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We analyze the Andreev spectrum in a four-terminal Josephson junction between one-dimensional topological
superconductors in class D. We find that a topologically protected crossing in the space of three superconducting
phase differences can occur between the two lowest Andreev bound states. This crossing can be detected through
the transconductance quantization, in units of 2e2/h, between two voltage-biased terminals. As the crossing
occurs away from the Fermi level, our prediction of a quantized response is specific to the nonequilibrium
conditions set by the voltage drive. Therefore, it provides an example of a topological signature that cannot
be ascribed to a ground-state property. We discuss possible realizations of such junctions with semiconducting
crossed nanowires and with quantum-spin Hall insulators.
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I. INTRODUCTION

It was long realized that an arbitrary Hamiltonian paramet-
rically controlled by three parameters admits for topologically
protected crossings in its energy spectrum [1]. In the vicinity
of a crossing, the Hamiltonian in this three-parameter space
takes the same form as the one introduced by Hermann Weyl
in 1929 to describe relativistic massless particles in three
dimensions. The crossings are now called Weyl points. This
finding, as well as its generalization to physical systems
protected by additional symmetries, was important for the pre-
diction of topological properties in various areas of condensed
matter, optical, or mechanical physics.

In a recent work [2], it was predicted that such Weyl
crossings appear at zero energy in the Andreev spectrum of
four-terminal Josephson junctions made with conventional
s-wave superconductors connected through a common normal
scattering region. In that case, the three parameters are three
superconducting phase differences between the four leads.
Due to spin-rotation symmetry, such crossings are the only al-
lowed states at zero energy. At the “Andreev-Weyl” crossings,
the Chern number of the ground state in a submanifold of the
phase space characterized by two phase differences changes.
In usual Weyl semimetals, this change of the Chern number at
the position of the Weyl points is associated with the appear-
ance of “Fermi arc” surface states [3]. Dimensional reduction
to two dimensions then leads to the appearance of a quantum
Hall effect. As a consequence, the Andreev-Weyl crossings
manifest themselves through a quantized transconductance, in
units of 4e2/h, between two voltage-biased terminals [2,4].
This prediction was subsequently extended to junctions with
three terminals in an external magnetic field [5,6].

On the other hand, Andreev-Weyl crossings have been
shown to shift away from zero energy, if spin-rotation symme-
try is broken due to, e.g., spin-orbit coupling [7]. As long as
the shift is small, the lowest energy state will cross the Fermi
level on a surface surrounding the Weyl point in the space
of the three phases. The prediction for the transconductance
quantization away from the Weyl points remains valid. On the

other hand, spin-orbit coupling may lead to the appearance
of topological superconductivity with Majorana edge states
[8–10]. Possible realizations using semiconductor nanowires
[11,12] are studied extensively. Four-terminal junctions based
on the same kind of materials have already been realized,
and one may wonder whether they might have similar prop-
erties to those described above. In this paper we show that
indeed they do, but with a significant twist compared to the
previously studied case. The lowest Andreev state in such
junctions depends 4π periodically [9] on the superconduct-
ing phase differences, which is a hallmark of the Majorana
physics. As such it crosses the Fermi level along surfaces in
the three-parameter phase space of a four-terminal junction.
However, it can have finite-energy Weyl crossings with the
next Andreev level, which is—by contrast—2π periodic. We
find that these Majorana-Weyl crossings occur with a large
probability in specific models. In the presence of such cross-
ings, the 2π -periodic state acquires a finite Chern number. As
before, a finite Chern number is associated with a quantized
transconductance, but now in units of 2e2/h due to the lifted
spin degeneracy. Furthermore, due to the presence of the
4π -periodic state, the system does not possess a gap at the
Fermi level such that any applied voltage will drive the system
out of equilibrium. Such nonequilibrium conditions are in
fact necessary to observe the conductance quantization, which
distinguishes this system from previous setups.

II. TUNNEL JUNCTION

The physics can be most easily understood in the case of a
tunnel junction made of four weakly coupled one-dimensional
spinless p-wave superconductors [9], corresponding to class
D in the classification of topological insulators and supercon-
ductors [13], as illustrated in Fig. 1. In that case, the effective
low-energy Hamiltonian can be written in terms of the four
Majorana end modes at the junction. It takes the form

H = i

2

∑
1�a<b�4

ξabγaγb, (1)
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FIG. 1. Four-terminal junction formed of one-dimensional topo-
logical superconducting leads (blue lines) accommodating Majorana
zero modes γi at their extremities (red stars), and in the presence of
a weak tunnel coupling between any pair of leads (dashed lines).

with

ξab = |tab| sin

(
χa − χb

2
− φab

)
. (2)

Here γa is a Majorana operator (such that γ 2
a = 1), which de-

scribes the Majorana zero mode at the end of superconductor
a, with superconducting phase χa [14], when it is decoupled
from the others. (Without loss of generality we set χ4 = 0
below.) Furthermore, tab = |tab|eiφab are proportional to the
tunneling matrix elements for electrons between leads a and
b. Note that Hermiticity of the tunnel Hamiltonian requires
tba = t∗

ab. The Hamiltonian (1) accounts for all (bound) states
in an energy bandwidth � �, where � is the superconducting
gap, provided that the transmission probabilities between the
leads are small.

Next, we introduce fermion operators c+ = (γ1 + iγ2)/2
and c− = (γ3 + iγ4)/2. Then Hamiltonian (1) reads
H = 1

2C†HC, where C = (c+, c−, c†
−,−c†

+)T is an
annihilation/creation operator in particle/hole space and

H = S · σ + T · τ (3)

is a Bogoliubov–de Gennes (BdG) Hamiltonian. Here σ =
(σx, σy, σz ) and τ = (τx, τy, τz ) are vectors of Pauli matrices
in (c+, c−) space and (c, c†) space, respectively, and

S = (ξ14 − ξ23,−ξ13 − ξ24, ξ12 − ξ34), (4a)

T = (−ξ14 − ξ23,−ξ13 + ξ24, ξ12 + ξ34). (4b)

Hamiltonian (3), which is the sum of two Weyl Hamiltonians,
admits for four eigenstates with pairwise opposite energies
Eστ = σ (|S| + τ |T |) with σ, τ = ±. We readily check with
Eqs. (2) and (4) that Eσ+ and Eσ− depend 2π and 4π

periodically on the phase differences, respectively. Namely,
Eσ±(χ1 + 2π, χ2, χ3) = ±Eσ±(χ1, χ2, χ3) and similar rela-
tions with the other phases [16]. This is expected as |σ+〉 is
a conventional Andreev bound state whose energy remains
away from the Fermi level at all phases, while |σ−〉 is a
Majorana-Andreev bound state that crosses the Fermi level as
any of the phases are varied.

More interestingly for our purpose, the states |σ+〉 and
|σ−〉 cross each other when T = 0. On the other hand, at
S = 0, the crossing is between the states |σ+〉 and |σ̄−〉,
where σ̄ = −σ . Each such Majorana-Weyl crossing is de-
termined by three scalar equations. Therefore they generally
occur at isolated points in the three-dimensional space of

(a) (b)

(c) (d)

FIG. 2. Phase dependence of (a)–(c) the Andreev spectrum and
(d) the Chern number in a symmetric four-terminal tunnel junction
with t ′/t = 0.2 and φ = 4π/3.

phase differences. In the specific case where all φab = 0, all
Weyl points coalesce at zero energy and phases (χ1, χ2, χ3) =
(0, 0, 0) mod 2π . But, in general, the Weyl points do not coin-
cide and occur at finite energy. Due to particle-hole symmetry,
the Weyl crossings at a given value of the phases (χ∗

1 , χ∗
2 , χ∗

3 )
occurring at energies ±E∗ carry the same topological charge.
Furthermore, 2π -phase translations [16] bring another set of
two Weyl points with the same charge. Thus, eight pairs
of Weyl points at opposite energies with the same topo-
logical charges appear in the region 0 < χ1, χ2, χ3 < 4π at
phases (χ∗

1 + 2πn1, χ
∗
2 + 2πn2, χ

∗
3 + 2πn3) with ni = 0, 1.

The fermion doubling theorem [17] ensures that eight other
pairs of Weyl points with the opposite topological charges
must exist in the same region of phases.

We show typical spectra in Fig. 2 for a symmetric junc-
tion with taa±1 = te±iφ/4 and taa±2 = t ′ with t, t ′, φ real. The
Weyl crossings at T = 0 and S = 0 take place at phases
(φ/2, 0, φ/2) and (−φ/2, 0,−φ/2) mod 2π , as illustrated in
Figs. 2(a) and 2(c), respectively.

Weyl points are monopoles for Berry curvature. Fixing the
phase χ1, we define the Berry curvatures

Bστ (χ1; χ2, χ3) = −2 Im{(∂χ2〈στ |)∂χ3 |στ 〉} (5)

in the (χ2, χ3) plane of the two remaining phase differences
for each state |στ 〉. Integration over the region 0 < χ2, χ3 <

4π then yields the (quantized) first Chern numbers,

Cστ (χ1) = 1

8π

∫ 4π

0
dχ2

∫ 4π

0
dχ3 Bστ (χ1; χ2, χ3). (6)

Possible values are constrained by symmetry considera-
tions. Namely, particle-hole symmetry imposes C+τ (χ1) =
−C−τ (χ1). Moreover, while the states |σ+〉 are 2π periodic,
shifting one of the phases by 2π exchanges the states | + −〉
and | − −〉. Therefore, the latter two states carry the same
Chern number. Together with particle-hole symmetry, this
imposes Cσ−(χ1) = 0.

As the phase χ1 is varied across the Weyl point at χ∗
1 ,

Cσ+(χ1) changes by −σQ∗, where Q∗ is the topological
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charge of the Weyl point, see Fig. 2(d) for an illustration.
The fact that Cσ−(χ1) remains zero can be understood from
the observation that the states |σ−〉 participate in two Weyl
crossings (with the state | − +〉) as the higher energy state
and in two other Weyl crossings (with the state | + +〉) as the
lower energy state, such that the different contributions to the
Berry curvature cancel each other.

We are now in a position to compute the currents through
the junction. As the BdG formalism describing superconduct-
ing heterostructures introduces a double counting of states,
only two of the four states are physical. We choose to keep
the states σ = +. According to Ref. [2], in a multiterminal
Josephson junction, the Andreev states’ Berry curvatures de-
termine a nonadiabatic correction to the Josephson currents
flowing through two voltage-biased terminals. In particular,

I2,3(t ) = e
∑

τ

[
1

h̄

∂E+τ

∂χ2,3
∓ τ χ̇3,2B+τ (χ1; χ2, χ3)

]
hτ (t ), (7)

where χ̇2,3 = 2eV2,3/h̄ with DC voltage biases V2 and
V3 in terminals 2 and 3, and we used B+τ (χ1; χ3, χ2) =
−B+τ (χ1; χ2, χ3). Furthermore, hτ = 2nτ − 1 describes the
(time-dependent) occupations nτ of the states | + τ 〉. Details
on the derivation of Eq. (7) can be found in the Appendix.

At fixed occupation of the states, we find that the time-
averaged currents are given as

Ī2,3 = ∓2e2

h
V3,2C++(χ1)h+. (8)

Since the Chern number of the state | + −〉 is always zero, see
discussion below Eq. (6), only the state | + +〉 contributes to
the result. As the state | + +〉 lies above the Fermi level, we
may assume n+ = 0 to obtain the quantized transconductance

G23 ≡ Ī2

V3
= 2e2

h
C++(χ1), G32 ≡ Ī3

V2
= −G23. (9)

Equation (9) is our main result. While it resembles the pre-
dicted transconductance quantization in nontopological four-
terminal junctions (taken apart the modified unit of transcon-
ductance quantization due to the lifted spin degeneracy), there
are important differences. Indeed, the Andreev-Weyl cross-
ings at the Fermi level discussed in Ref. [2] are similar to the
Weyl points involving two bands of a semimetal. Furthermore,
choosing one phase as a control parameter, the Chern number
of the ground state in the two-dimensional subspace of the re-
maining phases changes by ±1 when crossing the Weyl point.
Thus, the resulting quantized transconductance predicted in
Ref. [2] is similar to the quantum Hall effect inasmuch as the
ground state of the system acquires a finite Chern number.

By contrast, the Majorana-Weyl crossings involve four
states with the result that Berry curvature gets transferred
from an Andreev state at negative energy to an Andreev state
at positive energy via the Majorana states. That is, while
the 4π -periodic state | + −〉 does not carry a Chern number
itself, it is essential in providing a finite Chern number to the
2π -periodic state | + +〉. Furthermore, due to the presence of
the 4π -periodic state | + −〉, the Andreev spectrum does not
have a gap at the Fermi level.

Consequently the quantized transconductance is not
a ground-state property. Such an out-of-equilibrium

conductance quantization, to the best of our knowledge,
has not been discussed in the literature. As other proposed
signatures of Majorana states in two-terminal junctions
[18], the transconductance quantization can be observed
in a fixed parity sector, i.e., when the occupation of the
4π -periodic state is fixed. In particular, the observation of
conductance quantization requires that the system does not
relax to its equilibrium occupation. Interestingly, as the
result does not depend on the occupation n− of the state
| + −〉, the conductance quantization can be observed as
well when parity switches are frequent, but random. In that
case, the random switching averages out the local Berry
curvature of the 4π -periodic state. By contrast, equilibrium
corresponds to a systematic switch of the occupation of the
4π -periodic state at specific values of the phase, where this
state crosses the Fermi level. Then, the local Berry curvature
of the 4π -periodic state will compensate for the contribution
of the 2π -periodic state and, thus, destroy the predicted
transconductance quantization.

III. ARBITRARY JUNCTION

Our result is not restricted to tunnel junctions. In general,
we may use the formalism of Ref. [19] to find that the Andreev
spectrum is determined by

det[1 + a2(E )S(E )eiχ S∗(−E )e−iχ ] = 0. (10)

Here S(E ) is the 4 × 4 scattering (or S) matrix for
electrons with energy E between the four one-dimensional
leads, S∗(−E ) is the corresponding S matrix for holes,
χ is a diagonal matrix whose diagonal elements
(χ1, χ2, χ3, χ4=0) are the superconducting phases, and
a(E ) = E/� − i

√
1 − (E/�)2 is the Andreev reflection

amplitude. The important difference between Eq. (10) and
a similar one used in [2] is the reversed sign in front of the
second term in the determinant. It originates from the π -phase
shift in the Andreev reflection processes between electrons
and holes incident upon a p-wave superconductor.

As it was noticed in Ref. [7], a2(E ) = −a2(
√

�2 − E2).
Therefore, the solutions of Eq. (10) near the gap edge can
be related with those found in [2] near the Fermi level,
and vice versa. In particular, in the short-junction limit in
which the energy dependence of the normal S matrix (on the
scale of Thouless energy ET 
 �) can be neglected, S(E ) ≈
S(0)≡ S, we readily find that (i) the state | + +〉 has finite
probability [20,21] to merge with the continuum spectrum at
isolated points in the phase space (the equivalents of Andreev-
Weyl crossings at zero energy found in [2]), (ii) state | + −〉
crosses the Fermi level along surfaces in the phase space
(the equivalent of states merging with the continuum at the
gap edge in the Supplementary Information of Ref. [2]), and
(iii) the four Andreev states cross each other at zero energy
and phases χ1 = χ2 = χ3 = 0 in the time-reversal symmetric
case S = ST . In the latter case, two Weyl crossings with
opposite charges are superposed and C++(χ1) = 0 at any χ1.

The possibility of Weyl crossings at finite energy was also
mentioned in the Supplementary Information of Ref. [2], in
which context they were playing no role in the transconduc-
tance quantization. We can characterize their occurrence using
random matrix theory [20], namely by drawing scattering
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(a) (b)

FIG. 3. Histogram of (a) the energies and (b) energy difference
(both in absolute value) of two Majorana-Weyl crossings in 5 000
short, four-terminal Josephson junctions through a normal region
described by a scattering matrix drawn out of the circular unitary
ensemble (no time-reversal symmetry).

matrices from the circular unitary ensemble to describe sys-
tems without time-reversal symmetry. We find that the total
probability to realize Majorana-Weyl crossings is 82%. The
probability density for them to occur at a given energy is
shown in Fig. 3. (There are 30% matrices with both Majorana-
Weyl and gap-edge touchings in their Andreev spectrum.) We
can show that symmetric scattering matrices, where Sii+n =
sn, as well as scattering matrices describing systems with
time-reversal invariance, S = ST , always lead to crossings,
and that these crossings are robust with respect to a weak
breaking of the symmetries.

Note that the tunnel case discussed earlier can be recast
within the scattering formalism, where it corresponds to a
normal state scattering matrix

S = (1 − iπνT )−1(1 + iπνT ), (11)

where T is the matrix of tunnel hopping elements between
the leads and ν is the normal density of states. Indeed, using
T = T † with |Tab| � ν−1 and a(E ) ≈ E/� − i at |E | � �,
we may recast Eq. (10) as a Hamiltonian equation

Eψa = 2iπν�
∑

b

|Tab| sin

(
χa − χb

2
− φab

)
ψb, (12)

with Tab = |Tab|eiφab . The corresponding Hamiltonian is
equivalent to Eq. (1) provided one identifies |tab| = 1

2

√
Tab�,

where Tab = 4π2ν2|Tab|2 � 1 is the transmission probability
between leads a and b.

IV. EXPERIMENTAL REALIZATIONS

The model studied above is applicable to junctions made
with crossed nanowires like in Refs. [22,23], if the topological
regime with isolated Majorana zero modes at their edges can
be reached (see Ref. [24] for a recent review). With the help
of a back gate, which will modify the configuration of the
disorder potential as the gate voltage is varied, a range of
normal-state scattering matrices can be explored. For junc-
tions realized with not-so-long nanowires, the hybridization
of Majorana zero modes between both ends of the nanowire
will lead to the opening of small energy gaps around the

Fermi level in the Andreev spectrum. The transconductance
remains topologically quantized, if these gaps are crossed di-
abatically, which sets a lower bound on the required amplitude
of the voltage biases. Alternatively, a four-terminal Josephson
junction can be realized by depositing superconductors on
the edges of a quantum point contact made with a quantum
spin-Hall insulator. In the presence of time-reversal symmetry,
backscattering within a single edge is forbidden. In that case,
we find that the 2π - and 4π -periodic Andreev states become
degenerate along lines in the space of phases rather than
at isolated points. If time-reversal symmetry is broken, we
recover the results for the crossed nanowires discussed before.

V. CONCLUSIONS

In this work we unveiled a topological property of the
Andreev spectrum in multiterminal junctions between topo-
logical superconductors. Namely, we predicted that finite-
energy Weyl crossings between 2π - and 4π -periodic Andreev
states may result in a quantized transconductance in units
of 2e2/h between two voltage-bias leads. We anticipate the
conditions for the robustness of this prediction in the presence
of nonadiabatic effects will be different from the case of
conventional superconductors [4]. Furthermore, it would be
interesting to understand whether the result found in this
work can be analyzed within the general classification of
topological insulators and superconductors [13,25].
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APPENDIX: DERIVATION OF THE CURRENT FORMULA

Below we derive Eq. (7) in the main text for the nonadi-
abatic correction to the Josephson currents flowing in a mul-
titerminal junction between spinless p-wave superconducting
leads in the presence of a voltage bias.

1. Without voltage bias, the (second-quantized) Hamilto-
nian describing a multiterminal junction with spinless p-wave
superconducting leads attached through a normal scattering
region can be put in the form

H = 1
2†H. (A1)

Here H is a BdG (first-quantized) Hamiltonian and the elec-
tron annihilation and creation operators are gathered in a
Nambu annihilation operator

 =
(

c
c†

)
. (A2)

The BdG Hamiltonian defines an eigenproblem,

H
(

un

vn

)
= εn

(
un

vn

)
, (A3)

with the normalization condition∫
dx[un(x)u∗

m(x) + vn(x)v∗
m(x)] = δnm (A4)
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or, equivalently,∑
n

un(x)u∗
n(y) =

∑
n

vn(x)v∗
n (y) = δ(x − y)

and
∑

n

un(x)v∗
n (y) = 0. (A5)

The solutions possess particle-hole symmetry. Indeed, if
εn is an eigenenergy associated with an eigenvector �n =
(un, vn)T , then −εn is another eigenenergy associated with the
eigenvector �̃n = (v∗

n , u∗
n )T . Using these solutions and

 =
∑

n

′
[(

un

vn

)
γn +

(
v∗

n
u∗

n

)
γ †

n

]
, (A6)

where the prime indicates that the sum is restricted to only one
of the two particle-hole symmetric states, we can diagonalize
the Hamiltonian as

H =
∑

n

′
εnγ

†
n γn. (A7)

The restricted sum is necessary to ensure Fermi commutation
relations for the operators γn [26]. Note that it does not matter
whether the state with εn > 0 or εn < 0 is retained in the sum.
However, for later convenience, we will retain a state whose
wave function depends continuously on the superconducting
phases.

2. We may similarly express the current operator in lead k,

Ik = 1
2†Ik, (A8)

where Ik = (2e/h̄)∂H/∂χk and χk is the (fixed) supercon-
ducting phase in lead k. Inserting Eq. (A6) into (A8) and
defining occupations fn = 〈γ †

n γn〉, we get for the current
expectation value

〈Ik〉 = e

h̄

∑
n

′
[

fn

∫
�†

n

∂H
∂χk

�n + (1 − fn)
∫

�̃†
n

∂H
∂χk

�̃n

]
.

(A9)
[Note that we use notation

∫
φ ≡ ∫

dx φ(x).]
3. Following [27], we now look for an adiabatic expansion

of the solution of the BdG Hamiltonian in the presence of

slowly time-varying phases χk (t ),

H[χ(t )]� = ih̄
∂

∂t
�, (A10)

in the form �(t ) = ∑
n cn(t )�n[χ(t )] with χ(t ) = {χk (t )}.

Note that there is no prime in the sum as we expand � in
the complete basis of adiabatic solutions of Eq. (A3) at each
set of phases χ. Then, Eq. (A10) reads equivalently

ih̄ċn − εncn = −ih̄
∑
mk

χ̇kcm

(∫
�†

n

∂�m

∂χk

)
. (A11)

Taking the initial condition cp(t = 0) = δpn to determine the
adiabatic expansion for the state �(n), we find that Eq. (A11)
yields in leading order

ih̄ċn −
[
εn − ih̄

∑
k

χ̇k

(∫
�†

n

∂�n

∂χk

)]
cn = 0. (A12)

The solution is given as c(t ) = exp[iθ (t )] with

θ (t ) = −1

h̄

∫ t

0
ds εn[χ(s)] +

∑
k

∫ χ (t )

χ (0)
dχk An,k[χ(s)],

(A13)
where An,k = i

∫
�†

n(∂�n/∂χk ) is the (real) Berry connec-
tion.

In the next order, the (small) coefficients cm �=n(t ) satisfy the
equation

ih̄ċm − εmcm = −ih̄
∑

k

χ̇k

(∫
�†

m

∂�n

∂χk

)
eiθ (t ). (A14)

Neglecting the small Berry connection contributions, the so-
lution reads

cm ≈ − ih̄

εn − εm

∑
k

χ̇k

(∫
�†

m

∂�n

∂χk

)
eiθ (t ). (A15)

Combining these results, we obtain the eigenvectors �(n)(t ) in
leading order in χ̇k:

�(n)(t ) = eiθ (t )

⎡
⎣�n[χ(t )] − ih̄

∑
k

χ̇k

∑
m �=n

1

εn[χ(t )] − εm[χ(t )]

(∫
�†

m

∂�n

∂χk

)
�m[χ(t )]

⎤
⎦. (A16)

4. The instantaneous current is obtained by replacing �n with �(n) in Eq. (A9). Using Eq. (A16) and standard properties of
eigenstates, we evaluate

∫
�(n)† ∂H

∂χk
�(n) =

∫
�†

n

∂H
∂χk

�n (A17)

− ih̄
∑

l

χ̇l

∑
m �=n

1

εn − εm

[(∫
�†

n

∂H
∂χk

�m

)(∫
�†

m

∂�n

∂χl

)
−

(∫
�†

m

∂H
∂χk

�n

)(∫
∂�†

n

∂χl
�m

)]

= ∂εn

∂χk
+ 2h̄ Im

∑
l

χ̇l

∑
m �=n

1

εn − εm

(∫
�†

n

∂H
∂χk

�m

)(∫
�†

m

∂�n

∂χl

)
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= ∂εn

∂χk
+ 2h̄

∑
l

χ̇l Im
∑
m �=n

(∫
∂�†

n

∂χk
�m

)(∫
�†

m

∂�n

∂χl

)

= ∂εn

∂χk
+ 2h̄

∑
l

χ̇l Im

(∫
∂�†

n

∂χk

∂�n

∂χl

)
= ∂εn[χ(t )]

∂χk
− h̄

∑
l

χ̇lBn,kl [χ(t )], (A18)

where Bn,kl = ∂kAn,l − ∂lAn,k is the Berry curvature of level n, up to first order in χ̇.
We readily check that the corresponding expression for the particle-hole conjugated states has the opposite sign,∫

�̃(n)†(∂H/∂χk )�̃(n) = − ∫
�(n)†(∂H/∂χk )�(n). Then, the average current in lead k is given as

〈Ik〉 =
∑

n

′
(

1

2
− fn

)[
−2e

h̄

∂εn

∂χk
+ 2e

∑
l

χ̇lBn,kl

]
. (A19)

This result is identical to the one derived in Ref. [2] for multiterminal junctions with conventional superconducting leads. In the
latter case, a summation over spins yields the additional factor 2 in the unit of conductance quantization.
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