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Ultrafast depinning of domain walls in notched antiferromagnetic nanostructures
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The pinning/depinning of an antiferromagnetic (AFM) domain wall is certainly the core issue for AFM
spintronic device operation. In this work, we study theoretically the Néel-type domain wall pinning/depinning
at a notch in an AFM nanostructure (nanoribbon). The depinning field depending on the notch dimension and
intrinsic material properties is deduced and also numerically calculated. Contrary to conventional conception, it
is revealed that the depinning field is remarkably dependent on the damping constant and the time-dependent
oscillation of domain wall position in the weakly damping regime benefits to the wall depinning, resulting
in a gradual saturation of the depinning field with increasing damping constant. A one-dimensional model
accounting of the internal dynamics of the domain wall is used to explain perfectly the simulated results. It
is demonstrated that the depinning mechanism of an AFM domain wall differs from the ferromagnetic domain
wall by exhibiting a depinning typically three orders of magnitude faster than the latter, unveiling another origin
for ultrafast dynamics of an AFM system.
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Antiferromagnetic (AFM) materials are promising for the
next generation of spintronic devices and attract substantial
attention because they have strong anti-interference capability
and promise ultrafast magnetic dynamics [1–8]. As a frontier
and highly concerning issue for advanced spintronics, the
domain wall dynamics of antiferromagnets is under extensive
investigation. Specifically, several stimuli have been proposed
to drive the domain wall motion, including the Néel spin-orbit
torques [9,10], spin waves [11,12], temperature gradients
[13–15], spin waves, elastic waves, and microwaves [16–18].
These works provide useful information for future AFM stor-
age device design.

Nevertheless, most of these works discuss models for
perfect samples and the wall pinning caused by disorder and
local defects is neglected. As a matter of fact, the wall pinning
may play an important role in magnetic dynamics. On one
hand, for a realistic spintronic device where inhomogeneity
and lattice defects are inevitable, the wall dynamics could be
significantly affected and the wall pinning/depinning becomes
the limited step for device operation. For example, it was
reported that electrical-current-induced switching of AFM
domains in CuMnAs occurs only in localized regions, strongly
suggesting the important role of wall pinning [19]. Given
these reasons, a clarification of the underlying mechanisms
for wall pinning/depinning becomes emergent. On the other
hand, artificial lattice defects such as notches with proper
shape could be used in discretizing domain wall position
and enhancing its stability against thermal fluctuations and
stray fields in potential race-track memory and logic de-
vices [20–24]. Therefore, the dynamics of AFM domain wall
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pinning/depinning appears to be one of the core issues for
application potentials and basic research of AFM spintronics.

Fortunately, the wall pinning in ferromagnetic systems has
been extensively investigated, and the accumulated experience
can be a reference for the AFM domain dynamics study
[25–32]. For a ferromagnetic wall, the depinning field can be
analytically obtained by minimizing the total energy, demon-
strating the critical role of notch geometry in pinning the
wall [26]. More interestingly, the dependence of the depinning
field on the Gilbert damping for a ferromagnetic system has
been revealed in micromagnetic simulations, and the damping
constant, if small, can reduce the depinning field, contrary to
general expectation that they should be independent of each
other [27]. This phenomenon not only reveals the complexity
of domain wall pinning, but more importantly provides a
method of domain wall manipulation. However, as far as we
know, few works on the pinning/depinning of an AFM domain
wall have been available, although this issue is certainly more
important than and distinctly different from the case of a
ferromagnetic wall.

In the following, we discuss the domain wall pin-
ning/depinning for an AFM nanostructure with a notch, with-
out losing the generality, while the calculation methods and
main conclusions apply to antiferromagnets with other lattice
defects. For simplicity, we consider a nanoribbon and the
notch has a rectangular section, as shown in Fig. 1(a). We
can derive the depinning field hdep as a function of the notch
size and uniaxial anisotropy in a simplified framework and
the theory agrees well with numerical simulations in the
large damping regime. Moreover, it will be shown that the
depinning field gradually increases to a saturation value with
increasing damping constant, and this prediction allows one to
modulate the damping constant through an elaborate material
design, so that the domain wall depinning can be in turn
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FIG. 1. Equilibrium spin structures around the notch in the AFM
nanoribbon with lattice sizes l × w × tl under (a) h = 0, (b) h =
0.002 J/μS , (c) h = 0.004 J/μS , and (d) h = 0.00458 J/μS . The
color represents the magnitude of the z component of the staggered
magnetization nz, and the position of the domain wall center is
depicted by the black dashed lines.

effectively controlled. In order to understand the underlying
physics better, we perform the analytical calculation based
on the one-dimensional model, which reveals the important
role of the internal domain wall dynamics. Our work also
addresses the depinning mechanism for an AFM wall different
from a ferromagnetic wall. This new mechanism allows the
depinning speed to be typically three orders of magnitude
higher than that for a ferromagnetic wall depinning.

We start from the domain wall pinning at a rectangular
notch for an AFM nanoribbon. This nanoribbon is geomet-
rically defined by length l along the z axis, width w, and
thickness tl , as shown in Fig. 1. We discuss the scenario
of current-induced Néel spin-orbit torques (or staggered ef-
fective field), as demonstrated in CuMnAs and Mn2Au for
driving the domain wall motion, i.e., the wall is typically of
the Néel type [6,8,9]. For this scenario, the model Hamiltonian
is given by [33,34]

H = A0

2
m2 + A

2
∇n · ∇n + L0m · ∇n − Kz

2
n2

z + γ ρhnz,

(1)

where A0 = 4JS2/a is the homogeneous exchange constant
with AFM coupling J > 0, spin length S, and lattice constant
a, m is the total magnetization m = (m1 + m2)/2S with m1

and m2 the AFM sublattice magnetizations, A = 2aJS2 is
the inhomogeneous exchange constant, n is the staggered

magnetization n = (m1 − m2)/2S, L0 = 2JS2 is the parity-
breaking parameter, Kz = 2K0S2/a is the anisotropy constant
along the z axis in the continuum model with anisotropy
constant K0 in the discrete model, γ is the gyromagnetic
ratio, ρ = Sh̄/a is the density of the staggered spin angular
momentum per unit cell, h is the staggered effective field, and
nz is the z component of n. Here, the notch has its width d and
depth wN , as depicted in Fig. 1(a).

Noting that m is just a slave variable of n [33], and we
eliminate m by m = −L0∇n/A0 and obtain

H = A∗

2
∇n · ∇n − Kz

2
n2

z + γ ρhnz, (2)

where A∗ = A − L2
0/A0 is the effective exchange constant. As

shown in the Supplemental Material A for the detailed deriva-
tion [35], the depinning field hdep, based on this Hamiltonian
model, can be solved strictly after a similar derivation [26]

hdep = 2K0/μS

2w/wN − 1
, (3)

where μS is the saturation moment. It is noted that for a
nanoribbon, the depinning field is independent of thickness.
As clearly indicated in Eq. (3), hdep depends on several pa-
rameters including the anisotropy constant K0 and the w/wN

ratio. Thus, the devices with various depinning fields could
be designed through modulating ratio w/wN and/or choosing
appropriate materials.

In order to check the validity of Eq. (3), we also perform
the numerical simulations based on the atomistic Landau-
Lifshitz-Gilbert (LLG) equation [14],

∂Si

∂t
= − γ

(1 + α2)
Si × [Hi + α(Si × Hi )], (4)

where Si is the normalized atomic spin at site i, α is the
damping constant, and Hi = −μ−1

s ∂H/∂Si is the effective
field. Without loss of generality, l = 120 a, tl = a, w = 8a,
K0 = 0.02 J , d = 4a, wN = 2a, and α = 0.02 are selected.

Figure 1 presents the spin structures of the nanoribbon for
various h. Here, the Néel-type AFM domain wall is pinned
at the notch at h = 0 and the spin configuration is symmetric
around the notch due to the absence of chirality, as shown
in Fig. 1(a). The spins on the wall midplane are aligned in
parallel to the x axis and perpendicular to those spins inside
the AFM domains aside. When a small h is applied along the z
axis, the wall slightly shifts toward the right side, as seen from
the delicate change of the spin configuration. With increasing
h, those spins on the left side of the notch midplane tend
to rotate toward the negative z axis while those on the right
side of the notch midplane tend to rotate toward the x axis,
as shown in Figs. 1(b) and 1(c), a consequence of the wall
depinning from the notch. The wall depinning becomes clear
in Fig. 1(c) where the wall midplane deviates clearly from
the notch midplane. The spin configuration after the full wall
depinning from the notch is shown in Fig. 1(d).

Subsequently, we investigate the dependences of hdep on
the notch geometry and several physical parameters including
the anisotropy and damping constants. The calculated curves
(analytical) from Eq. (3) plus the simulated results (numerical)
based on the LLG dynamics, Eq. (4), for different values of
notch depth wN , nanoribbon thickness w, anisotropy constant
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FIG. 2. Numerical (empty circles) and analytical (blue solid line)
calculated depinning field as a function of (a) the depth of the notch
wN , (b) the width of the nanoribbon w, (c) the anisotropy constant
K0, and (d) the damping constant α. The red solid line in (d) is the
fitting results based on Eq. (14).

K0, and damping constant α are plotted in Figs. 2(a)–2(d),
respectively. Several features deserve highlighting here. First,
the model calculated curves and numerically simulated data
on dependences hdep(wN ), hdep(w), and hdep(K0) respectively
show qualitatively similar tendencies, suggesting that Eq. (3)
can describe roughly these dependences although a quanti-
tative difference between the model and simulation appears
for each dependence. Second, a qualitative difference between
the model and simulation appears for function hdep(α), as
shown in Fig. 2(d). While the model suggests independence
of hdep on damping constant α, the numerical simulation
reveals that hdep is remarkably dependent on α in the small
α regime. hdep shows a gradual growth with α until the large
α regime where hdep becomes saturated, i.e., independent of α

in the large damping regime. The difference between Eq. (3)
and simulated results for hdep(α) is understandable since the
LLG damping is a time-dependent effect. It is noted that the
internal dynamics of the domain wall is completely neglected
in deriving Eq. (3), while this dynamics becomes particularly
remarkable in the small α regime where the time-dependent
spin oscillation can be significant due to the weak damping.
Actually, the damping constants in typical AFM materials
including Mn2Au and NiO [36] have been confirmed to be
∼10−3. Therefore, the model prediction Eq. (3) becomes
invalid and the underlying physics should be reconsidered.

In order to uncover the intriguing physics, we need to
track the domain wall evolution. In proceeding, we first define
the position of a domain wall. Similar to the well-studied
skyrmions, the position of a domain wall is estimated by q(t )
[37]:

q =
∫

z(1 − |nz|)dx dz∫
(1 − |nz|)dx dz

, (5)

where q is the coordinate of the wall midplane. Given this
definition, one starts with the one-dimensional model with
inclusion of the internal dynamics of domain wall motion
[28,29]. The Hamiltonian density for this model reads [33]

H1D = A0

2
m2 + A

2
(∂zn)2 + L0m · ∂zn

− Kz

2
n2

z + γ ρhnz + V (z), (6)

where the pinning effect from the notch is described by
potential energy V (z).

Subsequently, we study the Lagrangian density L = K −
H1D with K = ρm · (ṅ × n) is the kinetic energy term intro-
duced by the Berry phase, and ṅ represents the derivative
with respect to time [33,38,39]. Then, we eliminate m with
m = (ρṅ × n − L0∂zn)/A0 [33], and obtain

L = ρ2

2A0
ṅ2 − A∗

2
(∂zn)2 + Kz

2
n2

z − γ ρhnz − V (z). (7)

It is noted that the Rayleigh function density R = αρ ṅ2/2 is
introduced into the Lagrangian formalism in order to describe
the dissipative dynamics [38,39]. Following the earlier work,
we assume a robust domain wall structure which can be de-
scribed by n = [sech[(z − q)/λ]cos�, sech[(z − q)/λ]sin�,
tanh[(z − q)/λ] [38], where the azimuthal angle � of the wall
is introduced as the collective coordinates. After substituting
the domain wall ansatz and applying the Euler-Lagrange
equation, we obtain the equation of motion for variables q and
�,

ρ2

λA0
q̈ + αρ

λ
q̇ + dε

dq
− γ ρh = 0 (8)

and

ρ2

A0
�̈ + αρ�̇ = 0. (9)

It is noted that the first term in Eq. (8) describes the wall
inertia and other terms represent the forces exerted respec-
tively by the damping α, pinning potential ε(q), and current-
induced effective magnetic field h. By substituting the initial
condition �(0) = d�/dt |t=0 = 0 into Eq. (9), one obtains
�(t ) = 0, consistent with the fact that an AFM domain wall is
confined in the easy plane due to the antiparallel arrangement
of neighboring spins.

For simplicity, we assume a parabolic potential [23,29]

ε(q) =
{

KN q2/2

KN L2
N/2

(|q| < LN )

(|q| � LN )
, (10)

where KN is the elastic constant and LN is the radius of the po-
tential well. After substitutions and necessary simplification,
the equation of motion for q is updated to

q̈ + Gq̇ + ω2
N q − hN = 0, (11)

where G = aA0/ρ, hN = γ A0λh/ρ, and ωN =
(λA0KN/ρ2)1/2 is the natural angular frequency of the
free harmonic oscillator. Here, we can see the existence of
domain wall oscillation if damping constant α is small. This
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FIG. 3. (a) The domain wall position as a function of time for
various damping constants under h = 0.0039 J/μS . (b) Numerical
(empty circles) and analytical (solid line) calculated maximum
displacement of the domain wall as a function of α under h =
0.0039 J/μS .

oscillation is the major reason for the invalid prediction of the
depinning field by Eq. (3).

Noting that Eq. (11) describes the damping oscillation of a
domain wall, one has the solution for α < αc = 2ρ2aωN/JA0

representing the underdamped oscillation:

q(t ) = e−Gt (C1 cos ωpt + C2 sin ωpt ) + hN/ω2
N , (12)

where ωp = (ω2
N − G2/4)1/2 is the oscillating angular fre-

quency of the wall, and C1, C2 are integral constants depend-
ing on the initial condition.

For better illustration, the simulated q(t ) curves based on
the LLG equation at various damping constant α are plotted
in Fig. 3(a), benefiting the discussion. For α > 0.005, one
observes the domain wall oscillation around the equilibrium
position with an attenuating amplitude. Moreover, the os-
cillation amplitude is enhanced with decreasing α. Finally,
for α < 0.005, when the maximum displacement of the wall
oscillation, defined as |
q|max = |q(t ) − q(0)|max, exceeds
the height of the pinning potential [29], the wall would
successfully depin from the notch and propagates freely along
the nanoribbon, as clearly shown in the Supplemental Material
movie [35].

As demonstrated in Eq. (12), the displacement of the wall
oscillation consists of the oscillatory part (AS ) and stationary
part (qeq) [29], and its maximum value is approximately given
by

|
q|max = AS + qeq = e−G arctan (C2/C1 )/ωp

√
C2

1 + C2
2 + hN/ω2

N ,

(13)

where ωp ≈ ωN is obtained for α < αc. In this case, since
|
q|max decreases exponentially with α, a larger external field
is required to generate the wall displacement for the wall
depinning. As |
q|max > LN , the wall eventually depins from
the notch.

Noting that the pinning potential parameters including KN

and LN are unknown, we need a reasonable estimation of them
by fitting the simulated results based on Eq. (13). As shown in
Fig. 3(b) where the simulated furthest position of the domain
wall, qmax, as a function of α, is plotted. The excellent fitting
of the simulated data by Eq. (13), on the other hand, further
confirms the validity of our theory.

Since the oscillating amplitudes C1 and C2 are propor-
tional to external or current-induced staggered field h, one
can introduce the field-independent parameters c1 = C2/C1,
c2 = (C1

2 + C2
2)1/2/h for brevity. Subsequently, the depin-

ning field under the condition |
q|max = LN is obtained:

hdep = LN

e−G arctan c1/ωpc2 + γ ρ/KN
. (14)

A similar fitting approach can be used to estimate LN . As
shown in Fig. 2(d), the simulated results coincide very well
with Eq. (14) with one adjustable variable LN , demonstrating
the important role of the domain wall oscillation in the domain
wall depinning. Such an oscillation behavior is one character
of the internal dynamics for an AFM nanoribbon with a notch.

Finally, we would like to address the significance of the
present results. It is known that the performance of domain
wall based race-track memory not only depends on the wall
motion velocity, but also relies on the wall depinning time. It
is clearly shown here that an AFM domain wall depinning is
distinctly different from that of a ferromagnetic domain wall.
For a ferromagnetic nanoribbon, the wall oscillation is related
to the wall internal angle which is mainly determined by the
internal fields including magnetocrystalline anisotropy and
Dzyaloshinskii-Moriya (DM) exchange [27]. Generally, the
depinning time is inversely proportional to the magnitude of
internal fields and has a typical value of ∼1.0 ns [22–24,27].
However, for an AFM system, the wall oscillation stems from
the second-order derivative of domain wall position q with
respect to time rather than the azimuthal angle, as clearly
illustrated in Eq. (8). Since the derivative originates from the
strong AFM exchange interaction between two sublattices,
which is about three orders larger than the anisotropy and
DM exchange, one is sure that the depinning time for such
an AFM domain wall should be three orders of magnitude
shorter than a ferromagnetic one. It implies a surprisingly
short depinning time of ∼0.001 ns for CuMnAs with the Néel
temperature TN ≈ 480 K, a ≈ 3.8 Å, and μS ≈ 3.6 μB [40],
where μB is the Bohr magneton. While it is well believed
that the AFM domain switching is faster than ferromagnetic
domain switching, the present work presents a quantitative
estimation of the domain wall depinning time, directly evi-
dencing this well-believed but not yet well-evidenced claim.

In conclusion, we have studied theoretically the domain
wall depinning at a notch in an AFM nanostructure
(nanoribbon). The depinning field depending on the notch
dimension and intrinsic physical parameters are derived
theoretically and also simulated based on the LLG equation.
The remarkable dependence of the depinning field on the
damping constant is revealed, which is attributed to the
time-dependent oscillation of the domain wall in the small
damping regime. A one-dimensional model considering the
internal dynamics of a domain wall is sufficiently investigated
to explain perfectly the simulated results. More importantly,
our work unveils the different depinning mechanism of an
AFM domain wall from a ferromagnetic domain wall, which
may result in a depinning speed typically three orders faster
than the latter, and thus provide a physical basis for the
ultrafast dynamics of an AFM system.
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