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Topological quantum paramagnets are exotic states of matter, whose magnetic excitations have a topological
band structure, while the ground state is topologically trivial. Here we show that a simple model of quantum
spins on a honeycomb bilayer hosts a time-reversal-symmetry protected Z2 topological quantum paramagnet
(topological triplon insulator) in the presence of spin-orbit coupling. The excitation spectrum of this quantum
paramagnet consists of three triplon bands, two of which carry a nontrivial Z2 index. As a consequence, there
appear two counterpropagating triplon excitation modes at the edge of the system. We compute the triplon edge
state spectrum and the Z2 index for various parameter choices. We further show that upon making one of the
Heisenberg couplings stronger, the system undergoes a topological quantum phase transition, where the Z2

index vanishes, to a different topological quantum paramagnet. In this case the counterpopagating triplon edge
modes are disconnected from the bulk excitations and are protected by a chiral and a unitary symmetry. We
discuss possible realizations of our model in real materials, in particular d4 Mott insulators, and their potential
applications.
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Introduction. The topology of quasiparticle band structures
is of great interest for fundamental science and possible
technological applications [1–4]. Not only fermionic but also
bosonic quasiparticles can exhibit topological band structures.
This has been demonstrated in a number of artificial systems,
such as for electromagnetic waves in dielectric superlattices
[5,6] or for polaritons in microcavities [7]. Bosonic quasipar-
ticles with topological properties can also arise intrinsically in
a variety of materials, e.g., as topological phonons in systems
with isostatic lattices [8] as topological spin excitations in
quantum magnets [9–20], or as topological triplon bands in
dimerized magnets [21], which have been observed experi-
mentally [22].

The study of topological spin excitations is enjoying grow-
ing activity, both due to its fundamental importance and its
potential relevance for magnonic devices [23]. For example,
topological magnon [11–17] and triplon insulators [21,22],
as well as Dirac [19,20] and Weyl magnon semimetals [18]
have been investigated. The magnon and triplon bands in
these quantum magnets carry a nonzero Chern number, which
by the bulk-boundary correspondence, gives rise to chiral
magnon and triplon modes at the surface. Since these chi-
ral surface modes carry spin with low dissipation and are
protected against disorder, they could be utilized as efficient
channels for spin transport [24]. However, in contrast to
electronic topological insulators, the chiral surface magnons
and triplons are excited states with an energy considerably
higher than the bulk Goldstone modes of the ordered magnet.
Hence, due to coupling to the low-energy bulk modes, these
topological surface magnons and triplons are strongly damped
[25], which suppresses the surface spin transport.

*d.joshi@fkf.mpg.de
†a.schnyder@fkf.mpg.de

Recently, it was shown that topological spin excitations can
also exist in the quantum-disordered paramagnetic phase of a
spin ladder [10]. This one-dimensional topological quantum
paramagnet exhibits protected triplon end states. For appli-
cations it would be advantageous to have a two-dimensional
version of this quantum paramagnet, with protected triplon
edge states forming a robust channel for spin transport [26].

In this Rapid Communication, we provide an example
of such a two-dimensional topological quantum paramagnet.
We consider a spin-1/2 system of two coupled honeycomb
layers, with strong antiferromagnetic exchange interactions
between the layers and weaker intralayer Heisenberg and
Dzyaloshinskii-Moriya (DM) interactions. The dominant in-
terlayer antiferromagnetic exchange leads to a coupled-dimer
ground state, where two spins form an interlayer spin singlet.
The elementary excitations above this dimerized ground state
are gapped triplons, corresponding to the breaking of singlet
dimers into spin-1 triplet states. We find that these triplons,
which are bosonic quasiparticles with S = 1, exhibit a non-
trivial topological band structure, which is characterized by
a Z2 index, akin to the quantum spin Hall effect [27]. As a
result, the triplons exhibit exotic behaviors, such as a triplon
spin Hall effect and counterpropagating triplon edge modes.
We note that these triplons are different from Refs. [21,22],
where the triplon bands have a Chern index, break time-
reversal symmetry and occur in an ordered phase.

Model description. Our model consists of S = 1/2 spins
on a bilayer honeycomb lattice (Fig. 1) with the following
Hamiltonian:

H =
∑

i

Ji �S1i · �S2i +
∑
〈i j〉

Ki j[�S1i · �S1 j + �S2i · �S2 j]

+
∑
〈〈i j〉〉

Di j
[
Sx

1iS
y
1 j − Sx

1 jS
y
1i + Sx

2iS
y
2 j − Sx

2 jS
y
2i

]
, (1)
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FIG. 1. (a) Honeycomb bilayer model with S = 1/2 spins indi-
cated by the black dots. Blue lines represent the interlayer antiferro-
magnetic interactions, while red solid/dashed lines correspond to the
anisotropic intralayer exchange. The DM interaction is perpendicular
to the honeycomb layers. Along the green lines, in the direction of
an arrow Di j = D and Dji = −Di j (shown only on one hexagonal
plaquette). (b) Hexagonal first Brillouin zone with the red dots
indicating the time-reversal invariant momenta.

where i labels the dimer lattice sites and the indices 1,2 denote
the two honeycomb layers. The first term in Eq. (1) is the
antiferromagnetic (Ji > 0) interlayer Heisenberg interaction,
where we allow for a staggered on-site potential such that
Ji = J ± α (α � J) on sublattice A (B). The second term in
Eq. (1) represents the nearest-neighbor Heisenberg interaction
within a layer, and the last term is the next-nearest-neighbor
DM interaction. Note that we have allowed for anisotropic
Heisenberg interactions within a layer [see Fig. 1(a)] such
that Ki j = Kα along the α bond (α = x, y, z). For simplicity,
we shall consider Kx = Ky ≡ K such that the interaction
Kz introduces anisotropy, which could be realized in real
materials by applying uniaxial pressure. We note that the DM
interaction is perpendicular to the honeycomb layers such
that Di j = D(−D) when going clockwise (anticlockwise) in
a hexagonal plaquette [see Fig. 1(a)].

We are interested in the dimer-paramagnetic phase, de-
scribed by a product state of singlets, which is realized for
dominant J > 0. In this phase there are three gapped quasi-
particle excitation bands, corresponding to the three spin-1
triplet excited states on each dimer |tx〉=−[|↑↑〉−|↓↓〉]/√

2, |ty〉 = ι[|↑↑〉 + |↓↓〉]/√2, and |tz〉 = [|↑↓〉 + |↓↑〉]/√
2, over the singlet state |t0〉 = [|↑↓〉 − |↓↑〉]/√2. To de-

scribe the band structure of these triplon excitations we em-
ploy the bond-operator formalism [28], wherein the triplon
quasiparticles are expressed in terms of the triplon creation
and annihilation operators t†

γ and tγ (γ = x, y, z), defined
as t†

γ |t0〉 = |tγ 〉. Inserting the triplon representation of the
spin operators into Eq. (1) yields an interacting triplon
Hamiltonian [29]. For simplicity, we shall work within the
harmonic approximation, retaining only the bilinear part of
the triplon Hamiltonian. This approximation is justified, since
deep inside the paramagnetic phase the triplon density is
small, which allows one to neglect any triplon interactions
[30]. Within the harmonic approximation, the tz mode is
decoupled from the tx and ty modes. For that reason, we focus
on the tx and ty excitations, whose dynamics in momentum
space is described by H2 = 1

2

∑
�k �

†
�kM�k��k , with the 8 × 8

matrix

M�k =
(

h1,�k h2,�k
h†

2,�k hT
1,−�k

)
(2)

and ��k = (tA
�kx

, tA
�ky

, tB
�kx

, tB
�ky

, tA†
−�kx

, tA†
−�ky

, tB†
−�kx

, tB†
−�ky

)T , where the su-

percripts A/B label the two honeycomb sublattices. For now
we set the staggered on-site potential α = 0. The matrix
elements of M�k , h2,�k = h1,�k − J1 = �d · ��, are given in terms

of the �d vector,

�d = {Re(κ�k ),−Im(κ�k ), 0,−2Dγ ′
�k, 0} , (3)

and the five Dirac matrices �� = {σ1 ⊗ 1, σ2 ⊗ 1, σ3 ⊗
τ1, σ3 ⊗ τ2, σ3 ⊗ τ3}. Here σi and τi are the Pauli matrices
acting on the sublattice and the triplon-flavor spaces, respec-
tively. The parameters κ�k and γ ′

�k in Eq. (3) are defined as
follows:

κ�k = 1
2 [Kz + Keι�k1 + Keι�k2 ], (4)

γ ′
�k = − sin(�k1) + sin(�k2) + sin(�k1 − �k2), (5)

where �k1,2 = �k · �a1,2, with �a1,2 = {±x̂/2,
√

3ŷ/2} being the
Bravais basis vectors.

Triplon dynamics and edge states. To compute the triplon
dispersions, we have to evaluate the eigenvalues of the non-
Hermitian matrix 
M�k , where 
 = σ3 ⊗ 14×4 [31]. Since
[h1,�k, h2,�k] = 0, the eigenvalues of 
M�k are obtained in a
straightforward manner. For the tx and ty triplons the disper-
sion is

ω
x/y
A,B =

√
J
(
J ± 2

√
4D2γ ′2

�k + |κ�k|2
)
, (6)

while for the tz triplon it reads ωz = √
J (J ± 2|κ�k|). We now

exclusively focus on the tx and ty bands, since the tz band is
topologically trivial. It is clear from Eq. (6) that in the absence
of the DM interaction and as long as |Kz| < 2K , the triplon
bands cross each other at two points in the Brillouin zone
(BZ). Since these two band crossings are fourfold degenerate
and the dispersion is linear in their vicinity, they realize
triplon analogs of Dirac fermions, i.e., “Dirac triplons.” The
topological character of these Dirac triplons manifests itself
in the edge spectrum in terms of dispersionless triplon edge
states, which connect the two Dirac points [see Fig. S1 in the
Supplemental Material (SM) [29]].

Upon introducing the DM interaction, a topological gap
is opened at the two Dirac points. Two counterpropagating
triplon edge states appear within this gap, which connect the
tx and ty bulk bands to each other (see Fig. 2). These are pro-
tected by the time-reversal symmetry. We may call this state a
“topological triplon insulator,” since its edge-state spectrum is
identical to that of the two-dimensional electronic topological
insulator [1]. However, as opposed to electronic topological
insulators, the edge states of the topological triplon insulator
are excited states, which cross at an energy of the order J
above the ground-state energy. Hence, in order to probe the
physics of these triplon edge states, they need to be thermally
populated or excited out of equilibrium.

In Fig. 2 we show how the triplon edge states evolve as a
function of the anisotropy in the intralayer Heisenberg inter-
action Kz/K . Upon increasing Kz relative to K , the gapped
Dirac triplons move along the edges of the bulk BZ until
they merge at the M point for Kz = 2K , where they form
a quadratic band touching [Fig. 2(c)]. In this process, the
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FIG. 2. Triplon bands in the presence of the DM interaction with open boundaries along the zigzag edge. The edge states, which are located
around J = 1, are indicated in green. For |Kz| < 2K , a Z2 topological quantum paramagnet is realized, which has similar band structure and
edge state as the quantum spin Hall effect. At |Kz| = 2K a topological phase transition occurs, which separates the Z2 topological phase from
a quantum paramagmet with edge states that are detached from the bulk bands. The parameters used in these plots are K/J = 0.1, D/J = 0.01,
and α/J = 0.

crossing of the triplon edge states gets stretched out, until
at Kz = 2K the edge states touch at both kx = 0 and kx = π .
Further increasing Kz/K , a bulk gap opens up again and the
edge states detach from the bulk bands. In fact, for Kz > 2K
the triplon edge states lie completely in the bulk gap, without
touching the bulk triplon bands at all [Fig. 2(d)]. We will see
below that the bulk gap closing at Kz = 2K corresponds to
a topological phase transition, which separates two distinct
topological phases with two different types of edge states: For
Kz < 2K there are two edge states attached to the bulk bands
and protected by a Z2 invariant, while for Kz > 2K the edge
states are detached from the bulk bands and protected by chiral
symmetry. In the Supplemental Material [29] we also discuss
the effect of staggered potential α. The full phase diagram as
a function of both α and Kz is shown in Fig. 3. In passing,
we remark that these types of detached edge states can be
realized, in principle, also in fermionic systems [29].
Z2 topological invariant. In order to establish the topolog-

ical origin of the edge states discussed above, we show that
they are protected by a Z2 invariant, which can be defined in
the presence of the time-reversal symmetry. In the presence
of parity symmetry (i.e., when α = 0), the Z2 invariant ν can

Trivial quantum
paramagnet

2 TQP

Detached
edge modes

K 3K/2 2K 5K/2 3K
0

D/4

Kz

α

FIG. 3. Topological phase diagram as a function of the
anisotropic Heisenberg interaction Kz and staggered on-site potential
α in the presence of a finite DM interaction D. The lower left phase
(orange) is the Z2 topological quantum paramagnet or the topo-
logical triplon insulator, which has counterpropagating edge modes
connecting the bulk triplon modes. The right-side phase (green)
is a topological quantum paramagnet with detached edge modes
protected by chiral symmetry and realized for strongly anisotropic
Kz. The upper phase (yellow) is a trivial quantum paramagnet with
no edge excitations. The parameters used here are K/J = 0.1 and
D/J = 0.01.

be expressed in terms of the parity eigenvalues of the triplon
bands [27], i.e.,

(−1)ν =
4∏

i=1

δi, (7)

where δi = δ( �Ti ) gives the parity eigenvalue of the lower
triplon band at the four time-reversal invariant momenta
�Ti [see Fig. 1(c)]. Parity symmetry acts on the triplon
Hamiltonian (2) as P̂M�kP̂−1 = M−�k , with the parity operator
P̂ = 1 ⊗ �1.

Note that for our bosonic problem the relevant matrix is
not M�k , but rather 
M�k , which, however, obeys the same
parity symmetry as M�k , since [P̂, 
] = 0. Recall that for
the honeycomb lattice, there are four time-reversal invariant
momenta: �T1 = {0, 0}, �T2 = {0, 2π/

√
3}, �T3 = {π, π/

√
3},

and �T4 = {−π, π/
√

3} [see Fig. 1(b)]. At these time-reversal
invariant momenta, [P̂,MTi ] = 0 as well as [P̂, 
MTi ] = 0.
It is now straightforward to see that the parity eigenvalue of
the lower triplon band is related to the sign of d1 = Re(κ�k ).
Hence, from Eq. (4) we find that

δi = −sgn

{
1

2

[
Kz + 2K cos

(
kx

2

)
cos

(√
3ky

2

)]}
.

At the four time-reversal invariant momenta we have

d1( �T1,2) = Kz ± 2K

2
; d1( �T3,4) = Kz

2
. (8)

It follows that for K > 0 the Z2 invariant is given by

ν =
{

0, if |Kz| > 2K
1, if |Kz| < 2K.

(9)

Thus, for |Kz| < 2K the triplon spectrum is topological, in
agreement with the appearance of edge states, as discussed
above. Due to its topological excitation spectrum, we call the
phase |Kz| < 2K a Z2 topological quantum paramagnet.

In the absence of parity symmetry (i.e., when α �= 0),
formula (7) for the Z2 topological invariant ν is no longer
valid. However, in this case we can consider an adiabatic
deformation, which smoothly transforms the Hamiltonian to
a parity symmetric one, without closing the gap in the triplon
spectrum. Alternatively, the Z2 invariant can be formulated in
terms of the triplon eigenstates [32,33], which does not rely on
the existence of a parity symmetry, but only the time-reversal
symmetry.
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Another point to note is that the Z2 invariant is independent
of the DM interaction. The role of the DM interaction is to just
separate the triplon bulk bands. In fact, just as in the case of
the quantum spin Hall effect, the absence of a DM interaction
simply means that the triplon bands must touch at energy J for
|Kz| < 2K [27].

Protection of detached edge modes. The Z2 invariant (7) is
zero for |Kz| > 2K . Nevertheless, in this regime there appear
edge states too, which are protected by symmetry, as we will
now show. To establish this, we first observe that besides the
antiunitary time-reversal symmetry, the triplon Hamiltonian
M�k , Eq. (2), also exhibits a unitary symmetry, i.e., it com-
mutes with Ĝ = 14×4 ⊗ τ2. Moreover, the model possesses
a type of chiral symmetry, that is, M�k − J1 anticommutes
with the chiral operator Ĉ = 1 ⊗ σ3 ⊗ τ3. Since both of these
symmetries also hold for 
M�k , it follows that (i) the triplon
bands can be labeled by the eigenvalues of Ĝ and (ii) the
triplon bands are symmetric around the energy J .

We can investigate the edge-state wave function near kx =
0 by making an ansatz: �ed (y) = e−λy�. It turns out that
λ = (Kz − 2K )/

√
3K , which means that these edge modes

exist only when Kz > 2K (green region in Fig. 3). We refer to
the Supplemental Material [29] for technical details. We quote
here the full wave function of the detached edge states, �1,2 =
(uφ1,2, vφ1,2)T , where u2 − v2 = 1, which follows from the
bosonic Bogoliubov transformation and φ1,2 = (ϕ±, 0)T , with
ϕ± the eigenfunctions of τ2 (i.e., τ2ϕ± = ±ϕ±).

From above we infer that the two edge states �1,2 have
opposite eigenvalues with respect to Ĝ, i.e., Ĝ�1,2 = ±�1,2.
Hence, since Ĝ commutes with 
M�k , any hybridization
between the two edge modes is prohibited by the symmetry
Ĝ. Moreover, we find that chiral symmetry Ĉ converts one
edge state into another (i.e., Ĉ�1,2 = −�2,1) and that parity P̂
guarantees the degeneracy between states on opposite edges.
Therefore, away from kx = 0 there is always exactly one edge
state with ε < J and one edge state with ε > J , and hence the
kx = 0 band crossing is pinned at ε = J [34]. Furthermore,
we observe that as we let kx → −kx the Ĝ eigenvalues of
the ε1,2 eigenstates get interchanged. For this reason and due
to the 2π periodicity of the wave functions, there must be
another crossing of the edge states between 0 and π . Due
to time-reversal symmetry this second crossing is pinned at
kx = π .

Conclusions and implications for experiments. The topo-
logical triplon edge modes could potentially be used as robust
and efficient channels for spin transport. Their topological
origin protects them against disorder scattering. The triplon

edge modes should be observable in various experimental
probes [35]. For example, neutron-scattering experiments
should be able to detect a pronounced peak in the dynamical
spin structure factor at the energy of the triplon edge states
(see SM [29] for a detailed prediction). Another possibility
is to measure spin Hall noise in a normal metal deposited on
top of the honeycomb bilayer paramagnet, which is expected
to show signatures of the triplon edge states [36]. Apart from
this, thermal or spin transport measurements could also probe
these nontrivial edge modes [24]. However, unlike fermionic
topological states there is no quantized response, which makes
it challenging to find an unambiguous physical observable of
the nontrivial topology.

The topological triplon edge states discussed in this Rapid
Communication are expected to occur in a wide range of
model systems and materials. A promising set of materials
is that of chromium trihalides, CrX3 (X = F, Cl, Br, I), which
are layered honeycomb materials with relevant interlayer cou-
pling. These were of great interest in the past as a prototypical
example of Heisenberg ferromagnets [37,38], but have since
then been forgotten. However, recently they have been shown
to host Dirac magnons [39]. It might be possible to realize
a singlet ground state in these systems with the application
of external pressure or by substituting chromium with some
other transition metal. Moreover, the physics discussed in
this work is expected to exist also in other bilayer systems
with strong spin-orbit coupling, such as triangular- or square-
lattice bilayer structures with dimerized ground states [29].
This might be of relevance (after appropriate substitution)
for BaCuSi2O6 [40], which exhibits a spin-singlet dimerized
ground state in a square-lattice bilayer structure.

Topological triplons can also arise in various spin-orbital
systems realizing the singlet-triplet phenomenon. In particu-
lar, d4 Mott insulators such as Li2RuO3 [41] and Ag3LiRu2O6

[42], where transition metal ions form a honeycomb lat-
tice, are promising candidates as they display singlet-triplet
physics due to strong spin-orbit coupling [43,44]. It will
be interesting to work out the conditions under which the
triplon edge states can arise in these d4 Mott insulators. It
may be extended to d8 Mott insulators as well [45]. Another
direction for future research is the study of magnetic quantum
phase transitions from a topological quantum paramagnet
to a magnetically ordered phase. There are indications that
the ordered phase might also host topological edge exci-
tations [46]. However, this might require exact numerical
studies.
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