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Temperature-dependent anisotropies of upper critical field and London penetration depth
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We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order
parameters that anisotropies γH of the upper critical field and γλ of the London penetration depth depend on
temperature, a feature commonly attributed to multiband superconductors. The parameters γH and γλ may have
opposite temperature dependences or may change in the same direction depending on the Fermi-surface shape
and on the character of the gap nodes. For two-band systems, the behavior of anisotropies is affected by the
ratios of bands densities of states, Fermi velocities, anisotropies, and order parameters. We investigate in detail
the conditions determining the directions of temperature dependences of the two anisotropy factors.
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I. INTRODUCTION

In many superconductors anisotropy parameters of the
upper critical field, γH = Hc2,ab/Hc2,c, and of the London
penetration depth, γλ = λc/λab, are not equal. Moreover, they
may have different temperature dependences. In conventional
one-band s-wave materials, these parameters for a long time
were considered the same and T independent. MgB2 is a
good example of the current situation: γH (T ) decreases on
warming, whereas γλ increases [1–5]. To date, the T depen-
dence of the anisotropy parameters is considered by many
as caused by a multiband character of materials in question
with the common reference to MgB2. In this work we develop
an approximate method to evaluate γ (T ) that can be applied
with minor modifications to various situations of different
order-parameter symmetries and Fermi surfaces, two bands
included. In particular, we show that even in the one-band
case γ ’s and their T dependences may differ if the Fermi
surface is not a sphere or the order parameter � is not pure
s wave. Our conclusions challenge the common belief that
temperature dependence of γ is always related to multiband
topology of Fermi surfaces.

We focus on the clean limit for two major reasons. Com-
monly after discovery of a new superconductor, an effort is
made to obtain as clean single crystals as possible since those
provide a better chance to study the underlying physics. A
proper description of scattering in the multiband case would
have led to a multitude of scattering parameters which can-
not be easily controlled or separately measured. Besides, in
general, the scattering suppresses the anisotropy of Hc2, the
central quantity of interest in this work.

To begin, it is worth recalling that the problem of
the second-order phase transition at the upper critical field
Hc2(T ) has little in common with the problem of a weak field
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penetration into superconductors, thus a priori one should
not expect γH = γλ. Still, at the critical temperature Tc the
Ginzburg-Landau (GL) theory requires γH (Tc) = γλ(Tc) be-
cause both are described in terms of the same mass tensor.

At Hc2(T ), the order parameter �(r, T, kF ) =
�(r, T ) �(kF ) → 0, and Eilenberger equations for weak
coupling superconductors can be linearized. The factor
�(kF ) here describes the kF dependence of � and is
normalized so that the average over the full Fermi surface
〈�2〉 = 1. At the second-order phase transition at Hc2, the
basic self-consistency equation of the theory can be written
as [6]

� ln
T

Tc
=
∫ ∞

0
dρ ln tanh

πT ρ

h̄
〈�2v� e−ρv·��〉. (1)

Here, v is the Fermi velocity, �=∇ + 2π iA/φ0, A is the
vector potential, and φ0 is the flux quantum. In comparison
to the traditional form of this equation involving sums over
the Matsubara frequencies, this form contains only integrals
relatively easy to deal with.

Typically, the temperature dependences of the anisotropy
factors are monotonic. Therefore, to determine the direction
of these dependences, it is sufficient to evaluate anisotropy
values at the transition temperature and at T =0.

A. γH and γλ at T c

In this domain, the gradients 
 ∼ ξ−1 → 0 (ξ is the order
of magnitude of the coherence length), and one can keep in the
expansion of exp(−ρv�) in the integrand (1) only the linear
term to obtain

−�δt = 7ζ (3)h̄2

16π2T 2
c

〈�2(v · �)2�〉, δt = 1 − T/Tc. (2)

This is, in fact, the anisotropic version of linearized GL
equation −ξ 2

ik
i
k� = � with [7]

ξ 2
ik = 7ζ (3)h̄2

16π2T 2
c δt

〈�2vivk〉. (3)
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The anisotropy parameter for uniaxial materials then readily
follows:

γ 2
H (Tc) =

(
Hc2,a

Hc2,c

)2

= ξ 2
aa

ξ 2
cc

=
〈
�2v2

a

〉
〈
�2v2

c

〉 . (4)

As mentioned above, the anisotropy of the London penetration
depth γλ at Tc is the same as that of Hc2:

γ 2
λ (Tc) = λ2

c

λ2
ab

= γ 2
H (Tc) =

〈
�2v2

a

〉
〈
�2v2

c

〉 . (5)

This can be proven also directly using a general expression
for the tensor λ−2

ik (T ); see, e.g., [8,9]. Since γλ(Tc) always
coincides with γH (Tc), in further considerations we drop the
subscript, i.e., γ (Tc) = γλ(Tc) = γH (Tc).

In the following we adopt a Fermi surface as a spheroid
with the symmetry axis z. The Fermi-surface average of a
function A(θ, φ) is evaluated in Appendix A:

〈A(θ, φ)〉 =
√

ε

4π

∫
A(θ, φ)

�(θ, ε)3/2
sin θdθ dϕ,

� = sin2 θ + ε cos2 θ. (6)

Hear ε is the squared ratio of spheroid axes, θ and ϕ are the
polar and azimuthal angles, respectively.

B. γH and γλ at T = 0

The low-temperature orbital Hc2 determined by Eq. (1) can
be approximately evaluated using variational approach with
the anisotropic lowest Landau-level wave function as a trial;
see Appendix B. This gives the low-temperature anisotropy
factor

γH (0) ≈ γo exp

[
−
〈
�2 ln

(
v2

x + γ 2
o v2

z

v2
x + v2

y

)〉]
, (7)

where the optimal variational parameter γo has to be evaluated
from the equation 〈

�2 v2
x − γ 2

o v2
z

v2
x + γ 2

o v2
z

〉
= 0. (8)

According to Ref. [8], the anisotropy of the penetration
depth at T = 0 in the clean case is given by

γ 2
λ (0) =

〈
v2

x

〉
〈
v2

z

〉 . (9)

Neither the gap nor its anisotropy enter this result, i.e., γλ(0)
in the clean case depends only on the shape of the Fermi
surface. The physical reason for this is the Galilean invariance
of the superflow in the absence of scattering: looking at
the superflow in the frame attached to a moving element,
one sees all charged particles taking part in the supercurrent
independently of their energy spectrum, so that the penetration
depth λ(0) depends only on the total carrier density.

II. SINGLE-BAND ANISOTROPIES

A. � = 1, isotropic s wave

We start with the simplest case of a constant gap on a Fermi
spheroid. In this case γ 2

λ = 〈v2
x 〉/〈v2

z 〉 both at T = 0 and Tc.

With the help of Appendix A, we find

〈
v2

x

〉 = v2
ab

√
ε

4π

∫
sin3 θ cos2 ϕ

�5/2
dθ dϕ = v2

ab

3
,

〈
v2

z

〉 = v2
ab

ε5/2

4π

∫
sin θ cos2 θ

�5/2
dθ dϕ = v2

abε

3
. (10)

Thus, γλ = 1/
√

ε and it is T independent. In particular, this
means that γH (Tc) = 1/

√
ε as well. In fact, this is just GL

results: at Tc, γλ = γH = √
mc/mab.

To find γH (0) we note that the trial lowest Landau wave
function with γo = 1/

√
ε is actually exact solution of Eq. (1)

for the in-plane field orientation. In this case Eq. (7) in
spherical coordinates θ, ϕ takes the form

γH (0)= 1√
ε

exp

[
−

√
ε

4π

∫
sin θdθdϕ

�(θ )3/2
ln(cos2 ϕ + ε cot2 θ )

]
.

(11)

One can show that the double integral here vanishes meaning
that γH (0) = 1/

√
ε. Thus, for isotropic s wave, temperature

independent anisotropies are γλ = γH = 1/
√

ε.

B. � = �0 cos 2ϕ, d wave on Fermi spheroid

If the spheroid symmetry axis coincides with z of the dx2−y2

order parameter, the standard normalization gives �2
0 = 2.

Since zero-T anisotropy of λ is independent of the order-
parameter symmetry, we have γλ(0) = 1/

√
ε, the same as for

s wave. This is the case of all examples considered in this
section. At Tc we have

u2
x = 〈�2v2

x

〉 = �2
0v

2
ab

6
, u2

z = 〈�2v2
z

〉 = �2
0v

2
ab

6
ε (12)

and, according to Eq. (5), γλ(Tc) = 1/
√

ε. Hence, λ

anisotropies for s- and d-wave symmetries are the same,
which is somewhat surprising.

The calculation of the low-temperature Hc2 anisotropy
from Eqs. (7) and (8) is more involved. In addition, with de-
creasing temperature the in-plane upper critical field acquires
dependence on the azimuth angle φ0 between the field and
direction of the maximal order parameter. Correspondingly,
the Hc2 anisotropy factor also has such dependence. We will
keep the y axis along the direction of magnetic field, meaning
that the weight function �(ϕ) in the angular averaging has
to be modified as �(ϕ) = −√

2 cos[2(ϕ − ϕ0)]. The angular
averages in Eqs. (7) and (8) can be done analytically. The
results, however, are somewhat cumbersome and presented
in Appendix B 1 a. The computed dependences of γH (0, ϕ0)
on the ellipticity ε are shown in the upper panel of Fig. 1.
The blue dashed curve is γH (0, 0), the blue dotted curve is
γH (0, π/4), and the red solid curve is γ (Tc) = 1/

√
ε. Hence,

γH (0, 0) decreases on warming by 13%, whereas γH (0, π/4)
increases by 10%. We also note that the Hc2 anisotropy at
ϕ0 = π/8 is temperature independent. In the lower panel we
show the angular dependence of the product γH (0, ϕ0)

√
ε

which does not depend of ε. Hence, one expects the in-plane
Hc2 to vary by about 25% being rotated relative to the c crystal
axis leading to the same variation of the γH (0, ϕ0).
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FIG. 1. Upper panel: d-wave anisotropies γ vs ellipticity ε. The
red curve is γ (Tc ) = γλ(0) = 1/

√
ε. The blue curves are γH (0, φ0)

for the in-plane Hc2,y parallel to the direction of the order-parameter
maximum (φ0 = 0) shown as dashed line, and parallel to the nodal
direction (φ0 = π/4) shown as dotted line. The inset illustrates
the behavior of �2 at the Fermi spheroid. Lower panel: angular
dependence γH (0, ϕ0)

√
ε.

C. � = �0 cos θ, an equatorial line node

The equatorial nodal line is a feature for one of realizations
of the p-wave order parameter. Again, at T = 0 one has
γλ(0) = 1/

√
ε. The anisotropy factor at Tc is

γ 2(Tc) =
〈
�2v2

x

〉
〈
�2v2

z

〉 =
∫ 1

0 x2(1 − x2)�−5/2dx

2ε2
∫ 1

0 x4�−5/2dx
, (13)

where x=cos θ and �(x) = 1 − (1 − ε)x2. Integrations here
can be done analytically and the result is presented in
Appendix B 1 b. The computed anisotropy factor at Tc is
plotted as the red solid curve in Fig. 2. We can see that the
shape of order parameter reduces this factor in comparison
with the Fermi-surface anisotropy which is represented by
γλ(0) (blue dashed line). As a consequence, γλ decreases
substantially on warming.

For evaluating γH (0), we need to compute averages in
Eqs. (7) and (8). The normalization constant from the con-
dition �2

0〈cos2 θ〉 = 1 can be found as

�2
0 = (1 − ε)3/2

√
1 − ε − √

ε arcsin
√

1 − ε
(14)

FIG. 2. γ (ε) for the order parameter with equatorial line node.
The red curve is γ (Tc ). The blue dashed curve is γλ(0) = 1/

√
ε. The

blue dotted curve is γH (0).

(for ε < 1); see Appendix B 1 b. The average in Eq. (8) for the
optimal variational anisotropy factor can be reduced to〈
�2 v2

x − γ 2
o v2

z

v2
x + γ 2

o v2
z

〉
= 1 − �2

0

√
ε

∫ 1

0

x2dx

�3/2

2γoεx√
1 − (1 − γ 2

o ε2
)
x2

.

(15)

This integral can be taken analytically leading to a somewhat
cumbersome result which is presented in Appendix B 1 b.
The angular average in Eq. (7) for the zero-temperature Hc2

anisotropy can be reduced to the following integral:〈
�2 ln

(
v2

x + γ 2
o v2

z

v2
x + v2

y

)〉

= 2�2
0

√
ε

∫ 1

0

x2dx

�3/2
ln

γoεx +
√

1 − (1 − γ 2
o ε2
)
x2

2
√

1 − x2
, (16)

which we compute numerically. The resulting dependence of
γH (0) vs ε is shown by the blue dotted curve in Fig. 2. We can
see that it is smaller than γ (Tc) meaning that it is reduced
even stronger with respect to the Fermi-surface anisotropy
1/

√
ε. Thus, γλ decreases on warming whereas γH is slightly

increasing.

D. � = �0 sin θ, two polar point nodes

Two polar point nodes also may be realized in the case
of the p-wave order parameter. Calculations in this case are
similar to the previous one. Similar to Eq. (13), the anisotropy
factor at Tc is

γ 2(Tc) =
∫ 1

0 (1 − x2)2�−5/2dx

2ε2
∫ 1

0 x2(1 − x2)�−5/2dx
. (17)

The analytical result is given in Appendix B 1 c. The com-
puted anisotropy factor at Tc is presented in Fig. 3 by the red
solid curve. We can see that, in contrast to the case of the
equatorial node line, the order-parameter anisotropy enlarges
this factor in comparison with the Fermi-surface anisotropy
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FIG. 3. γ (ε) for the order parameter with polar point nodes. The
red, blue dashed, and blue dotted curve are γ(Tc ), γλ(0) = 1/

√
ε, and

γH (0), respectively.

γλ(0) = 1/
√

ε (blue dashed line). Consequently, γλ increases
on warming.

To compute γH (0), we again have to evaluate averages
in Eqs. (7) and (8). The normalization constant has to be
found from the condition �2

0〈sin2 θ〉 = 1. As 〈sin2 θ〉 = 1 −
〈cos2 θ〉, we can use the result from Appendix B 1 c giving in
the case ε < 1

�2
0 = (1 − ε)3/2

√
ε(−√

ε(1 − ε) + arcsin
√

1 − ε)
. (18)

The average in Eq. (8) for the optimal variational anisotropy
factor now becomes

〈
�2 v2

x − γ 2
o v2

z

v2
x + γ 2

o v2
z

〉

= 1 − �2
0

√
ε

∫ 1

0

(1 − x2)dx

�3/2

2γoεx√
1 − (1 − γ 2

o ε2
)
x2

. (19)

We present the analytic result for this integral in Appe-
ndix B 1 c. The angular average in Eq. (7) for the γH (0) can
be reduced to the integral

〈
�2 ln

(
v2

x + γ 2
o v2

z

v2
x + v2

y

)〉

= 2�2
0

√
ε

∫ 1

0

(1 − x2)dx

�3/2
ln

γoεx +
√

1 − (1 − γ 2
o ε2
)
x2

2
√

1 − x2
,

(20)

which we compute numerically. The calculated dependence of
γH (0) vs ε is shown in Fig. 3 by the blue dotted curve. We can
see that it is larger than γ (Tc) meaning that it is enlarged even
stronger with respect to the Fermi-surface anisotropy 1/

√
ε.

Thus, γλ increases and γH decreases on warming, opposite to
the case of an equatorial node line.

III. TWO s-WAVE BANDS

Many materials have multiple nonequivalent bands with
different superconducting gaps. The most notable examples
are magnesium diboride and iron-based superconductors. The
two-band model is the simplest model addressing this situa-
tion allowing for qualitative understanding of multiple-band
effects. The iron-based superconductors may have ±s sym-
metry meaning that the order parameter has opposite signs in
different bands. The relative sign of order parameter, however,
is irrelevant for the behavior of anisotropies in clean materials.

We consider two spheroidal Fermi surfaces with constant
s-wave gaps. Therefore, each band is characterized by four
parameters: the in-plane effective masses mab,α , anisotropies
εα , band depths Eα (distances between the Fermi level and the
band’s bottom or top), and gaps �α . Here and below α=1, 2
is the band’s index. Note that whether the band has an electron
or hole character does not play any role in our consideration
and mab,α notates here the absolute value of the effective
mass. Relative properties of the bands may be characterized
by the four ratios rm =mab,2/mab,1, rε =√

ε2/ε1, rE =E2/E1,
and r� =�2

2/�
2
1.

This two-band model corresponds to the gap anisotropy
given by

�(k) = �1,2, k ∈ F1,2, (21)

where F1, F2 are two sheets of the Fermi surface and �1,2 are
constants. We denote the densities of states (DOSs) on the two
parts as N1,2,

Nα = m2
ab,αvab,α

2π2h̄3√εα

, α = 1, 2. (22)

Assuming X being constant at each sheet, we have

〈X 〉 = (X1N1 + X2N2)/N (0) = n1X1 + n2X2, (23)

where N (0)=N1+N2, n1,2 = N1,2/N (0) are normalized DOSs
with n1+n2 =1 and their ratio rn =n2/n1 is related to the
above parameters ra as rn =r3/2

m r1/2
E r−1

ε . Since the average
over the full Fermi surface 〈�2〉 = 1, one has

n1�
2
1 + n2�

2
2 = 1, (24)

meaning that �2
α = �2

α/(n1�
2
1 + n2�

2
2). The ratio of the “su-

perconducting band weights” ζα ≡ nα�2
α is ζ2/ζ1 = rnr�.

Within this model we obtain

γ 2(Tc) =
〈
�2v2

x

〉
〈
�2v2

z

〉 = ζ1
〈
v2

x

〉
1 + ζ2
〈
v2

x

〉
2

ζ1
〈
v2

z

〉
1 + ζ2
〈
v2

z

〉
2

, (25)

γ 2
λ (0) =

〈
v2

x

〉
〈
v2

z

〉 = n1
〈
v2

x

〉
1 + n2
〈
v2

x

〉
2

n1
〈
v2

z

〉
1 + n2
〈
v2

z

〉
2

. (26)

The ratios of average squared velocities are obtained using
Appendix A and Eqs. (10):〈

v2
x

〉
α〈

v2
z

〉
α

= 1

εα

, rv =
〈
v2

x

〉
2〈

v2
x

〉
1

= v2
ab,2

v2
ab,1

= rE

rm
,

〈
v2

z

〉
2〈

v2
z

〉
1

= v2
ab,2 ε2

v2
ab,1 ε1

= rvr2
ε .
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The results for the anisotropy factors look simpler when
expressed via ratios rn and rv instead of rm and rE . We can
express γ (Tc) and γλ(0) in terms of the introduced ratios as

γ 2(Tc)ε1 = 1 + rnrvr�

1 + rnrvr�r2
ε

, (27)

γ 2
λ (0)ε1 = 1 + rnrv

1 + rnrvr2
ε

. (28)

The variational estimate for the low-temperature Hc2

anisotropy γH (0) is described in Appendix B 2 and leads to
the following result:

γH (0)
√

ε1 ≈ κo1

(
1+κo1

2

)−2ζ1
(

1+rεκo1

2

)−2ζ2

(29)

with ζ1 = 1 − ζ2 = (1 + rnr�)−1,

κo1 ≡ γo
√

ε1 = ζ−
2

(
1 − 1

rε

)
+
√

ζ 2−
4

(
1 + 1

rε

)2

+ 4ζ1ζ2

rε

,

(30)

and ζ− = ζ1 − ζ2. Comparing these equation with Eq. (27),
we see that the ratio γH (0)/γ (Tc) is determined by only three
parameters, rε , rv , and the product rnr� corresponding to the
ratio of the condensation energies, rnr� = N2�

2
2/N1�

2
1.

Equations (27)–(30) give general results for the anisotropy
factors of two-band s-wave superconductors in terms of the
band-parameter ratios. As the band numbering is arbitrary,
all anisotropies are invariant with respect to the substitutions
ε1 ↔ ε2 and ra → 1/ra for all ratios. For definiteness, we
will assume that the second band has higher anisotropy, i.e.,
rε < 1. We observe that, as expected, in the case of identi-
cal ellipticities ε1 = ε2 = ε all anisotropies are temperature
independent and equal to 1/

√
ε independent of other ratios.

As a function of the DOSs ratio rn, all three anisotropy
factors interpolate in between γ1 = 1/

√
ε1 for rn → 0 and

γ2 = 1/
√

ε2 for rn → ∞. At intermediate rn, however, we can
observe that the bands contribute to different anisotropies with
different weights, and one may have many situations.

The simplicity of this model notwithstanding, when ap-
plied, e.g., to the problem of T dependence of anisotropies
in MgB2 [8], it reproduces well the observed behavior. The
unique feature of MgB2 is that γλ and γH have opposite tem-
perature dependences: γλ increases with warming from ∼1 to
∼2, while γH drops from ∼5–6 to ∼2 [2–5]. This behavior
is consistent with multiband superconducting properties of
this material. It has two groups of bands, three-dimensional
π bands with a smaller gap and quasi-two-dimensional σ

bands with a larger gap. The band parameters are [8] ε1 ≈ 1.3
(π band), ε2 ≈ 0.022 (σ band), rn ≈ 0.8, rv ≈ 0.7, and r� ≈
16. Then Eqs. (27)–(29) give γ (Tc) ≈ 2.6, γλ(0) ≈ 1.1, and
γH (0) ≈ 5.5, which is roughly consistent with experiment.

The most interesting question is what band properties
determine the direction of temperature dependences of the
anisotropy factors. In the case of γλ this question has a
straightforward and simple answer. From Eqs. (27) and (28),
we derive a relation

γ 2
λ (0)

γ 2(Tc)
− 1 = rnrv

(
r2
ε − 1
)
(r� − 1)(

1 + rnrvr2
ε

)
(1 + rnrvr�)

, (31)

FIG. 4. The dependence of the Fermi-velocity ratio separating
the two regimes of γH (T ) on the anisotropy ratio rε for three values
of the condensation-energy ratio rnr�, 0.5, 1, and 2. The dash-dotted
lines show the limiting values defined by Eqs. (33) and (34).

which shows that the direction of the γλ temperature de-
pendence is determined only by relations between the bands
anisotropies and gaps. In particular, γλ(T ) increases on warm-
ing if the band with higher anisotropy has also a larger gap
(like in MgB2), and decreases otherwise.

The case of γH is more involved. The simple criterion can
be obtained only in the case of a small difference between the
ellipticities |ε1 − ε2| � ε1. In this case expansion with respect
to a small parameter rε − 1 gives

γH (0)

γ (Tc)
− 1 ≈ rnr�(rv − 1)(rε − 1)

(1 + rnr�)(1 + rnrvr�)
(32)

indicating that γH (T ) increases on warming if the band with
higher anisotropy has a larger Fermi velocity. When the
band anisotropies are not close, there is no simple criterion
determining the direction of the γH temperature dependence.
In the case rε < 1, γH (T ) decreases with temperature at very
small Fermi-velocity ratios rv and vice versa. The value of rv

separating the two regimes depends on two parameters, rε and
rnr�. Analytical results for this quantity can be derived in the
limiting cases rnr� → 0 and ∞,

rv,min = 4

1 − r2
ε

ln

(
2

1 + rε

)
, for rnr� → 0, (33)

rv,max = r−2
ε − 1

4 ln
[(

r−1
ε + 1

)
/2
] , for rnr� → ∞. (34)

Figure 4 shows these limiting velocity ratios together with the
numerically computed dependences rv (rε ) for three interme-
diate values of the condensation-energy ratio rnr�, 0.5, 1, and
2. We can see that the separating rv increases with decreasing
rε and also grows with increasing rnr�. The sensitivity to the
latter parameter increases with decreasing rε . In particular,
MgB2 is located in the lower left corner of this plot.

To illustrate typical behaviors of the anisotropy factors, we
present in Fig. 5 their dependences on the ratio r� charac-
terizing a relative strength of superconductivity in two bands.
The plots are made for rn = 1, rε = 0.2, and three values of
the Fermi velocity ratio rv , 1, 4, and 8. In the first case rv is
below rv,min in Eq. (33) meaning that γH (0) exceeds γ (Tc) in
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FIG. 5. The dependences of the anisotropy factors on the relative
strength of superconductivity in two bands for three representative
cases showing qualitatively different behavior. All plots are made for
rn = 1 and rε = 0.2. In the upper plot rv = 1 and in this case γH

decreases with temperature in the whole range of r�. The lower plot
is made for much higher velocity ratio rv = 8 and in this case γH

always increases with temperature. The middle plot is made for the
intermediate velocity ratio rv = 4, for which γH (0) and γ (Tc ) switch
with increasing r�. The dash-dotted lines show the anisotropy factors
of the two bands.

the whole range of r� and γH always decreases on warming.
In the range r� > 1 such a situation qualitatively corresponds
to magnesium diboride. The last value rv = 8 exceeds rv,max

given by Eq. (34) and the behavior is opposite, γH always
increases with temperature. The intermediate value rv = 4
is in between rv,min and rv,max. In this case the behavior of
γH switches with increasing r�: γH (0) is smaller than γ (Tc)
for small r� and exceeds γ (Tc) for r� > 2.8. While γλ(0)
does not depend on r�, both γH (0) and γ (Tc) increase with
r� interpolating between 1/

√
ε1 for r� → 0 and 1/

√
ε2 for

r� → ∞. Consequently, the latter two anisotropies always
cross γλ(0). In particular, as mentioned above, γλ decreases on
warming at r� < 1 and increases with temperature at r� > 1.

Therefore, depending on the band parameters, all six possible
relations between the three anisotropy factors may be realized.

IV. SUMMARY

It is shown that the anisotropy parameters, γH for the
upper critical field and γλ for the penetration depth, in gen-
eral, depend on temperature even in one-band materials with
anisotropic order parameters. The temperature behavior of γ ’s
depends, in particular, on the order-parameter nodes and their
distributions.

We provide four examples of gap anisotropies. In the
simplest reference case of isotropic s wave, γλ = γH = 1/

√
ε

and is T independent. For d-wave symmetry with a coinciding
polar axis of the order parameter and of a Fermi spheroid, γλ is
the same as for the s wave and is T independent. γH is weakly
changing on warming, with the sign of this change depending
on what direction of in-plane field is chosen for determination
of the anisotropy parameter; see Fig. 1. If � has a line node on
the equator of Fermi spheroid, γλ(T ) decreases on warming
whereas γH (T ) increases; see Fig. 2. Point nodes at spheroid
poles affect anisotropies in the opposite way as demonstrated
in Fig. 3. In general, the former/latter behavior is realized in
the cases when the gap at the equator is smaller/larger than
the gap at the poles.

In the case of two spheroidal Fermi surfaces, we in-
vestigated in detail the conditions determining directions of
temperature dependences of the anisotropy factors. We found
that γλ increases with temperature only if the band with
higher anisotropy has a larger gap independent on relations
between other band parameters. The behavior of γH is more
complicated. In general, γH increases with temperature if
the Fermi velocity of the more anisotropic band sufficiently
exceeds the Fermi velocity of the less anisotropic band. The
Fermi-velocity ratio separating the two regimes depends in
a nontrivial way on the ratios of band anisotropies and con-
densation energies, as illustrated in Fig. 4. In general, all
six possible relations between three key anisotropy factors,
γ (Tc), γλ(0), and γH (0), may be realized for different relations
between band parameters; see Fig. 5.

Our results for Fermi ellipsoids are based on theory [6],
which is a generalization of Helfand-Werthamer work [10]
for the isotropic case. One of the features of this approach
is that solutions of the linear equation −ξ 2

ik
i
k� = � at
Hc2, belonging to the lowest Landau level, satisfy also the self-
consistency equation for superconductivity. For general Fermi
surfaces this is not the case and the exact solution can be ob-
tained using expansion over a full set of the Landau-level wave
functions; see, e.g., Refs. [11,12]. In this paper, we employ
a much simpler approximate variational approach using the
lowest-Landau wave function as a trial. This approach leads
to reasonable results suitable for qualitative interpretations of
data on anisotropy parameters.

Also, it is worth keeping in mind that we estimate the
anisotropy of orbital Hc2 and disregard the possibility of
Pauli limiting effects. The decreasing Hc2 anisotropy with
decreasing temperature, like, e.g., in iron pnictides [13–15],
is usually considered an indication of strong paramagnetic
effect. While this interpretation in many cases is correct, we
point out that such a behavior may also be realized in a
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purely orbital case, as illustrated in Figs. 2 and 5. Even though
modeling many-band systems with two Fermi ellipsoids is
far from being realistic, this simple approach still provides
some straightforward inroads to a complicated interplay of
anisotropies γλ(T ) and γH (T ).
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APPENDIX A: FERMI SPHEROID

The Fermi surface as an ellipsoid of rotation is an interest-
ing example in its own right and as a model for calculating Hc2

and λ in uniaxial materials. Since both of these quantities are
derived employing integrals over the full Fermi surface, they
are weakly sensitive to fine details of Fermi surfaces.

Although straightforward, the averaging over the Fermi
spheroid of the main text should be done with care. Moreover,
there are examples in literature where these averages were
done incorrectly [6,16]. We reproduce here this procedure to
correct the error and to prevent it in the future.

Consider a uniaxial superconductor with the electronic
spectrum

E (k) = h̄2

(
k2

x + k2
y

2mab
+ k2

z

2mc

)
, (A1)

so that the Fermi surface is an ellipsoid of rotation with z as
the symmetry axis. In spherical coordinates (k, θ, φ)

E = h̄2k2

2mab

(
sin2 θ + mab

mc
cos2 θ

)
= h̄2k2

2mab
�(θ ), (A2)

so that

k2
F (θ ) = 2mabEF

h̄2�(θ )
. (A3)

The Fermi velocity is v(k) = ∇kE (k)/h̄, with the derivatives
taken at k = kF :

vx = vab sin θ cos φ√
�(θ )

, vy = vab sin θ sin φ√
�(θ )

, (A4)

vz = ε
vab cos θ√

�(θ )
, ε = mab

mc
, vab =

√
2EF

mab
. (A5)

The value of the Fermi velocity, v = (v2
x + v2

y + v2
z )1/2, is

v = vab

√
sin2 θ + ε2 cos2 θ

sin2 θ + ε cos2 θ
. (A6)

The density of states N (0) is defined as an integral over the
Fermi surface:

N (0) =
∫

h̄2d2kF

(2π h̄)3v
. (A7)

An area element of the spheroid surface is

d2kF = kF (θ )

√
k2

F (θ ) +
(

dkF

dθ

)2

sin θ dθ dϕ (A8)

and after simple algebra one obtains

d2kF

v
= k2

F,ab

vab

sin θ dθ dϕ

�3/2
, (A9)

where k2
F,ab = 2mabEF /h̄2. This gives

N (0) = m2
abvab

2π2h̄3√ε
. (A10)

The normalized local density of states within solid angle
sin θ dθ dϕ is

h̄2d2kF

(2π h̄)3vN (0)
=

√
ε

4π

sin θ dθ dϕ

�3/2
; (A11)

Equation (A9) has been used here. Thus, the Fermi-surface
average of a function A(θ, φ) is

〈A(θ, φ)〉 =
√

ε

4π

∫
A(θ, ϕ)

sin θ dθ dϕ

�3/2(θ )
. (A12)

APPENDIX B: VARIATIONAL ESTIMATE OF THE UPPER CRITICAL FIELD

The equation for the upper critical field (1) has an exact solution only in a few special cases. In the general situation the exact
numerical solution may be obtained, for example, by expansion over a complete set of Landau-level wave functions [11,16]. An
approximate solution giving in many cases a reasonable accuracy may be obtained using the variational approach [17]. Equation
(1) corresponds to the following variational problem:

ln t = max

∫
drψt (r)

∫∞
0 dρ ln tanh πT ρ

h̄ 〈�2v · �e−ρv·�〉ψt (r)∫
drψ2

t (r)
, (B1)

where the maximum has to be found over all possible trial functions ψt (r). Consider, for definiteness, the magnetic field along
the y axis. The simplest and most natural choice for the trial function is the lowest Landau-level solution of the anisotropic
equation for a particle with charge 2e in the magnetic field,

−(
2
x + γ −2

t 
2
z

)
ψt0 = 2πH

�0γt
ψt0, (B2)
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with 
x = ∂x, 
z = ∂z + 2π iHx/�0, where the anisotropy factor γt is the variational parameter. We will assume that ψt0(r) is
normalized,

∫
drψ2

t0(r) = 1.
The integral in Eq. (B1) is determined by the matrix element 〈ψt0|v · �e−ρv·�|ψt0〉r , where we use the notation

〈ψt0 ˆ|U |ψt0〉r = ∫ drψt0(r)Ûψt0(r). To evaluate this matrix element, we introduce the operators P± = 
x ± iγ −1
t 
z and

represent the product v · � as

v · � = v−P+ + v+P−
2

,

where v± = vx ± iγtvz. Note that P−ψt0 = 0. Using the relations eP+Q = ePeQe[Q,P]/2, [P−,P+] = −4πH/γt�0, and
v+v− = v2

x + γ 2
t v2

z , we transform

e−ρv·� = exp

(
−ρv−P+

2

)
exp

(
−ρv+P−

2

)
exp

(
−π

2

(
v2

x + γ 2
t v2

z

)Hρ2

γt�0

)
.

This relation allows us to evaluate the matrix element as

〈ψt0|v · �e−ρv·�|ψt0〉r = 〈ψt0|v−P+ + v+P−
2

exp

(
−ρv−P+

2

)
exp

(
−ρv+P−

2

)
|ψt0〉r = (v2

x + γ 2
t v2

z

)πHρ

�0γt
,

leading to the variational equation for the upper critical field,

ln t = max
γt

∫ ∞

0
dρ ln tanh

πT ρ

h̄

〈
�2 exp

[
−π

2

(
v2

x + γ 2
t v2

z

)Hρ2

�0γt

](
v2

x + γ 2
t v2

z

)πHρ

�0γt

〉
. (B3)

In the zero-temperature limit this equation becomes

max
γt

∫ ∞

0
dρ ln

πTcρ

h̄

〈
�2 exp

[
−π

2

(
v2

x + γ 2
t v2

z

)Hρ2

�0γt

](
v2

x + γ 2
t v2

z

)πHρ

�0γt

〉
= 0. (B4)

As
∫∞

0 dρ ln ( ρ

2 )2aρ exp [−aρ2] = 1
2 (−C − ln 4a) with C ≈ 0.5772, we obtain

min
γt

〈
�2 ln

[(
v2

x + γ 2
t v2

z

) Hh̄2eC

2πT 2
c �0γt

]〉
= 0.

Introducing the typical velocity scale u2
x = 〈�2v2

x 〉, we finally arrive at

Hc2,y(0) ≈ 2πT 2
c �0

u2
x h̄2eC

max
γt

{
γt exp

[
−
〈
�2 ln

(
v2

x + γ 2
t v2

z

u2
x

)〉]}
. (B5)

The optimal anisotropy factor γo is determined by the equation〈
�2 d

dγt
ln

[
v2

x + γ 2
t v2

z

γt

]〉
= 0,

giving 〈
�2 v2

x − γ 2
o v2

z

v2
x + γ 2

o v2
z

〉
= 0. (B6)

It is straightforward to demonstrate that in the case of a single spheroidal Fermi surface and isotropic order parameter, γo = 1/
√

ε

and Eq. (B5) gives the exact y-axis upper critical field.
In this paper we only consider crystals isotropic within the xy plane. In this case the optimal anisotropy factor for field along

the z axis is obviously equal to 1 and

Hc2,z(0) ≈ 2πT 2
c �0

u2
x h̄2eC

exp

[
−
〈
�2 ln

(
v2

x + v2
y

u2
x

)〉]
. (B7)

From Eqs. (B5) and (B7), we obtain the variational estimate for the low-temperature anisotropy factor

γH (0) = γo exp

[
−
〈
�2 ln

(
v2

x + γ 2
o v2

z

v2
x + v2

y

)〉]
, (B8)

where γo has to be evaluated from Eq. (B6).
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1. Singe-band cases

a. D-wave order parameter

In this subsection we summarize the calculations for the case of a d-wave order parameter for which the weight function
has the form �(ϕ) = √

2 cos 2(ϕ − ϕ0) with ϕ0 being the angle between the in-plane component of the magnetic field and the
direction of the maximum order parameter. In this case evaluation of the integral in Eq. (8) gives〈

�2 v2
x − γ 2

o v2
z

v2
x + γ 2

o v2
z

〉
=

√
ε

4π

∫ π

0

sin θdθ

(sin2 θ + ε cos2 θ )3/2

∫ π

−π

dϕ2 cos2 2(ϕ − ϕ0)
sin2 θ cos2 ϕ − γ 2

o ε2 cos2 θ

sin2 θ cos2 ϕ + γ 2
o ε2 cos2 θ

= 1 − 4 cos (4ϕ0)κ2
o

[
2
(
3κ2

o − 1
)

ln

(
1 + 1

κo

)
− 3(2κo − 1)

]
− [1 + cos (4ϕ0)]

2κo

1 + κo

with κ2
o = γ 2

o ε. We find that numerical solution of Eq. (8) is very close to the simple dependence κo(ϕ0) ≈ 1 − 0.181 cos (4ϕ0).
Note that the result κo(π/8) = 1 is exact.

The average in Eq. (7) can be evaluated as〈
�2 ln

(
v2

x + γ 2
o v2

z

v2
x + v2

y

)〉
= 2 ln

(
1 + κo

2

)
+ cos (4ϕ0)

[
1

2
− (2κo − 1)

(
3κ2

o − 1
)− 2
(
2 − 3κ2

o

)
κ2

o ln

(
1 + 1

κo

)]

giving

γH (0, ϕ0)
√

ε ≈ 4κo

(1 + κo)2 exp

{
− cos (4ϕ0)

[
1

2
− (2κo − 1)

(
3κ2

o − 1
)− 2
(
2 − 3κ2

o

)
κ2

o ln

(
1 + 1

κo

)]}
.

This equation together with the above dependence κo(ϕ0) determine the low-temperature anisotropy of Hc2, which depends on
the azimuth angle ϕ0. In particular, γH (0, 0) ≈ 1.13/

√
ε, γH (0, π/4) ≈ 0.9/

√
ε, and γH (0, π/8) = 1/

√
ε.

b. Equatorial line node

Here we summarize the calculations for the case of the order parameter with an equatorial nodal line for which the weight
function has the form � = �0 cos θ . For the anisotropy at Tc the integration in Eq. (13) gives

γ 2(Tc) = (2 + ε)
√

1 − ε − 3
√

ε arcsin
√

1 − ε

2ε[(1 − 4ε)
√

1 − ε + 3ε3/2 arcsin
√

1 − ε]
. (B9)

for ε < 1. This dependence is plotted in Fig. 2 by a red line.
The calculation of γH (0) requires the normalization constant �0. The normalization condition �2

0〈cos2 θ〉 = 1 using

〈cos2 θ〉 = √
ε

∫ 1

0

x2dx

[1 − (1 − ε)x2]3/2
= 1

1 − ε
−

√
ε

(1 − ε)3/2
arcsin

√
1 − ε

gives Eq. (14).
The integration in Eq. (15) can be performed analytically giving〈

�2 v2
x − γ 2

o v2
z

v2
x + γ 2

o v2
z

〉
= 1 − 2γoε

3/2

(
√

1 − ε − √
ε arcsin

√
1 − ε)

√
1 − γ 2

o ε2

×
⎡
⎣
√

(1 − ε)
(
1 − γ 2

o ε2
)

ε(1 + γo
√

ε)
+ ln

√
ε
(√

(1 − ε)γ 2
o ε +√1 − γ 2

o ε2
)

√
1 − ε +√1 − γ 2

o ε2

⎤
⎦.

The optimal anisotropy factor corresponding to the vanishing of the right-hand side can be evaluated numerically.

c. Two polar point nodes

Here we summarize the calculations for the case of the order parameter with two polar point nodes for which the weight
function has the form � = �0 sin θ . For the anisotropy at Tc the integration in Eq. (13) gives

γ 2(Tc) = −√
ε(5 − 2ε)

√
1 − ε + 3 arcsin

√
1 − ε

2ε3/2[(2 + ε)
√

1 − ε − 3
√

ε arcsin
√

1 − ε]
(B10)

for ε < 1. This dependence is plotted in Fig. 3 by a red line.
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The integral in Eq. (19) can be taken analytically. In the case of ε, γ 2
o ε2 < 1 the result is〈

�2 v2
x − γ 2

o v2
z

v2
x + γ 2

o v2
z

〉
= 1 − 2γoε

(−√
ε(1 − ε) + arcsin

√
1 − ε)

√
1 − γ 2

o ε2

×
⎡
⎣−
√

(1 − ε)
(
1 − γ 2

o ε2
)

1 + γo
√

ε
− ln

√
ε
(
γo

√
ε
√

1 − ε +√1 − γ 2
o ε2
)

√
1 − ε +√1 − γ 2

o ε2

⎤
⎦.

2. Two spheroidal Fermi surfaces

For the case of two spheroids, Eq. (8) for the optimal anisotropy factor becomes

∑
α=1,2

ζα

〈
v2

x,α − γ 2
o v2

z,α

v2
x,α + γ 2

o v2
z,α

〉
α

= 0

with the band weights ζα = nα�2
α . The averages in this equation can be evaluated as〈

v2
x,α − γ 2

o v2
z,α

v2
x,α + γ 2

o v2
z,α

〉
α

= 1 − √
εαγo

1 + √
εαγo

.

This gives the equation for γo,

ζ1
1 − √

ε1γo

1 + √
ε1γo

+ ζ2
1 − √

ε2γo

1 + √
ε2γo

= 0,

which has the following solution:

γo = ζ−
2

(
1√
ε1

− 1√
ε2

)
+
√

ζ 2−
4

(
1√
ε1

+ 1√
ε2

)2

+ 4ζ1ζ2√
ε1ε2

(B11)

with ζ− = ζ1 − ζ2.
The low-temperature anisotropy factor is connected with γo by Eq. (7). Computing the averages〈

ln

(
v2

x,α + γ 2
o v2

z,α

v2
ab,α

)〉
α

= 2[ln(1 + √
εαγo) − 1],

we finally obtain

γH (0) = γo

∏
α=1,2

(
1 + √

εαγo

2

)−2ζα

. (B12)

This equation together with Eq. (B11) gives the approximate variational estimate for the low-temperature anisotropy of the upper
critical field in the case of two spheroidal Fermi surfaces with isotropic s-wave order parameters.
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