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Towards experimental observation of parametrically squeezed states of microwave
magnons in yttrium iron garnet films
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We demonstrate theoretically and confirm experimentally that nonlinear spin waves excited in thin yttrium
iron garnet films are good candidates for squeezing vacuum quantum noise. The experimental demonstration
is in the form of a measurement of spin-wave induced modulation instability (IMI) conducted in the classical
regime. The experiment evidences strong phase locking of an idler wave parametrically generated in the film
with a deterministic small-signal wave launched into the film from an external source. The theory predicts that
the same behavior will be observed for vacuum quantum noise, resulting in squeezing of the noise.
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Parametrically squeezed states of quantized fields [1,2] are
of fundamental importance for the theory of quantum mea-
surements [3,4] and have found applications in gravitational-
wave detection, atom interferometers [1,5], and in true ran-
dom number generators [6]. They are also crucial for quantum
computing, more precisely for continuous-variable quantum
computing (CVC) [7,8]. For instance, very recently, a propo-
sition to employ CVC to build a quantum neural network
has been put forward [9]. All these very important fields rely
heavily on the quantum optics implementation of the quantum
field theory.

The demonstration of the parametric squeezing in optics
dates back to the 1980s [10,11]. Both three- [10] and four-
[11] photon parametric processes were employed to generate
squeezed visible light. The four-wave parametric squeezing
of the vacuum noise [11] is a quantum counterpart of the
classical effect of the spontaneous modulation instability
(SMI). SMI represents parametric amplification of noise in
a nonlinear medium resulting in amplitude modulation of the
pump wave. In fiber optics, SMI was observed in Ref. [12].

Coherent photon states can also couple parametrically to a
quasiclassical pump wave. The same phase relationships are
valid for the parametric amplification of the vacuum noise and
the complex mode amplitude of a coherent state. The classical
counterpart of the four-photon parametric amplification of
the complex mode amplitude is the induced modulation
instability (IMI). IMI represents parametric coupling of a
classical deterministic signal to a pump wave. The coupling
leads to an exponential increase in the signal amplitude
with time and distance of the signal wave propagation.
Experimentally this is seen as an increase in the amplitude of
the signal from the output of the experimental device in the
presence of the pump wave.

In fiber optics, IMI was observed in [13]. As pointed out
in [14], the evolution equations for creation and annihilation
operators for four-photon parametric gain are the same as
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for amplitudes of classical waves. This implies that the same
phase relationships must remain valid for IMI. Therefore,
observation of those relationships for classical waves may be
considered a prerequisite for a medium’s ability to squeeze
quantum noise. Due to the deterministic nature of all signals
involved in IMI, technically, it is easier to observe phase
relationships for IMI than for its “sister effect”—SMI.

The three- and four-wave parametric processes also take
place in ferromagnets, but at microwave (MW) frequencies.
They appear as interactions among quanta of spin waves
(SWs), which are called magnons. The general theory of the
four-wave processes in bulk (unbounded) magnetic media was
developed long ago [15], but details relevant to the present
work were not considered. Later on, nonlinear SWs were
widely studied in thin ferrоmagnetic films [16–18]. In partic-
ular, SMI of SWs in films of yttrium iron garnet (YIG) has
been reported [19]. Importantly, SWs in YIG films have much
lower nonlinearity thresholds than light in the conventional
optical fiber [20].

Experimentally, squeezed magnons were observed in anti-
ferromagnets at terahertz frequencies [21]. Squeezing (mostly
parametric) of microwave magnons in ferro- and ferrimag-
nets has been discussed in the literature, but only theo-
retically [22–25]. References [22,24] considered three- and
four-magnon-based squeezing, respectively. Both works were
carried out for a bulk ferro-/ferrimagnet. The works revealed
that the squeezed states may exist in the medium for short
periods of time. Contrary to Refs. [22–24], we consider a
different ferrimagnetic medium. These are the YIG films. A
unique practical advantage of the film geometry is the easiness
of excitation and detection of SWs. Furthermore, the experi-
mental observation of the spin-wave SMI was made using this
particular medium and this particular type of ferrimagnet. This
suggests that from all possible geometries, the thin films may
represent the best candidates for the experimental investiga-
tion of the squeezed magnon states in ferro-/ferrimagnetic ma-
terials. Furthermore, single-crystal YIG films with thicknesses
in the micrometer range grown with liquid-phase epitaxy are
characterized by record-low magnetic losses and a very low
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SW nonlinearity threshold. In terms of this combination of
parameters, they outperform by far any other known ferri-
/ferromagnetic material.

The aim of this Rapid Communication is twofold. Firstly,
we carry out a theoretical analysis of the four-magnon pro-
cesses in YIG films demonstrating that parametrically cou-
pled magnon states are squeezed. Secondly, we carry out
observation of the SW IMI in a YIG film and study phase
dependencies between the involved classical waves. We em-
phasize that we focus on the phase dependencies for the
SW amplitude quadratures. They are central to the effect of
squeezing, but have not been experimentally studied for the
case of parametric four-magnon interactions. Our experiment
confirms that thin YIG films represent good candidates for
future observation of the squeezed quantum states [26].

The goal of the theoretical analysis below is to derive ex-
pressions for the quadratures of quantum noise starting from
a suitable classical model for the spin-wave IMI in YIG films.
Previously (see, e.g., [15,16,27], and references therein), it
was shown that four-wave self-modulation processes in YIG,
such as the formation of SW envelope solitons, are well de-
scribed by the nonlinear Schrödinger (NLS) equation model.
For SWs this equation takes the form

i

(
∂

∂t
+ Vg

∂

∂z
+ γ

)
c + D

2

∂2c

∂z2
− T |c|2c = 0, (1)

where c is the scalar amplitude (envelope) of the wave, Vg =
∂ω(k)/∂k is the wave’s group velocity, T is the nonlinear
four-wave (self-modulation) coefficient, γ is the SW damping
coefficient, and D = ∂2ω(k)/∂k2 is the “dispersion coeffi-
cient.” It represents the curvature of the SW dispersion curve
ω(k), where ω is the SW frequency and k is the SW wave
number. The coefficients are calculated for a point ω(k0) in
the SW dispersion curve. The total SW field (envelope+MW
carrier) reads c(t, z)exp[iω(k0)t + ik0z)].

Bright envelope solitons are formed in a medium, provided
DT < 0. As shown in [28], D and T depend on the film
magnetic parameters and the direction of film magnetization.
For instance, for a perpendicularly magnetized film, T is given
by the product of the gyromagnetic ratio and the saturation
magnetization of the film and is positive. For YIG T = 3 ×
1010 s−1. In the same conditions, D is negative and hence
DT < 0.

The same criterion, DT < 0, is valid for the existence of
SMI and IMI [29]. Furthermore, experimental investigations
of SW solitons in YIG films are in good quantitative agree-
ment with the model (1) [30]. Therefore, we may start our
theoretical analysis with Eq. (1).

The solution of the NLS equation, describing SMI/IMI,
is c = c0 + c1 exp(i�t − iκz) + c2 exp(−i�t + iκz). This
ansatz is a combination of an intense continuous-wave (cw)
pump wave with an amplitude c0 [and carrier frequency ω(k0)
and wave number k0], and two small-signal cw waves with
amplitudes c1 and c2 [|c1|, |c2| � |c0|] shifted in frequency by
−� and +�, respectively, from the central frequency ω(k0).
The wave numbers of these two waves are shifted by ±κ from
the carrier wave number k0. Substituting the ansatz into (1)

and linearizing the result yields
c1(z) = μ1(z)c1(z = 0) + ν1c̄2(z = 0),

(2)
c̄2(z) = μ̄2(z)c̄2(z = 0) + ν̄2c1(z = 0),

where z = 0 corresponds to the location where the three waves
are launched into the film. This solution implies that the
amplitudes of the small-signal waves scale linearly with the
initial wave amplitudes cα (z = 0) (where α = 1, 2). In the
presence of magnetic losses in the film, there is no analytical
solution to Eq. (1), and the coefficients μα (z) and να (z) have
to be found numerically. Note the presence of the nonvanish-
ing cross-coupling coefficients να (z) in Eq. (2). It evidences
phase synchronism between c1 and c2.

The synchronism establishes as the two waves propagate
along the film (i.e., in the +z direction) and become paramet-
rically amplified in the course of the propagation, due to their
coupling to the pump wave. We now consider the beat signal
of the two small-signal waves:

A = c1 exp{i[ω(k0) + �]t − i[k0 + κ]z}
+ c2 exp{i[ω(k0) − �]t − i[k0 − κ]z}. (3)

We quantize Eqs. (3) and (2) and introduce its quadra-
tures, X = Aeiϕ + A†e−iϕ , Y = i(Aeiϕ − A†exp−iϕ ), where ϕ

is some phase. Note that the loss term is present in Eq. (1).
Therefore, our quantization is analogous to solving a quantum
Langevin equation for a medium with losses [Eq. (2) in
[31]]. We also assume a vacuum state |0〉 at the input of the
film [c1(0)|01〉 = 0, c2(0)|02〉 = 0]. This allows us to obtain
fluctuations of the quadratures of the envelope signal at the
frequency � [32]:

〈0|X 2,Y 2|0〉 = |μ1|2 + |μ2|2 + |ν1|2 + |ν2|2
± 2|ν1||μ2| cos(
1) ± 2|μ1||ν2| cos(
2),

(4)

where


1(2) = arg(μ2(1)) + arg(ν1(2)) − 2(ϕ + k0z), (5)

and the upper and lower signs correspond to the fluctuations of
X and Y, respectively. Here we introduced shorthand notations
μi = μi(z) and νi = νi(z), and arg(. . .) denotes the phase
angle of the respective complex-valued quantity.

The central result of this theory is shown in Fig. 1.
This is an example calculation using Eq. (4), with μi and
νi obtained from a numerical solution of Eq. (1) for a
set of parameters used in the experiment described be-
low: D = −2 × 10−3 cm2/s, T = 3 × 1010 s−1, Vg = 4.4 ×
106 s−1, γ = 7.0 × 106 cm/s, and �/2π = 25 MHz. The pa-
rameters were calculated based on the magnetic parameters
of the film, microwave frequency, and magnetic field (applied
perpendicular to the film plane) employed in the experiment.
One sees that the quantum noise of one of the quadratures can
be reduced to zero for some values of ϕ. Importantly, the fluc-
tuations of the second quadrature are maximized for the same
ϕ. This shows that the magnon quantum noise in a YIG film
is squeezed. This is the main theoretical finding of this work.

The squeezing is due to the process of four-magnon cou-
pling of the three waves. Following [32], in the absence of
losses in the material, μ2(z) = μ1(z) ≡ μ(z), ν2(z) = ν1(z) =
ν(z), and, accordingly, 
2 = 
1 ≡ 
. Then, from Eq. (2) one
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FIG. 1. Quadratures of the noise from the output of the film as
a function of the phase angle ϕ. Red line: expectation value for
fluctuations of the X quadrature (

√
〈0|X 2|0〉). Blue line: one for the

Y quadrature (
√

〈0|Y 2|0〉). Green line: the sum of the expectation
values (

√
〈0|X 2 + Y 2|0〉).

finds that the phase angle dependence of the fluctuations is
given by

√
〈0|X,Y |0〉 =

√
const1 ± const2 cos [
(ϕ)] (6)

[where 
(ϕ) is given by Eq. (5)], and the fluctuations mini-
mize for one quadrature and simultaneously maximize for the
other one for 
 = πn. As a result, the ratio 〈0|X |0〉/〈0|Y |0〉
is not equal to one. Thus, the noise becomes squeezed. The
same behavior is seen in Fig. 1, although losses are present in
our model. Physically, the periodic dependence of the quadra-
ture fluctuations [Eq. (6) and Fig. 1]) takes place because
one quadrature of the input vacuum noise is deamplified in
some 180°-wide range of the phase angle ϕ. This leads to
suppression of the respective output noise quadrature. For the
remainder of the phase angles, fluctuations of this quadrature
are amplified. The amplification/deamplification is due to the
phase synchronism of the three involved waves [see Eqs. (5)
and (6)]. This demonstrates the central role of 
(ϕ), Eq. (5),
in the formation of the parametrically squeezed quantum
states.

Now recall that Eqs. (2) have the same form for both
creation-annihilation operators for magnons and classical SW
amplitudes. This implies that if a small-signal classical wave
is launched into the medium, the quadratures of the output
signal will be functions of ϕ of the same form Eqs. (5),
(6). This is confirmed by our simulations and will be shown
analytically closer to the end of the Rapid Communication.
Therefore, observation of a dependence of the same shape as
in Fig. 1, for the quadratures of the output classical signal
of IMI should represent an experimental evidence that the
parametrically amplified/deamplified magnon quantum states
are likely to be squeezed.

Quantum-optical experiments can be carried out at room
temperature, because of the high energies of optical photons.
This is not true for MW magnons—to exclude the effect of
thermal noise, experiments with YIG have to be carried at
millikelvin temperatures [33–36]. However, a study of IMI of
classical SWs can be carried out at 300 K.

To observe IMI, we use a MW circuit, shown in Fig. 2.
Its main parts are a 5.7-μm-thick YIG film grown with the
liquid-phase epitaxy on top of a gadolinium gallium garnet

FIG. 2. Diagram of the experimental setup. SG1 and SG2 are
MW generators generating signals at ω0 and ω0 + �, respectively,
YIG is the YIG film, ϕ is a variable phase shifter, and L|R|I is a mi-
crowave balanced mixer (“L”, “R,” and “I” denote its local-oscillator,
radio-frequency, and intermediate-frequency ports, respectively). SA
is a spectrum analyzer, and PC is a power combiner.

(GGG) substrate and a MW balanced mixer. The distance
of SW propagation in the film is 3.8 mm. The film is mag-
netized perpendicular to its plane by a field of 4338 Oe.
The ferromagnetic resonance linewidth for the film measured
with the method from [37] is 0.4 Oe. This translates into
γ = 7.0 × 106 cm/s mentioned above.

A small-amplitude signal, of frequency 7915 MHz and
power of +5 dBm, is applied to one input port of the power
combiner (PC) from the MW generator SG2 (Fig. 2). The
pump signal is fed into the second PC port from SG1. It
has a frequency of 7889 MHz and power of +25 dBm. The
generators are phase locked. Thus, at the film input (z = 0),
we have a combination of a weak signal wave (S), with c1 and
at ω0 + � = 7915 MHz, and an intense pump wave (P), with
c0 and at ω0 = 7889 MHz ([c0(z = 0) � c1(z = 0)]. Spectra
of those signals are shown in Fig. 3(a).

A variable phase shifter controls the phase shift ϕ between
P and the signal fed into the local-oscillator port (L) of the
mixer. The mixer-based receiver part of the circuit represents
a MW analog of the optical homodyne detector widely used in
quantum optics to observe the quadratures of single photons
[11]. Therefore, it is able to register the quadratures of the
output signal of the film. The measurements show that the
signal from the intermediate-frequency port (I) of the mixer
has two frequency components: a dc one (not shown) and one
at � (26 MHz) [Fig. 3(b)]. We register the ϕ dependence of
the amplitude of the component at � with a MW spectrum
analyzer. The measurement yields the dependence shown in
Fig. 3(c). The displayed quantity actually is one quadrature of
the output signal of the film. The plot has the same shape as
the one from Fig. 1. This is the main experimental finding of
this work.

The physics behind the shape of the plot from Fig. 3(c) is as
follows. Four-magnon parametric coupling of S to P generates
an idler wave (I) at ω0 − � = 7863 MHz and with an ampli-
tude c2. Visualizing the frequency spectrum of the film output
signal [Fig. 3(a)] with a MW spectrum analyzer confirms the
presence of I. We expect I to be phase locked to S. Because
SG1 and SG2 (Fig. 2) are also phase locked, the phase locking
of S to I results in deterministic beat of the two linear harmonic
signals at the film output. The form of the beat signal is
given by Eqs. (2) and (3) written down for z = 3.8 mm and
c2(z = 0) = 0. In our experiment, we adjust the parametric
gain (by carefully choosing the pump power and monitoring
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FIG. 3. (a) Blue line: transmission characteristic of the sample
taken in the linear regime with a microwave network analyzer. Green
line: spectrum of the output signal registered with a microwave
spectrum analyzer. From the left to the right, the spectral lines are
I, P, and S. (b) Frequency spectrum of the mixer output registered
with the spectrum analyzer. (c) Dots and solid line: measured ϕ-angle
dependence of the output of the balanced mixer at the frequency �

(26 MHz). Dashed line: fit with the right-hand side of Eq. (6).

the film output spectrum with the spectrum analyzer) such
that |c1(z = 3.8 mm)| = |c2(z = 3.8 mm)| [Fig. 3(a)]. This
implies that |μ1(z = 3.8 mm)| = |ν2(z = 3.8 mm)|. Accord-
ingly, the amplitude of the �-frequency output of the mixer is
given by X = X0(�) cos(�t + ϒ), where X0(�) = 2|c1(z =
0)||μ1||cos(�/2)|, � = 
2 from Eq. (5), ϒ = [arg(μ1) −
arg(ν2)]/2 − κ3.8 mm + arg[c1(z = 0)], arg[c1(z = 0)] is
the initial phase of the pump wave with respect to the ini-
tial phase of S, and all quantities are taken at z = 3.8 mm.
The Y quadrature is obtained by replacing |cos(�/2)| with
|sin(�/2)| in the formula for X.

One sees that the signal from port I of the mixer is a sine
wave of frequency �, which is the frequency of the beat
of S and I. The amplitude of the beat may be recast in the
form as follows: X0(�) = 2|c1(z = 0)||μ1|

√
[cos(�) + 1]/2.

Thus, X0(�) scales as
√

const1 cos(�) + const2. Given that
� = 
2 [Eq. (5)], this is the same as the right-hand side of
Eq. (6). The IMI signal quadratures are characterized by the
same ϕ dependence as the magnon quantum noise quadra-
tures. This is the sought connection between the formation
of a parametrically squeezed magnon state and the phase
dependencies for the classical waves involved in the IMI
process. The dashed line in Fig. 3(c) represents the fit of the
experimental data with the right-hand side of Eq. (6). One sees
that the data are well fitted by this function.

In conclusion, we showed theoretically and confirmed ex-
perimentally that magnons in YIG films are good candidates
for the generation of parametrically squeezed states at MW
frequencies. The process of nonlinear four-particle interaction
can be employed to this end. A classical signature of the
medium’s capability to form the squeezed states is IMI of
the respective classical waves. We observed IMI of SWs in a
YIG film experimentally and measured quadratures of the beat
of the signal and idler waves using an original experimental
configuration. This measurement delivered strong evidence
that the quantum magnon states would be squeezed if the
experiment were conducted in the single-magnon regime and
at cryogenic temperatures. It paves the way for the future low-
temperature quantum-regime experiments and suggests the
same mixer-based setup (Fig. 2) as the most appropriate tool
for observing squeezing of the magnon quantum noise [38].
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