
PHYSICAL REVIEW B 100, 014516 (2019)

Field dependence of the vortex-core size in dirty two-band superconductors
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We study the structure of Abrikosov vortices in two-band superconductors for different external magnetic
fields and different parameters of the bands, including the interband scattering rate. The vortex-core size
determined by the coherence lengths is found to have qualitatively different behavior from that determined by
the quasiparticle density of states spatial variation. These different vortex-core length scales coincide near the
upper critical field, while the discrepancy between them becomes quite significant at lower fields. Within the
diffusive approximation we demonstrate several generic regimes in the field dependence of the vortex-core sizes
determined by the disparity of diffusion constants in the two bands, interband pairing, and interband scattering
rate.
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I. INTRODUCTION

Vortex matter in multiband superconductors demonstrates
many unusual properties which are drastically different from
those in single-band materials [1–7]. The origin of these
nontrivial new effects is the greatly enhanced number of
available degrees of freedom in the system consisting of
Cooper pairs and quasiparticles residing in several different
bands. In this case the condensates in general tend to have
different coherence lengths [8,9], sharing the same critical
temperature and the single divergent scale near Tc [10]. With
increasing the coupling between condensates their length
scales become essentially the same [11]. Although they are
quite important characteristics, the coherence lengths are not
directly measurable. For example, the sizes of Abrikosov
vortices in the two-band superconductor MgB2 measured with
scanning tunneling microscopy (STM) local probes appear to
be significantly different from the coherence length inferred
from the upper critical field [4]. This physics is explained
by the different localization scales of local density of states
(LDOS) profiles in different bands determined by the disparity
of diffusion coefficients [12]. We show that these results are
strongly modified by the interband impurity scattering. The
latter removes the difference between the LDOS scales in
different bands and simultaneously suppresses these lengths,
making them smaller than characteristic length scales of the
order parameter. Interband scattering slows down the mag-
netic field dependence of LDOS scales.

The high-resolution of STM allows us to explore individual
vortex cores in detail by measuring the quasiparticle LDOS [7,
13–16]. The LDOS profiles N (r) are essentially determined
by the spatial order parameter distribution �(r) near the
vortex core. However, the vortex-core size determined from
the STM tunneling conductance depends on the temperature
and bias [17], indicating the spatial and energy variation of

the LDOS of localized quasiparticle states trapped close to
the vortex center.

The relation between zero-energy LDOS N (r) and �(r) is
quite straightforward in diffusive superconductors when the
magnetic field B is close to the upper critical field Hc2 so that
Hc2 − B � Hc2. In this regime, as shown by de Gennes [18],
the following relation holds:

N (r) = 1 − 2|�(r)|2/�2
0, (1)

where N is normalized to the normal-metal DOS and �0

is the gap function amplitude in the absence of magnetic
field. At lower fields the relation between N (r) and �(r) has
not been checked even in the simplest case of single-band
superconductors. In the present paper we demonstrate that, in
general, the behaviors of these two profiles with decreasing
magnetic field become quite different, so that it is not possible
to extract the information about coherence length from STM
measurements by directly applying Eq. (1).

The behavior of gap and LDOS profiles can be even
more intriguing in two-band superconductors. According to
recent experiments [7], the vortex sizes measured by STM
in 2H-NbSe2 and 2H-NbS2 compounds demonstrate much
weaker magnetic field dependencies than in the single-band
materials. Interpreting these data using the de Gennes relation
[18] results in the conclusion about the mostly field indepen-
dent condensate length scales in two-band superconductors.
Here we report the results of numerical calculations in the
framework of the multiband Usadel theory. We find that in
the two-band superconductor the vortex-core sizes w�1 , w�2

determined by the gap function profiles in different bands
�1,2(r) in general have no distinct correlation with the widths
wσ1 , wσ2 of the corresponding LDOS distributions N1,2(r).
We illustrate that for the distinct disparity between diffusion
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coefficients in different bands, the vortex-core sizes wσ1,σ2 and
w�1,�2 can show qualitatively different behaviors as functions
of the magnetic field. For large enough interband pairing
the gap function distributions �1(r) and �2(r) are mostly
identical, so that w�1 ≈ w�2 . However, the profiles of N1(r)
and N2(r) are strongly different, except for the high-field
regime when the modified de Gennes relation is restored and
all length scales coincide. We demonstrate that in the super-
conducting band with the smallest diffusion coefficient the
zero-energy LDOS length scale shows quite weak magnetic
field dependence. This behavior is in qualitative agreement
with recent STM experiments [7] which have measured the
LDOS evolution around the vortex cores in several multiband
superconductors.

The structure of this paper is as follows. Our model and nu-
merical scheme are described in Sec. II. Results are presented
in Sec. III, including the single-band model (Sec. III A) and
the two-band model without interband scattering (Sec. III B 1)
and in the presence of interband scattering (Sec. III B 2). The
work is summarized in Sec. IV.

II. MODEL

We use the formalism of quasiclassical Green’s functions
(GFs) and introduce retarded and advanced GFs, ĝk = ĝR/A

k ,
for a two-band (k = 1, 2) superconductor which obey in the
diffusive limit the Usadel equation

Dk∇̂(ĝk · ∇̂ĝk ) + [iετ̂3 + i�̂k, ĝk] + γk j[ĝk, ĝ j] = 0 (2)

for j �= k. Here Dk is the diffusion constant in each band,

�̂k =
(

0 �k

−�∗
k 0

)

is the gap operator, and ∇̂ = ∇ − iπφ−1
0 A[τ̂3, ], where τ̂3 is

the Pauli matrix, the square brackets denote the commutator
operation, and φ0 = π/e is the flux quantum. Note that we
use theoretical units kB = h̄ = c = 1. The last term in Eq. (2)
takes into account the interband scattering [19] determined by
the amplitudes γk j = 	ν j/(ν1 + ν2), where 	 is the scattering
rate and ν j is the partial density of states (DOS) in the jth
band.

To describe the vortex structure at arbitrary fields we
employ the circular-cell approximation [20–23]. Within this
approach the unit cell of the hexagonal vortex lattice hosting
a single vortex is replaced by a circular cell with the center
at the point of superconducting phase singularity. Inside the
circular cell, the gap and magnetic field distributions are
taken to be radially symmetric with respect to the cell center.
Below we consider the vortex state in the limit of large
values of the Ginzburg-Landau parameter, κ � 1. In this case,
magnetic field B is constant inside the circular cell, and the
vector potential can be taken in the form A(r) = ϕBr/2. The
periodicity of the lattice solution is modeled by the special
choice of the boundary conditions, namely, the vanishing
supercurrent density at the circular-cell boundary. At that, the
circular-cell radius is uniquely defined by magnetic induction,

R = √
φ0/(πB), so that there is exactly one flux quantum φ0

passing through the unit vortex cell.
In the θ parameterization, the GF in Nambu space reads

ĝk =
(

cosh θ (k) sinh θ (k)eiϕk

− sinh θ (k)e−iϕk − cosh θ (k)

)
, (3)

where ϕk is the band-gap phase. In cylindrical coordinates,
Eq. (2) can be rewritten for complex angles θ (k) as

Dkr∂r (r∂rθ
(k) ) − Dk (1 − r2/R2)2 sinh θ (k) cosh θ (k)

+ 2ir2(ε sinh θ (k) − |�k| cosh θ (k) )

+ 2r2γk j sinh(θ ( j) − θ (k) ) = 0. (4)

This set of equations has to be solved self-consistently with
gap order parameters determined by the conditions

|�k| = 2πT
∑

j

λk j

∑
ωn>0

sin θ ( j)
n , (5)

where λk j are intra- and interband interaction constants which
form the matrix λ̂, ωn = πT (2n + 1) are Matsubara frequen-
cies, and the Matsubara GFs parametrized by θ (k)

n satisfy (4)
after the substitution θ (k) → −iθ (k)

n and ε → iωn. The bound-
ary conditions read θ (k)

n (r = 0) = 0 and ∂rθ
(k)
n (r = R) = 0,

leading to the zero gradient of the gap modulus at the vortex-
cell boundary.

To find the self-consistent order parameter distributions we
start by calculating the gap order parameters in the cell, taking
first the initial distributions of |�1,2(r)|. By initializing guess
functions θ (1,2)

n for each n, we linearize the equation for the
Matsubara GFs around θ (1,2)

n and solve the linear problem
numerically by applying the sweeping method. The solution
provides a correction to θ (1,2)

n , and the refined guess function is
used for the next iteration. By performing a sufficient number
of iterations, the procedure converges to the Matsubara GFs,
which are substituted into the right-hand side of Eq. (5) to
obtain the correction to the initial gap functions |�1,2|. By
applying refined gap functions, we repeat the scheme from
the beginning and find gaps in the iterative process with the
precision needed.

The zero-energy LDOS in different bands is given in the
θ parametrization by Nk = cos(Imθ (k) ) at ε = 0. To find Nk ,
we consider the imaginary part of Eq. (4) at zero energy with
gap profiles found beforehand. We solve it numerically by
starting from the guess distributions for θ (k). We linearize (4)
around θ (k) and solve the linear problem numerically with
the sweeping method. The solution gives the correction to θk

which is used to construct the refined guess distribution and
employ the iteration procedure.

III. RESULTS

A. Single-band limit

The approach presented in Sec. II reduces to the single-
band model for λ12 = λ21 = 	 = 0 and D1,2 = D. For λ11 >

λ22, it corresponds to the description of the independent
stronger-superconductivity band.

Figure 1 demonstrates the results of the self-consistent
numerical calculations for a single-band superconductor. As
magnetic field increases, the radius of the circular vortex
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FIG. 1. Vortex structure in the single-band model at T/Tc =
0.05. (a) Normalized gap distribution (solid curves) inside the vortex
cell, F = |�|/�0. Numbers near each curve indicate the value of
B/Hc2. The dashed curves with the same color show zero-energy
LDOS N . (b) Proportionality coefficient between 1 − N and F 2

within the vortex cell for different magnetic fields. Note that we ob-
tain (1 − N )/F 2 = 2 near Hc2, in agreement with Eq. (1). (c) LDOS
variation σ = δN (r)/δN (0) for different ratios B/Hc2. (d) The field
behavior of the vortex-core size w = w� determined by the half-
width of the squared gap |�|2 (red curve) and the w = wσ one
defined by the half-width of the LDOS variation σ (blue curve). Both
quantities are shown in units of ξ = √

D/(2πTc ). The dashed curves
are calculated by means of Eq. (2) with substitution ∇̂ → ∇ (see
discussion in the text). The black horizontal line is the length scale
determined by the upper critical field, ξHc2 = √

φ0/(2πHc2).

cell reduces, resulting in the suppression of the maximal gap
value achieved at the cell boundary [see Fig. 1(a)]. Thus, the
inhomogeneity of the zero-energy LDOS N inside the vortex
cell smooths out with rising field.

In Fig. 1(c) we plot the LDOS variation σ = δN (r)/δN (0),
where δN (r) = N (r) − N (R), for different magnetic fields. In
the single-band limit, these curves do not depend on material
parameters such as the diffusion coefficient D and Tc. From
the definition it is clear that the LDOS variation σ is charac-
terized by the same half-width as the LDOS N itself.

We compare the obtained LDOS and gap function profiles
in order to check the range of parameters where the de Gennes
relation (1) is satisfied. In principle it should be valid at low
temperatures and close to Hc2, although sometimes it is used
for the analysis of the LDOS in a wider range of magnetic
fields. In Fig. 1(b) we show the ratio [1 − N (r)]/F 2(r), where
F (r) = |�(r)|/�0, for different magnetic fields at tempera-
ture T = 0.05Tc. For high fields this ratio is constant, in agree-
ment with Eq. (1). However, for the lower fields, B/Hc2 � 0.5,
it is significantly inhomogeneous, meaning that the LDOS
evolution inside the vortex cell is essentially different from the
order parameter. As a result, LDOS measurements for sparse
vortex lattices in general cannot be used to quantify the length
scale of the superconducting order parameter.

Figure 1(d) demonstrates the field dependencies for half-
widths w� and wσ of the squared gap |�|2 and the LDOS

variation σ , respectively. Two half-widths shown in Fig. 1(d)
overlap in the limit B → Hc2, where spatial profiles of the
LDOS and |�|2 become identical [see the black curve in
Fig. 1(b)]. In this case, we expect that the Abrikosov vortex
lattice solution governs the behavior of the gap order param-
eter so that the half-width is determined by the size of the
superconducting nucleus. By using a known analytic solution
for the gap at Hc2 [15] given by F (r) ∝ re−r2/(2R2 ), we obtain
w� ≈ 0.48R. At low temperatures, the upper critical field
is determined by eDHc2/Tc = π/(2eC ), so that w� ≈ 1.3ξ ,
where ξ 2 = D/(2πTc), in agreement with the numerical value
presented in Fig. 1(d).

For lower fields, half-widths wσ and w� have qualitatively
different behaviors, manifesting a significant difference be-
tween the squared gap and LDOS profiles and a violation of
the simple relation (1). The half-width found for the squared
gap coincides with previous calculations [15] and scales ap-
proximately as w� ∼ (B/Hc2)−1/3 in the intermediate fields.
At the same time, the half-width of the LDOS wσ changes
with the field slower than that.

For very sparse vortex lattices, B/Hc2 � 1, both scales are
characterized by linear field dependence, and for the gap we
obtain w�(B)/w�(0) � 1 − B/Hc2. Such behavior indicates
that the spatial evolution of the gap profile is affected by the
term linear in the vector potential. This conclusion can be
checked by calculating vortex-core sizes in the absence of the
vector potential. As a result, instead of the linear behavior
we get the low-field plateaus in the dependencies of w�(B)
and wσ (B) shown by the dashed lines in Fig. 1(d). Thus, the
absence of any pronounced variation of vortex-core sizes at
small magnetic fields found by STM experiments [7] cannot
be attributed to the specific range of magnetic field B � Hc2

studied there. On the contrary, as we demonstrate below,
almost-field-independent vortex-core sizes can be naturally
obtained within the minimal two-band model of the supercon-
ducting state.

It is useful to compare the calculated vortex-core sizes with
the experimentally measurable length scale determined by the
upper critical field as ξHc2 = √

φ0/2πHc2. The latter can be
expressed as ξHc2 ≈ 1.47w�(Hc2), where in the limit B → Hc2

the vortex-core size is given by w� ≈ 0.48R. In the single-
band superconductor the size wσ measured by STM is slightly
smaller than ξHc2 at low fields, while the difference between
these two lengths increases with magnetic field [see Fig. 1(d)].
Below we show that this picture changes qualitatively in
two-band systems. We discuss the fingerprints of two-band
superconductivity in STM measurements of the vortex-core
sizes.

B. Two-band model

The two-band superconductivity is defined by the matrix
of interaction constants λ̂, the interband scattering rate 	, and
the ratio of diffusion coefficients in the bands D1/D2, which is
considered below as a free parameter. For calculations, we fix
intraband coupling parameters λ11 = 0.1012, λ22 = 0.0448
and consider the variable interband pairing strength.

The values of pairing constants are chosen according to
the following arguments. First, the intraband pairing constants
λ11, λ22 are chosen to be significantly different. Then for not
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FIG. 2. Vortex structure in the two-band model at T/Tc = 0.1
for D1/D2 = 0.2, 10 (left and right columns, respectively). (a) and
(b) Gap profiles in each band normalized by the bulk value, Fk =
|�k |/�k0. Red and blue curves correspond to strong and weak bands
F1 and F2, respectively. Dashed curves are for B/Hc2 = 0.1, and solid
curves correspond to B/Hc2 = 0.9. (c) and (d) LDOS in each band Nk

for small (dashed curve) and high (solid curve) fields. Red and blue
curves correspond to weak and strong bands N1,2, respectively.

very low temperatures the pairing in the weak superconduct-
ing band, corresponding in our case to λ22 < λ11, is induced
by the Cooper pair tunneling from the strong band. Under such
constraints the variation of λ11 and λ22 in wide limits does not
affect the results qualitatively.

We consider several values of the interband pairing con-
stants λ12, λ21. These parameters are not independent since
their ratio is determined by the ratio of the normal-state
DOS in the corresponding bands λ12/λ21 = ν2/ν1. For MgB2
the interband pairing coefficients are the same order as the
intraband ones [24]. To describe this case we set [25] λ12 =
0.0336 and λ21 = 0.0264. In addition, we show how vortex-
core sizes change when the interband pairing is taken to be
an order of magnitude smaller than for MgB2, λ12 = 0.00336
and λ21 = 0.00264.

We start with the system in the absence of interband
scattering similar to the one considered in Ref. [12] but
analyze the wide range of magnetic fields, changing from
B � Hc2 to Hc2 − B � B. Later, we consider the influence of
the interband scattering on the vortex-core sizes.

1. No interband scattering

First, let us consider the system with large interband cou-
plings λ12 = 0.0336, λ21 = 0.0264 in the absence of inter-
band scattering 	 = 0. The gap function and LDOS profiles
are shown in Fig. 2 for different values of the magnetic field.
The gap distributions normalized by their maximal value at
the cell boundary are very close to each other independent of
the values of the diffusion coefficients D1,2. This is caused
by the efficient mixing of the condensates generated by the
strong interband coupling. The effect is demonstrated below

explicitly by analyzing vortex-core sizes w�1,2 in different
bands.

In contrast to the gap profiles, LDOS distributions N1,2(r)
are strongly affected by the band diffusion coefficients. This
is seen from the Usadel equation (4), where characteristic
lengths of solutions θ (1,2)(r) differ by the factor

√
D1/D2.

This behavior is illustrated in Figs. 2(c) and 2(d), showing that
the LDOS in the band with the smaller diffusion coefficient
changes at shorter distances than the one in the band with the
larger diffusion coefficient.

By changing the diffusion coefficients in different bands
independently, one can obtain several qualitatively different
regimes. First, let us consider the case shown in Figs. 2(a)
and 2(c) when the weak superconducting band has a larger
diffusion coefficient. By inspecting weak-field curves, one
can notice that the length scale of the LDOS N2(r) exceeds
the scales of gap distribution w�1,2 . For very small magnetic
fields, this regime has been studied in Ref. [12] to explain
comparatively large vortex sizes measured by the STM in
MgB2. By analyzing the fields ranging from zero to Hc2, we
show below that in this case the length scale of the LDOS
N2(r) has a much stronger field dependence than other vortex-
core sizes w�1,2 .

Another generic regime seen in Figs. 2(b) and 2(d) cor-
responds to the case when a band with a weaker gap has a
smaller diffusion coefficient. As follows from the weak-field
dependencies in Figs. 2(b) and 2(d), this results in the length
scale of the LDOS N2(r) being much smaller than the vortex-
core sizes w�1,2 . As we see below [Fig. 5(b), blue dashed
curve], this case is characterized by significantly weak field
dependence of the length scale wσ2 .

Let us discuss the relations between the squared gap func-
tions �2

1,2(r) and LDOS deviations from the normal state,
1 − N1,2(r), shown in Fig. 3 for the two-band model. One
can see that analogous to the single-band case, these profiles
coincide only for the high fields close to the upper critical
one. This limit can be approached analytically. For B ≈ Hc2,
the order parameter is small, and it can be written as |�k| =
ck�k0re−r2/(2R2 ), where ck is a small constant (see [26]). The
zero-energy solution of the spectral equation (4) is then given
by Imθk = αk|�k|, where αke

√
D1D2B = −√

D3−k/Dk . As a
result, we obtain the relation between the LDOS and order
parameter in the two-band model which is valid at fields very
close to upper critical one:

Nk = 1 − |�k|2
2e2D2

kH2
c2

. (6)

This formula generalizes the de Gennes relation (1) for the
multiband system and arbitrary temperatures. Indeed, in the
one-band case one restores the relation (1) at low temperatures
T → 0 by taking into account the single-band limiting value
eDHc2/�0 = 1/2. However, in the two-band case the relation
between the bulk gap in a particular band and the upper critical
field depends strongly on two-band model parameters, in
particular, the ratio of diffusion constants. For our parameters
of the two-band model and T = 0.1Tc, we have �10/Tc ≈
2.05 and �20/Tc ≈ 0.81. The upper critical field calculated
using expressions from Ref. [19] reads eHc2

√
D1D2/Tc ≈

1.51, 0.38 for D1/D2 = 0.2, 10, respectively. According to
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FIG. 3. Spatial variation of the proportionality coefficient be-
tween 1 − Nk and F 2

k in the two-band model with D1/D2 = 0.2, 10
(left and right columns, respectively). (a) and (b) Coefficient for
the stronger-superconductivity band as B/Hc2, indicated by the col-
ored numbers, increases. (c) and (d) Coefficient for the weaker-
superconductivity band.

Eq. (6), the proportionality coefficient between 1 − Nk and
|�k|2/�2

k0 is then given by 4.56,1.45,0.03,23 for the cases
shown in Figs. 3(a)–3(d), respectively. These values coincide
with the black curves in Fig. 3 remarkably well.

Let us consider the normalized LDOS variations within the
vortex cell defined as σk = δNk (r)/δNk (0), where δNk (r) =
Nk (r) − Nk (R), shown in Fig. 4. Unlike the single-band
model, where σ (r/R) is fixed by magnetic field [see Fig. 1(c)],
in the two-band scenario there appears to be a freedom to

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.1
0.3
0.5
0.7
0.9

D1/D2 = 0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.1
0.3
0.5
0.7
0.9

D1/D2 = 10

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.1
0.3
0.5
0.7
0.9

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.1
0.3
0.5
0.7
0.9

σ
1

r/R

σ
1

r/R

σ
2

r/R

σ
2

r/R

(a) (b)

(d)(c)

FIG. 4. LDOS variations σk = δNk (r)/δNk (0) inside the vortex
as the value of the normalized magnetic field B/Hc2, indicated by
different colored lines, increases. Left and right columns correspond
to the cases D1/D2 = 0.2, 10, respectively.

modify LDOS variation profiles by the disparity of the band
parameters. First, in the case D1 � D2 shown in Fig. 4(c), the
LDOS N2(r) of the band with the larger diffusion coefficient
is characterized by a quite large length scale which, in fact,
exceeds the vortex-cell radius R already at sufficiently small
magnetic fields. As a result, the corresponding LDOS and
its variation σ2(r) are driven essentially by the vortex-cell
radius R. This is reflected by the almost-field-independent
form of σ2(r/R) shown in Fig. 4(c) and confirmed by the
field behavior of the LDOS half-width wσ2 discussed below.
Recent STM measurements of the multiband systems β-Bi2Pd
[27], 2H-NbSe1.8S0.2, and 2H-NbS2 demonstrate very similar
behaviors of the tunneling conductance distribution near the
vortex core [7]. The opposite regime, D1 � D2, illustrated
in Fig. 4(d), is characterized by a sufficiently short length
scale for the LDOS N2(r) of the band with a smaller dif-
fusion constant. In fact, that length becomes much shorter
than the vortex cell radius R, so that magnetic field does not
significantly affect LDOS N2(r) profiles while changing the
size of the cell. Indeed, in this case the LDOS N2 half-width
wσ2 is almost field independent, as we show below. Thus, by
normalizing the distance by the field-dependent radius R, the
corresponding LDOS variation σ2(r/R) profiles show quite
strong modifications in magnetic field, as demonstrated in
Fig. 4(d).

To quantify the above descriptive statements characterizing
vortex-core sizes we calculate the lengths w�1,2 , determined
as the half-widths of |�|21,2, and wσ1,2 , defined as the half-
widths of σ1,2. The magnetic field dependencies of these
scales are shown in Fig. 5. At higher fields, all length scales
approach the same value, which differs from the one obtained
in the single-band limit. According to the analytical solu-
tion for the superconducting nucleus, the half-width of the
squared gap at Hc2 is given by w�k ≈ 0.48R. By using values
eHc2

√
D1D2/Tc presented above for our model parameters,

we obtain w�k ≈ 0.97ξ, 1.95ξ , where ξ 2 = √
D1D2/(2πTc),

for D1/D2 = 0.2, 10, respectively. These values coincide with
numerics presented in Figs. 5(a) and 5(b) remarkably well.

As expected, the length scales w�1,2 obtained in Figs. 5(a)
and 5(b) are very close because of their almost identical
spatial profiles of Fk caused by the efficient interband pairing
[see Figs. 2(a) and 2(b)]. Similar to the one-band case, length
scales w�1,2 can be fitted by the function (B/Hc2)−1/3 in a
wide range of fields, B > 0.1Hc2 [see the inset of Fig. 5(a)].
However, the characteristic length scales of the LDOS distri-
bution wσ1,2 are significantly modified compared with those of
the single-band system. Their field dependencies can be both
stronger and weaker than that for the gap profiles determined
by w�1,2 . In particular, in the case D1 � D2, characterized
by the leading role of the vortex-cell radius on the spatial
evolution of LDOS in the band with the larger diffusion
constant [see discussion of Figs. 2(c) and 4(c)], we obtain a
stronger field behavior, and wσ2 ∝ R ∝ (B/Hc2)−1/2 for the
fields B > 0.3Hc2 [see also the inset in Fig. 5(a)]. For weak
magnetic fields, this results in the larger vortex-core size
probed by STM than the correlation length determined by the
upper critical field ξHc2 = √

φ0/(2πHc2) [12].
The opposite regime, D1 � D2, shown in Fig. 5(b), is

described by the weak field dependence of the LDOS in the
band with the smaller diffusion coefficient, in agreement with
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FIG. 5. Field dependence of the length scales normalized to
ξ =

√√
D1D2/(2πTc ) for D1/D2 = 0.2, 10 (left and right columns,

respectively). Red and blue solid lines correspond to strong and weak
band lengths w = w�1,2 determined as the half-widths of |�|21,2,
and red and blue dashed lines correspond to w = wσ1,2 defined
as the half-widths of σ1,2, respectively. The black horizontal line
is the length scale determined by the upper critical field, ξHc2 =√

φ0/(2πHc2). (a) and (b) Large interband pairings; (c) and (d) small
interband pairings. The inset in (a) shows a logarithmic-scale plot
of w�1,2 (B) (red and blue solid curves) and wσ2 (B) (blue dashed
curve). Linear dependencies y = −x/2 + const (upper black curve)
and y = −x/3 + const (lower black curve) indicate the scalings
wσ2 ∼ (B/Hc2)−1/2 and w�1,2 ∼ (B/Hc2)−1/3 for a wide range of
fields. The green dashed curve in (b) is the half-width of the total
LDOS, (N1 + N1)/2.

discussions of Figs. 2(d) and 4(d). This result is in accordance
with the recent STM measurements of the vortex-core sizes
as a function of magnetic field [7]. Note that in principle the
band-resolved LDOS distribution that we calculate is not yet
the tunneling conductance measured by STM. However, the
analysis of the LDOS in each of the bands is useful because
it provides the understanding that in the simple model when
the tunneling signal is given by the total LDOS [N1(r) +
N2(r)]/2, the effect that we have found can significantly
reduce the measured vortex size variation with magnetic field.
That is, the half-width of the total LDOS shown by the
dashed green curve in Fig. 5(b) has a much weaker magnetic
field dependence compared to that of the single-band model
demonstrated in Fig. 1(d).

Next, let us consider how the above picture changes for
reduced interband pairing. In Figs. 5(c) and 5(d) we show
vortex-core sizes w�k and wσk calculated for interband pair-
ings ten times smaller than in the MgB2 case, namely, λ12 =
0.00336 and λ21 = 0.00264. For these parameters, a weak-
band gap is induced by the interband proximity effect and
appears to be very small, �20/Tc ≈ 0.1. According to the
Usadel equation (4), this results in the enhancement of the
characteristic length scale of the LDOS of the weak band,
which one can observe by comparing the panels in Fig. 5 at

Large IP

(a) D1/D2 = 1

Small IP

(b) D1/D2 = 1

(c) D1/D2 = 0.2 (d) D1/D2 = 0.2

(e) D1/D2 = 10 (f) D1/D2 = 10

FIG. 6. Dependencies of different vortex-core sizes on the inter-
band scattering rate for the case of (a), (c), and (e) large interband
pairing (IP) λ12 = 0.0336, λ21 = 0.0264 and (b), (d), (f) small IP
λ12 = 0.00336, λ21 = 0.00264 parameters as defined in the text. Dif-
ferent ratios of diffusion coefficients in the two bands are considered.
The temperature is T = 0.1Tc0.

weak magnetic fields. For the high fields, B → Hc2, we use
the relation w�k ≈ 0.48R and calculate the value of the upper
critical field, eHc2

√
D1D2/Tc = 1.92, 0.27, to obtain w�k ≈

0.86ξ, 2.31ξ for D1/D2 = 0.2; 10, respectively, in agreement
with numerics presented in Figs. 5(c) and 5(d). Note that
half-widths wσ2 and w�1,2 shown in Fig. 5(c) have the same
scaling behavior with magnetic field as in the case of large
interband pairings demonstrated in the inset of Fig. 5(a).

2. Finite interband scattering

Here we study the effect of interband impurity scatter-
ing on the vortex-core sizes. First, we consider the region
of small fields and discuss several characteristic cases cor-
responding to the different ratios of diffusion coefficients
D1/D2 = 0.2, 1, 10 and weak/strong interband pairing, as
discussed above. The dependencies of vortex-core sizes on the
dimensionless scattering rate 	/Tc0 are shown in Fig. 6. Here
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Tc0 is the critical temperature at 	 = 0. In all cases the scales
of order parameter distributions w�1,2 are very close to each
other. The scales of LDOS distributions can be quite different
for small values of 	 and D2 significantly larger than D1, as
one can see in Figs. 6(c) and 6(d). In this regime wσ2 > wσ1 ,
in accordance with the results of Ref. [12] obtained for 	 = 0.

Increasing the interband scattering 	 leads to the qualita-
tive changes in the behavior of LDOS profiles. As shown in
Fig. 6, the scales of LDOS distributions wσ1, wσ2 get close to
each other and, in general, are smaller than the sizes of vortex
cores determined by the gap functions. For D1/D2 = 0.2 the
threshold value of 	 ≈ 2Tc0 determines the transition to the
regime when LDOS scales are smaller than w�1,2 for both
large (left column) and small (right column) interband pairing
parameters as defined above. For other values of the diffusion
constants, e.g., D1/D2 = 1 and D1/D2 = 10, the sizes wσ1,2

are always smaller than w�1,2 , but the difference between
these two types of lengths becomes more pronounced with
increasing 	. Since this feature exists for the wider range
of parameters, such as the interband pairing (compare the
right and left columns in Fig. 6), it can be considered the
general hallmark of the multiband behavior of the vortex sizes.
Quite interestingly, for small interband pairing (right column
in Fig. 6) all types of vortex-core sizes grow with 	. This
is related to the decrease of the critical temperature Tc(	)
compared to Tc0 at 	 = 0. Since we fix the temperature to
be T = 0.1Tc0 in all plots, that means with increasing 	 the
temperature get closer to Tc, which causes the vortex size
growth. Combined with the initial shrinkage of the LDOS
scale in the weak band shown by the dashed blue curve in
Figs. 6(d) and 6(f), that leads to the peculiar nonmonotonic
dependence of wσ2 (	) shown in these plots.

Let us now consider how the shrinkage of the LDOS scale
compared to the size of the gap function distribution shows
up in the magnetic field dependencies of different scales.
These dependencies are demonstrated in Fig. 7 for the two
ratios of diffusion constants, D1/D2 = 0.2 (left column) and
D1/D2 = 10 (right column). The pairing coefficients are the
same as above, λ11 = 0.1012, λ22 = 0.0448, λ12 = 0.0336,
λ21 = 0.0264. From Figs. 7(a) and 7(b) one can see that the
main effect that we discuss in the present paper, namely, the
weak dependence of the vortex-core size defined by the LDOS
distribution in a band with smaller Dk , is robust against the
moderate interband scattering 	/Tc0 ≈ 1. At the same time,
the effect of the extended vortex-core size in a weak band
[12] suggested for MgB2 is suppressed at 	 ≈ 2Tc0 when wσ2

becomes smaller than vortex sizes w�k . However, wσ2 still
remains larger than ξHc2 until rather large values of 	.

With a further increase of 	 the vortex-core sizes in differ-
ent bands get close to each other. Therefore, the magnetic field
dependencies of both w�k and wσk are qualitatively similar to
those of the single-band model. However, in contrast to the
single-band case the ratios w�k /wσk and ξHc2/wσk depend on
the pairing coefficients and diffusion constants. Thus, even for
large interband scatterings single- and multiband cases can be
distinguished by measuring the vortex-core sizes with STM
and comparing them with the scale derived from the upper
critical field ξHc2 .

D1/D2 = 0.2

(a) Γ/Tc0 = 1

D1/D2 = 10

(b) Γ/Tc0 = 1

(c) Γ/Tc0 = 5 (d) Γ/Tc0 = 5

(e) Γ/Tc0 = 10 (f) Γ/Tc0 = 10

FIG. 7. Field dependencies of vortex-core sizes for different
interband scattering rates and the ratios of diffusion constants (a),
(c), and (e) D1/D2 = 0.2 and (b), (d) and (f) D1/D2 = 10. The
interband pairing constants are λ11 = 0.1012, λ22 = 0.0448, λ12 =
0.0336, λ21 = 0.0264. The temperature is T = 0.1Tc0.

IV. SUMMARY

To conclude, we demonstrated that the vortex-core size
w�k determined by the healing of the gap order parameter
has qualitatively different magnetic field behavior than the
scale wσk defined by the spatial LDOS variations in single-
and two-band dirty superconductors. We have found several
generic regimes peculiar to only multiband superconductor.
First, the vortex-core size wσk related to the LDOS variations
in the band with the larger diffusion constant scales with
the vortex-cell radius and has the field dependence stronger
than the one for w�k . Second, the size wσk determined by
the LDOS variations in the band with the smaller diffusion
constant can have significantly weaker variations with mag-
netic field than for w�k . These features are robust against
the moderate interband scattering rates. However, for stronger
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interband scattering both the LDOS distributions in different
bands get very close to each other, so that the magnetic field
dependencies of different vortex-core sizes are similar to that
of the single-band superconductor.
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