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Plasticity induced superclimb in solid 4He: Direct and inverse effects
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Experimental evidence that the mass supertransport through solid 4He and the anomalously large matter
accumulation in the bulk—the giant isochoric compressibility (also known as the syringe effect)—are both
supported by a network of dislocations with a superfluid core is getting stronger since a decade ago. However, a
structure of this network, as well as its relation to the basal (nonsuperfluid) dislocations which are responsible for
plasticity, remain unclear. Here it is shown that superclimbing and basal edge dislocations can form bound pairs.
This implies that plastic deformation should produce the syringe effect and vice versa. The experimental test is
proposed. While the strength of the effect depends on the average orientation of the paired dislocations, there is
a feature unique to the superfluid dislocation scenario: the supercurrents flow in the direction perpendicular to
the plastic deformation.

DOI: 10.1103/PhysRevB.100.014513

Superflow through solid 4He as well as the syringe ef-
fects have been discovered in UMASS group [1]. While the
strength of the flow was extremely small (about few ng/s), the
amount of matter accumulated inside the bulk has indicated
that the solid exhibited the response on the applied chemical
potential as large as that of a liquid. The principal features of
the effects have been confirmed by two other groups [2,3]. In
the experiment [2], the intrinsic flow from one part of solid
4He to another has been found, with the rate increasing as
temperature lowered. This behavior excluded any explanation
of the syringe effect within classical plasticity. Temperature,
pressure, and bias dependencies of the superflow through
solid have been studied in detail in Ref. [3]. These turn
out to be consistent with the original observations [1]. Fur-
thermore, in Ref. [3], an explanation in terms of possible
macroscopic liquid channels (existing along the boundaries
between a sample and walls and responsible for the superflow)
has been excluded, and it was concluded that the superflow
through solid 4He occurs through a network of superfluid
dislocations observed in ab initio simulations [4,5]. It is
important to note that the temperature dependence of the
flow at T > 0.1–0.2 K is essentially insensitive to the ori-
entation of the crystal [3]. This indicates that the dislocation
network is mainly uniform and isotropic—that is, it consists
of comparable numbers of segments of screw [4] and edge [5]
types.

That a network of dislocations with superfluid core rep-
resents a system with unique dynamical properties has been
pointed out in Ref. [6] long before the observations [1–3]. This
model, however, does not take into account the superclimb—
that is, a climb of edge dislocations with superfluid core
resulting in the syringe effect [5]. An unusual feature is that
the syringe effect is essentially independent of the density of
the superfluid dislocations as long as their network is uniform
over the solid [5]. Observing such a feature would be a direct
confirmation of the superfluid dislocation scenario. However,
an imaging of dislocations in solid 4He simultaneously with

measuring the syringe effect does not appear to be possible.
Here another experiment is proposed to serve as a “smoking
gun” for the superfluid dislocation network scenario as a basis
for the observations [1–3].

The proposed experiment is based on measuring the sy-
ringe effect in response to the shear stress. At this point, it
is important to mention that the effect dubbed supershear
has been proposed in Ref. [7]. It is analogous to the high-
temperature plasticity of granular media where the activated
transport of vacancies along the grain boundaries (Coble
plasticity [8]) is replaced by superflow along the superfluid
grain boundaries [9]. While representing one option for the
interrelation between plasticity and superflow through solid, it
cannot occur in a nongranular solid. Furthermore, the bound-
ary currents induced by shear are along the applied stress
which will make this mechanism hard to distinguish from the
conservative glide of dislocations realizing the conventional
plasticity [10,11]. In contrast to the supershear [7] which
can be viewed as the longitudinal effect (with respect to the
directions of strain and superflow), the one discussed below
accounts for the transverse response on the applied shear—
that is, the superflow in the direction perpendicular to the
applied shear. Thus this effect can be dubbed as transverse
supershear.

Bound pairs of basal and superclimbing dislocations. The
key element responsible for plasticity of hcp solid 4He is the
basal edge dislocation. It is characterized by Burgers vector �b
in the basal plane (XY plane in Fig. 1) and it can glide along
this plane conservatively—that is, without any need for extra
matter injected into the bulk (see in Refs. [10,11]). In contrast,
the superclimbing dislocation has Burgers vector �bc along the
C6 symmetry axis (along Z in Fig. 1) and it cannot glide.
However, it can climb along the basal plane with the help of
extra matter supplied along its superfluid core. In Ref. [5], this
process has been proposed to be responsible for the syringe
effect [1]. Thus both dislocations can move along basal plane
(along X in Fig. 1).
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FIG. 1. Stable equilibrium positions (dashed lines) of basal glid-
ing dislocation (red) bound to superclimbing one (blue). Each bound
pair in (a)–(d) cases is characterized by specific orientations of the
Burgers vectors ±�b and ±�bc. The cores are aligned with the Y axis
(into the page) of the basal plane. Arrows indicate orientations of
the Burgers vectors and the solid lines attached to them outline the
half-planes of extra atoms. Motion of the cores can only occur along
the X axis, while the superflow occurs along the Y axis.

A pair of basal and superclimbing dislocations interact
through their elastic fields. If their cores are parallel to each
other, there are stable equilibrium relative positions of the
cores forming a straight line (dashed lines in Fig. 1) which
is inclined at 45◦ with respect to the Burgers vectors. This line
can be found from the solution for the stress field produced by
edge dislocation in isotropic medium (see in Refs. [10,11]).
(The choice between two orientations of the line can be
based on a simple argument that the extra half-planes of both
dislocations prefer not to cross each other). The force on the
superclimbing dislocation is fx = bcσ

(b)
zz (see in Refs. [10,11])

where σ
(b)
i j is the stress tensor produced by the basal disloca-

tion. The force on the basal dislocation is fx = −bσ (s)
zx , where

σ
(s)
i j is the stress tensor due to the superclimbing dislocation.

This force (its absolute value) can be found as

fx = |bbc|G
2π (1 − ν)

|z(x2 − z2)|
(z2 + x2)2

, (1)

where G and ν stand for shear modulus and the Poisson ratio,
respectively; and z and x define respective distances between
the dislocations along Z and X axes.

It is important to emphasize that both dislocations are
confined to move along X direction only. Thus the distance |z|
along Z axis is fixed. This allows introducing potential energy
V (x) = − ∫

dx fx (with its zero set at x = 0) per unit length of
the dislocations as

V (x) = bbcG

2π (1 − ν)

zx

z2 + x2
, (2)

which features maximum and minimum at x = ±z. Thus a
pair of basal and superclimbing dislocations is bound to each
other with the binding energy E = |bbc|G/4π (1 − ν) (per

FIG. 2. Schematics of the transverse supershear effect. The view
is along Z axis. The upper and lower horizontal lines represent
the basal (in red) and the superclimbing (in blue) dislocations,
respectively. The directions of their Burgers vector, b, bc, as well as
the applied force fx and the resulting displacement ξ are also shown.
Two ellipses labeled as SFR represent reservoirs with superfluid,
with the arrows along the core indicating supercurrents driven from
the reservoirs by either the external force fx = f (ex) ∼ σxz applied
to the basal dislocations or by the chemical potential bias δμ of the
reservoirs. In the latter case, the force fx ∝ δμ will be produced on
the basal dislocation.

unit of their length) which is independent of the distance
between the dislocations and has a typical scale of E ∼ 10 K
per atom along the core. (Distance |z| between the dislocations
determines the curvature of the potential energy profile as
∼1/z2).

An external stress σ (ex)
zx can break the pair apart. Indeed,

such a stress will produce force f (ex) = bσ (ex)
zx on the basal

dislocation per its unit length. Thus the potential energy
of the pair will become V (ex)(x) = V (x) − f (ex)x. Formally
speaking, arbitrary small f (ex) can break the pair. However,
there is a potential barrier for the “ionization” if f (ex) is below
some critical values fcr1 or fcr2 depending on the direction of
the applied force. If f (ex) tends to increase the distance |x|
between the dislocations, the threshold is

fcr1 = |bbc|G
16π (1 − ν)|z| . (3)

If f (ex) is applied in the opposite direction, fcr2 = 8 fcr1. In
almost ideal samples the distance |z| between dislocations
could be as large as few micrometers. Thus the pair can be
broken by a macroscopically small external stress.

Drag between basal and superclimbing dislocations. Ap-
plying a subcritical force f = bσ (ex)

zx (along X ) by external
stress σ (ex)

zx to the basal dislocation will induce drag on
the superclimbing one. This creates a chemical potential
difference δμ between superfluid reservoirs and the super-
climbing dislocation (see in Fig. 2). Accordingly, this will
induce climb of the superclimbing dislocation supported by
the superflow along its core. This is the syringe effect [5]
resulting in advancing the extra plane of atoms (either up or
down as sketched in Fig. 2). Conversely, creating externally a
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difference δμ (by applying pressure on the reservoirs or by
the Fountain effect [1,3]) will lead to injecting matter into the
extra plane of atoms which will result in the superclimb of
the dislocation along X direction (see Fig. 2). In its turn this
motion will induce the force fx ∼ δμ on the basal dislocation
causing its glide. In both cases, the flow is along Y axis while
the force moving dislocations is along X axis. This constitutes
the transverse nature of the effect.

Let’s assume the dislocation network has Ns paired seg-
ments of basal and superclimbing dislocations and introduce
work

Wi = −σ (i)
xz b(i)ξ (i) (4)

(see in Ref. [11]) done on ith segment by a local stress σ (i)
xz

moving a basal dislocation segment of length Li by a distance
ξi along the X axis, where b(i) = (�b(i) )x. This stress does
not affect the superclimbing dislocation directly. However,
because of the dislocation pair binding, the latter will be
dragged along. The displacement ξ (i) (see its direction in
Fig. 2) of the superclimbing dislocation along the basal plane
is nonconservative and is only possible if some amount of
matter δNi is supplied by superflow along the core (see the
horizontal arrows in Fig. 2). The relation between δNi and
ξ (i) is of purely geometrical nature (see in Ref. [11]) and it
depends on the sign of the Burgers vector b(i)

c = (�b(i)
c )z of the

segment:

δNi ≈ Liξ
(i)b(i)

c

a3
, (5)

where a ∼ |bc| ∼ |b| is of the order of inter atomic distance.
Here and later below, numerical coefficients ∼1 will be
ignored.

The tensor of plastic deformation u(i)
xz resulting from the

displacement of the pair can be evaluated as

u(i)
xz ≈ ξ (i)b(i)

LiL̃i
, (6)

where L̃i is given by a typical distance between basal dislo-
cations along Z direction. In what follows the approximation
L̃ = Li and that all segments are of the same length L̃i = L
will be used. This relation simply states that displacing a basal
dislocation by Li shifts the upper and lower parts of a perfect
crystal between two basal dislocations by b (see in Ref. [11]).

It is worth mentioning that both quantities δNi in Eq. (5)
and u(i)

xz in Eq. (6) are related to each other through the dis-
placement ξ (i) of a bound pair of the basal and supetrclimbing
dislocations. Thus, at least at the local level on a typical scale
∼L, there is a close relation between syringe effect and plastic
deformation.

Syringe effect induced by plastic deformation. Let’s, first,
evaluate the response of δNi on applied uniform external stress
σ (ex)

xz . Expressing ξ (i) from Eq. (5) and substituting into Eq. (4)
with the replacement σ (i)

xz → σ (ex)
xz , the work (4) becomes

Wi ≈ −a3giδNiσ
(ex)
xz where the notation

gi = b(i)
c b(i)

a2
≈ ±1 (7)

was introduced. This quantity gi varies in sign depending on
the configurations of the bound dislocations shown in Fig. 1.

(Given the C6 symmetry of the basal plane gi can actually
take four values: ±1/2,±1.) Once particles are injected into a
solid, there is a change of the compression energy which is de-
termined by elastic moduli. This energy Wc ≈ Ka3(δNi )2/Ni

where Ni is a number of atoms in a volume ∼L3
i of a perfect

crystal around the considered segment and K stands for the
compression modulus. Thus the total energy becomes

W ≈ Ka3(δNi )2

Ni
− a3giσ

(ex)
xz δNi. (8)

Minimization of W with respect to δNi gives the number of
atoms

δNi ≈ giNi
σ (ex)

xz

K
(9)

injected into a volume ∼L3
i surrounding the selected pair.

Within the assumption that the “conductive” network is uni-
form over the whole sample, Eq. (9) applies to all Ns segments.

If gi averaged over the whole sample 〈gi〉 = g̃ is nonzero,
the total syringe fraction �N/N , where N stands for the total
number of atoms in a sample, due to all segments would
become

�N

N
= g̃

σ (ex)
xz

K
. (10)

Finite g̃ occurs if dislocations with a particular sign of
the Burgers vectors dominate and, thus, produce global de-
formations. Otherwise, gi in Eq. (7) will fluctuate over a
sample and should be zero if averaged over sample realiza-
tions. However, there should be fluctuations from sample to
sample leading to finite �N for different samples. In order
to estimate the strength of the fluctuations, let’s introduce
the mean square value of the total amount of injected atoms
�̃N = √〈(∑i δNi )2〉, where 〈. . . 〉 stands for the statistical
averaging over sample realizations. Using Eq. (9),

�̃N =
√∑

i j

〈gig jNiNj〉
|σ (ex)

xz |
K

. (11)

As a simplest approximation, it is reasonable to assume that
the quantities gi from different segments of paired dislo-
cations are not correlated. This implies 〈gig j〉 = δi j . Then,√∑

i j〈gig jNiNj〉 →
√∑

i〈N2
i 〉. Considering that all segments

occupy the same volume ∼L3 and using Ni ≈ N/Ns, Eq. (11)
becomes

�̃N

N
= 1√

Ns

∣∣σ (ex)
xz

∣∣
K

. (12)

If L0 is a typical sample size and Ns ≈ L3
0/L3, this relation

gives �̃N
N ≈ (L/L0)3/2|σ (ex)

xz |/K . In a sample of size, say, L0 ∼
1 cm [1] with L ∼ 10 μm, �̃N

N ≈ 0.3 × 10−4|σ (ex)
xz |/K . In

smaller samples ∼1 mm [3] the effect should become stronger
by, at least, a factor of 30.

The inverse syringe effect: plastic deformation induced by a
superclimb. The reason for it also stems from the relations (6)
and (5)—injecting a number of atoms induces a superclimb
which in its turn initiates a glide of the basal dislocations
bound to the superclimbing ones. In this case, the external
bias is due to chemical potential variation applied to the SF
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reservoirs (see Fig. 2). This leads to injecting of �N atoms
into the solid. Under the assumption that the injected fraction
is uniform over the solid, the relation δNi/Ni = �N/N can
be used in Eq. (5). Then, ξi can be expressed as ξ (i) ≈
ab(i)

c (Ni/Li )�N/N and then substituted into Eq. (6) which
gives u(i)

xz ≈ gi�N/N where the relation Ni ≈ L2
i L̃i/a3 has

been used. Thus, if the sample average g̃ of gi is finite, the
global shear of the sample becomes

uxz ≈ g̃
�N

N
, (13)

which is the inverse version of the relation (10). If, however,
g̃ = 0, the mean square fluctuation �̃uxz of the shear deforma-
tion becomes

�̃uxz ≈ 1√
Ns

|�N |
N

→
(

L

L0

)3/2 |�N |
N

. (14)

Choosing typical |�N |/N ∼ 0.01–0.1 observed in Ref. [1]
and the same values of L0, L as above, the magnitude of
the strain fluctuations (from sample to sample) becomes
∼10−6–10−5. These values are well within the range de-
tectable in the setup [12] where strains as low as ∼10−9 have
been observed.

Polycrystalline 4He. In polycrystaline samples with ran-
dom orientations of grains the described transverse supershear
can only be observed with respect to fluctuations of �N/N
and shear strain tensor uαβ (where the indices α and β refer
to the X, Y, and Z directions) in the direct and inverse
versions, respectively. Averaging Burgers vectors �b and �bc of
the intragrain dislocations over grains in a given sample may
produce nonzero tensor gαβ = 〈(bc)αbβ〉/a2, with gαα = 0
due to �bc�b = 0 (with the summation performed over repeated
indices). (This tensor becomes zero after averaging over sam-
ple realizations). Then, e.g., for the inverse effect, the shear
strain (in a given sample) is determined as uαβ ≈ κ (gαβ +
gβα )�N/N , where κ is a numerical coefficient determined by
a mismatch between gliding planes of neighboring grains. In
general, it should be κ � 1. Thus the fluctuation of the plastic
strain should be reduced by the factor κ , if compared with the

relation (14). The direction of the flow producing the syringe
effect is set along the direction ±εαβγ gβγ , where εαβγ stands
for the Levi-Civita symbol.

Discussion. The discussed effects should be realized in the
geometry sketched in Fig. 2. Namely, the shear stress must
be applied perpendicular to the direction of the superflow
between the reservoirs. Furthermore, the resulting force on the
dislocations should be along the basal plane. Thus the optimal
condition is to have a single crystal with known orientation of
the c axis. (As the symmetry analysis conducted above shows,
the effects should also exist in polycrystalline samples—albeit
in its reduced form).

It is worth mentioning that the above estimate for Ns ∼
(L0/L)3 in Eqs. (14) and (12) is actually too conservative.
Since the orientation of Burgers vector does not change as
dislocation line meanders through the solid from one reservoir
to another, the value of gi, Eq. (7), may persist over the whole
length ∼L0. This, then, will give the number of segments
scaled as Ns ∼ (L0/L)2 and will increase the above estimates
for the fluctuations of the responses (12) and (14) by a factor
of 30.

Introducing basal and superclimbing dislocations with
prevalence of the corresponding Burgers vectors of one sign
will enhance the effects as determined by the tensor g̃ in
Eqs. (10) and (13). This can be achieved by growing crystal
in a geometry introducing basal mismatch dislocations of a
particular sign inducing global rotation of the basal plane
determined by the angle ∼ b/db, where db stands for the inter-
dislocation distance. Similarly, injecting atoms from only one
side of a sample will introduce superclimbing dislocations of
definite sign characterized by the mean separation dsc. Then,
keeping in mind the pairing between these dislocations, one
of the four configurations shown in Fig. 1 will dominate, and,
thus, g̃ can be determined as |g̃| ∼ [min(b/db, bc/dsc)]2.

It should be mentioned that bound complexes of more
than two dislocations can be formed. This, while making the
analysis more involved, does not change the results.
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