rapid Communication, to reveal the origin of the
B2g nematicity, we study the spin-fluctuation-driven charge
nematicity in AFe2As2 by considering the higher-order VCs.
We predict that the “nematic bond order,” given by the
symmetry breaking in the dxy-orbital correlated hopping, is
responsible for the B2g nematic order in AFe2As2. The Dirac
pockets around the X,Y points play an essential role on the
B2g bond order. With electron doping, it is predicted that the
B2g nematicity changes to the conventional B1g nematicity at
the Lifshitz transition point, at which two Dirac pockets merge
into one electron Fermi surface (FS). The diverse nematicity
in A1−xBaxFe2As2 is naturally understood since the charge
nematicity caused by the AL-VCs is sensitive to the orbital
character and topology of the FS. The present study gives
a great hint to control the nature of nematicity in Fe-based
superconductors.

First, we introduce the nematic order parameters.
Figure 1(a) shows B1g nematic states due to orbital order
(nxz �= nyz). Here, the (x, y) axes are along the nearest Fe-
Fe directions. The orbital order is the origin of the B1g ne-
maticity in Fe-based superconductors. Figure 1(b) shows the
B2g nematic state given by the next-nearest-neighbor (NNN)
bond order, which corresponds to the modulation of the NNN
correlated hopping δt2. We propose that the B2g bond order
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FIG. 1. Schematic pictures of (a) B1g orbital order (OO), and
(b) B2g bond order (BO). (c) FSs of the CsFe2As2 model in unfolded
zone. The colors green, red, and blue correspond to orbitals 2, 3, and
4, respectively. Each arrow denotes the significant intra-dxy-orbital
nesting vector Q = (0.53π, 0). (d) q dependences of χ s

xy(q, 0) and
χ s

yz(q, 0) given by the RPA. (e) Feynman diagrams of the irreducible
four-point vertex Î . The wavy line is the fluctuation-mediated inter-
action V̂ s,c.

is the origin of the B2g nematicity in AFe2As2, which has not
been discussed in previous theoretical studies [23,41,43,44].

We analyze the following two-dimensional eight-orbital
d-p Hubbard model with parameter r [20]:

HM(r) = H0 + rHU , (1)

where H0 is the unfolded tight-binding model derived from
the first-principles calculation for CsFe2As2, which we intro-
duce in the Supplemental Material (SM) A [48]. HU is the
first-principles screened Coulomb potential for d electrons
in BaFe2As2 [49]. Figure 1(c) shows the FSs: The hole FS
around the M point (FS3) composed of the dxy orbital is large,
while the Dirac pockets near the X and Y points (FS4,5) are
small. The arrows denote the most important intra-dxy-orbital
nesting vectors. Below, we denote the five d orbitals d3z2−r2 ,
dxz, dyz, dxy, and dx2−y2 as l = 1, 2, 3, 4, 5.

We calculate the spin (charge) susceptibilities χ̂ s(c)(q) for
q = (q, ωm = 2mπT ) based on the random-phase approxi-
mation (RPA). The spin Stoner factor αs is given by the
maximum eigenvalue of 	̂sχ̂0(q, 0), where 	̂s(c) is the bare
Coulomb interaction for the spin (charge) channel, and χ̂0 is
the irreducible susceptibilities given by the Green’s function
without self-energy Ĝ(k) = [(iεn − μ)1̂ − ĥ0(k)]−1 for k =
[k, εn = (2n + 1)πT ]. Here, ĥ0(k) is the matrix expression of
H0 and μ is the chemical potential. Details of 	̂s(c), χ̂ s(c)(q),
and χ̂0(q) are explained in the SM A [48]. We use N =
64 × 64 k meshes and 512 Matsubara frequencies, and fix
the parameters r = 0.30 and T = 0.03 eV unless otherwise
noted. Figure 1(d) shows the obtained spin susceptibility
χ s

xy(yz)(q, 0) ≡ χ s
l,l;l,l (q, 0) with l = 4 (l = 3) at αs = 0.93.

χ s
xy is enlarged due to the intra-dxy-orbital nesting, and it

has the largest peak at q = Q = (0.53π, 0). In contrast, χ s
yz

is small since the intra-dyz-orbital nesting is bad. Note that
χ s

xy � χ s
yz in LaFeAsO, BaFe2As2, and FeSe since two Dirac

pockets (FS4 and FS5) merge into a usual electron pocket for
nd ∼ 6.0.

Hereafter, we study the symmetry breaking in the self-
energy (��̂) based on the density-wave (DW) equation intro-
duced in Ref. [20]. We calculate both momentum and orbital
dependences of ��

q
l,l ′ (k) self-consistently in order to analyze

both orbital order and bond order on equal footing. To find
the wave vector q of the DW state, we solve the following
linearized DW equation:

λq��̂q(k) = T

N

∑

k′
K̂q(k, k′)��̂q(k′), (2)

where λq is the eigenvalue for the DW equation. The DW
with wave vector q appears when λq = 1, and the eigenvec-
tor ��̂q(k) gives the DW form factor. The kernel function
K̂q(k, k′) [40] is given by

K̂q(k, k′) = Îq(k, k′)ĝq(k′), (3)

where gq
l,l ′;m,m′ (k) ≡ Gl,m(k + q

2 )Gm′,l ′ (k − q
2 ), and Îq(k, k′) is

the irreducible four-point vertex. It is given by the Ward
identity Î = δ�̂/δĜ, where �̂ is one-loop self-energy [50].
The Feynman diagram of Îq is shown in Fig. 1(e): The first
diagram corresponds to the Maki-Thompson (MT) term, and
the second and the third diagrams are AL1 and AL2 terms,
respectively. Its analytic expression is given in SM A [48].
Near the magnetic criticality, the charge-channel interaction
due to the AL terms is strongly enhanced in proportion to∑

p{χ s(p, 0)}2, which is proportional to χ s(Q, 0) in two-
dimensional systems. For this reason, the AL terms cause the
spin-fluctuation-driven charge nematic order [18,20,29–31].

The Hartree-Fock (HF) term, which is the first-order term
with respect to 	̂s,c, is included in the MT term. As well
known, the HF term suppresses conventional charge DW order
(�� = const), whereas both B1g and B2g bond orders are not
suppressed. Here, we drop the εn dependence of ��̂q(k) by
the analytic continuation (εn → ε) and putting ε = 0 [20].
This approximation leads to slight overestimation of λq.

Figures 2(a) and 2(b) show the obtained form factors at
q = 0, ��0

4 (k) ≡ ��0
4,4(k), and ��0

3 (k) ≡ ��0
3,3(k), for

the largest eigenvalue λ = 0.93. (The absolute value of ��̂q

is meaningless.) The obtained form factor has B2g symmetry
since the symmetry relation ��0

4 (kx, ky) ∝ sin kx sin ky holds.
The relation |��xy| � |��yz(xz)| means that the primary
nematic order is the “next-nearest-neighbor bond order for
dxy orbital,” which is shown in Fig. 1(b). The obtained B2g

bond order is consistent with the experimental B2g nematicity
in AFe2As2 [34–36]. The second largest eigenvalue λ = 0.88
corresponds to the B1g nematic bond order, the details of
which we explain in SM B [48].

As explained in SM C [48], the nematic susceptibility
with respect to the form factor ��̂q is given as χ̂�� (q) ∝
(1 − λq)−1 that diverges at λq = 1. Figure 2(c) shows the T
dependences of (1 − λ0)−1 for both B2g and B1g symmetry
solutions. We see that (1 − λ0)−1 for the B2g symmetry shows
the Curie-Weiss behavior and dominates over that for the B1g

symmetry. These results are consistent with the experimental
nematic susceptibility [34,36]. In Fig. 2(d), we show the
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FIG. 2. (a), (b) B2g symmetry form factors at q = 0 obtained as
the largest eigenvalue. The primary form factor on the dxy orbital,
��0

4 ∝ sin kx sin ky, gives the bond order. Orange dotted lines repre-
sent the symmetry nodes. (c) The strengths of nematic fluctuations
1/(1 − λq=0 ) for B2g and B1g symmetries as a function of T . (d) q
dependences of the maximum eigenvalue at T = 0.02, 0.04, and
0.06 eV.

q dependences of the largest eigenvalue at T = 0.02, 0.04,
and 0.06 eV. It is confirmed that the nematic susceptibility
actually has the maximum peak at q = 0, and the symmetry
of form factor is B2g.

In order to understand the origin of the B2g nematic bond
order, we analyze the momentum dependence of the kernel
function for the dxy orbital. Figure 3(a) shows KFS3(θ, θ ′) ≡
T

∑
n′ K0

4,4;4,4(k(θ ), εn, k(θ ′), εn′ )|εn→0 given by the summa-
tion of the AL1, AL2, and MT terms on the FS3. Here, θ

and θ ′ denote the azimuthal angles (from the M point) of
k and k′ on the FS3, respectively. Now, we define the pairs
of Fermi points A = (θ1, θ1), B = (θ3, θ1), and C = (θ2, θ1),
where θ1 ≡ π/4, θ2 ≡ 3π/4, and θ3 ≡ 5π/4. For these pairs
KFS3(θ, θ ′) becomes large in magnitude. The green lines
denote the nodes of B2g symmetry (θ, θ ′ = π

2 n). The positive
KFS3(θ, θ ′) for the pairs A and B give attractive interactions
between the same (k1, k1) and the opposite (−k1, k1) mo-
menta in Eq. (2), respectively, where ki ≡ k(θi ) (i = 1, 2, 3).
On the other hand, the negative KFS3(θ, θ ′) for the pair C gives
the repulsive interaction between (k2, k1). As we show in
Fig. 3(b), this checkerboard-type sign structure of KFS3(θ, θ ′),
which is positive (negative) for pairs A and B (pair C), favors
the B2g symmetry bond order ��0

4 (k) ∝ sin kx sin ky.
We briefly explain the microscopic origin of the

checkerboard-type sign structure in KFS3(θ, θ ′). The pos-
itive KFS3(θ, θ ′) along θ ′ = θ in Fig. 3(a) (including the
pair A) originates from the AL1 term, since the particle-
hole channel φp-h ≡ T

∑
p G4,4(k − p)G4,4(k′ − p) shown

in Fig. 3(c) takes a large positive value for k′ = k, as
we explain in SM D [48]. Also, the positive KFS3(θ, θ ′)
along θ ′ = θ + π (including the pair B) originates from
the AL2 term, since the particle-particle (Cooper) channel
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FIG. 3. (a) KFS3(θ, θ ′) on FS3 given by all vertex terms. The
green lines denote the B2g symmetry nodes. A, B, and C represent the
pairs of Fermi points (θ1, θ1), (θ3, θ1), and (θ2, θ1), respectively: θ1 ≡
π/4, θ2 ≡ 3π/4, and θ3 ≡ 5π/4. (b) B2g symmetry order [��(k) ∝
sin kx sin ky] driven by attractive (repulsive) interaction for pairs A
and B (pair C). (c)–(e) Î0(k, k′) given by AL1 term, AL2 term,
and MT term. Two AL terms give a strong attractive interaction
for (k, ±k), shown as red line regions in panel (a). The MT gives
a repulsive interaction for pair C, due to spin fluctuations at Q ≈
(0.5π, 0).

φp-p ≡ T
∑

p G4,4(k − p)G4,4(k′ + p) shown in Fig. 3(d)
takes a large positive value for k′ = −k. On the other hand, the
negative KFS3(θ2, θ1) at the pair C stems from the MT term in
Fig. 3(e). This is because V̂ s(k − k′) ∝ χ̂ s(k − k′) in the MT
term becomes maximum for (k, k′) = (k2, k1) since k2 − k1

coincides with the nesting vector Q.
To summarize, both B1g and B2g nematicities can be in-

duced by the AL terms, since they give attractive interaction
for both θ ≈ θ ′ and θ ≈ θ ′ + π . In fact, both the nematic
susceptibilities (1 − λq)−1 for the B1g and the B2g increase as
shown in Fig. 2(c), consistently with recent experiment [36].
In the present model with spin fluctuations at Q ≈ (0.5π, 0),
the B2g nematic order is assisted by the MT term. The magni-
tude of the AL kernel function dominates over that of the MT
kernel function as we explain in SM D [48]. For this reason,
the eigenvalue of the DW equation λq can be larger than that
of the Eliashberg gap equation, in which the kernel contains
only the MT term [51]. We predict that the B2g nematicity is
closely tied to the Dirac pockets, which give the main spin
fluctuations in AFe2As2.

Here, we discuss the doping dependence of the ne-
maticity: We introduce a reliable model Hamiltonian for
Cs1−xBaxFe2As2, by interpolating between the CsFe2As2

model and the BaFe2As2 model with the ratio 1 − x : x. With
increasing x, the FSs with four Dirac pockets in Fig. 4(a)
for x = 0.4 change to the FSs with two electron pockets in
Fig. 4(b) for x = 0.6. In this model, the Lifshitz transition
occurs at xc ≈ 0.5.

Figure 4(c) shows x dependences of λq=0 for the B2g and
the B1g symmetries in the Cs1−xBaxFe2As2 model, in which
the value of r is fixed to 0.30. For x < xc, the B2g bond order
±δt2 shown in Fig. 1(b) is dominant over the B1g orbital order,
since the former is driven by strong spin fluctuations in the dxy
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orbital. For x > xc, the B1g orbital order nxz �= nyz in Fig. 1(a)
becomes dominant, because of the strong spin fluctuations in
the dxz,yz orbitals due to the nesting between electron and hole
FSs [18,19,21], as we briefly explain in SM E [48]. Thus, the
present theory naturally explains both the B1g nematicity in
nondoped (nd ≈ 6) systems and the B2g nematicity in heavily
hole-doped compounds in a unified way, by focusing on the
impact of the Lifshitz transition.

The sudden decrease of λ
B2g

0 at the Lifshitz transition point
in Fig. 4(c) indicates that the Dirac pockets are essential for
the B2g nematicity, in spite of their small size. To verify this,
we calculate χ s

xy(q) by dropping the contribution from the
rectangular areas around the X,Y points shown in Fig. 1(c):
Then, as shown in Fig. 5(a), the peak at Q = (0.53π, 0) of
χ s

xy(q) in Fig. 1(d) shifts to Q′ = (0.56π, 0.56π ), which is the
intra-FS3 nesting vector. In this case, KFS3(θ, θ ′) due to the
MT term takes a large negative value for θ ≈ θa and θ ′ ≈ θ ′

a

in Fig. 5(b), and therefore B1g bond order emerges: λ
B1g

0 =
0.82 and λ

B2g

0 = 0.77. To summarize, the B2g nematicity in
AFe2As2 is closely tied to the emergence of the Dirac pockets
at the Lifshitz transition. Thus, we can control the nematicity
by changing the topology and orbital character of the FSs.

Recently, the B2g vestigial nematic order has been proposed
in Refs. [52,53] based on the real-space picture, whereas
the double stripe magnetism [q = (π/2, π/2)] has not been
observed yet. Thus, it is an important future issue to determine
the mechanism of B2g nematicity.
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green symmetry nodes and gray negative region on FS3 due to the
intra-FS nesting Q′ ≈ (0.6π, 0.6π ).

In summary, we studied the rich variety of nematic orders
realized in A1−xBaxFe2As2 (A = Cs, Rb) by solving the DW
equation with AL- and MT-VCs. At x = 0, the B2g bond
order is driven by the spin fluctuations in the dxy orbital.
With increasing x, the B2g nematicity suddenly changes to B1g

orbital nematicity (nxz − nyz) at the Lifshitz transition point,
consistently with recent experiment [36]. Both the FS orbital
character and the FS topology are key ingredients not only
to understand the diverse nematicity, but also to control the
nature of nematicity in Fe-based superconductors. The present
theory will give useful hints to understand recently discovered
rich nematic orders in cuprate superconductors [38,39].

We stress that the present DW equations satisfy the criteria
of the “conserving approximation (CA)” by introducing the
self-energy in G’s [54–56]. The great merit of the CA is that
the macroscopic conservation laws are satisfied rigorously.
This merit is important to avoid unphysical results. In SM
F [48], we improve the present theory within the frame-
work of the CA, by introducing the self-energy given by the
fluctuation-exchange approximation. The obtained q depen-
dences of λq and B2g symmetry form factor are essentially
similar to Fig. 2. Thus, the main results of the present study
are justified within the framework of the CA.
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