
PHYSICAL REVIEW B 100, 014510 (2019)

Conventional superconductivity in quasicrystals
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Motivated by a recent experimental observation of superconductivity in the Al-Zn-Mg quasicrystal, we study
the low-temperature behavior of electrons moving in the quasiperiodic potential of the Ammann–Beenker tiling
in the presence of a local attraction. We employ the Bogoliubov–de Gennes approach for approximants of
different sizes and determine the local pairing amplitude �i as well its spatial average, �0, the superconducting
order parameter. Due to the lack of periodicity of the octagonal tiling, the resulting superconducting state is
inhomogeneous, but we find no evidence of the superconductivity islands, as observed in disordered systems,
with �i → 0 at Tc for all sites. In the weak-coupling regime, we find that the superconducting order parameter
depends appreciably on the approximant size only if the Fermi energy sits at a pseudogap in the noninteracting
density of states, with �0 decreasing as the system size increases. These results are in line with the experimental
observations for the Al-Zn-Mg quasicrystal, and they suggest that, despite their electronic structure, quasicrystals
are prone to display conventional BCS-like superconductivity.
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I. INTRODUCTION

Quasicrystals display a nonperiodic, yet ordered, arrange-
ment of atoms [1,2]. They contain a small set of local en-
vironments which reappear again and again, albeit not in a
periodic fashion. Their structure is not random either, since
the diffraction pattern shows sharp Bragg peaks, although
their symmetry is noncrystallographic, with the n-fold sym-
metries (n = 5, 8, 10, . . .) stemming from the fact that these
local environments occur with n equiprobable orientations.
Because of this arrangement of atoms, the Bloch theorem no
longer holds and the electronic states of quasicrystals show a
remarkably rich behavior [3,4], which includes critical states
[5–9], confined states in the middle of the band [10–12], pseu-
dogap in the density of states [13–16], and unconventional
conduction properties [17–20].

Given their unusual electronic properties, there are several
works addressing the effects of electronic correlations in qua-
sicrystals, especially investigating their magnetic properties
both in localized and itinerant regimes [21–25]. Although
many interesting properties arise due to the intricate real-
space arrangement of the lattice sites, some of the physical
properties inside phases with long-range order are similar to
those of periodic systems [26]. Therefore, the experimental
observation of non-Fermi liquid behavior in the Au51Al34Yb15

heavy-fermion quasicrystal [27] immediately prompted sev-
eral theoretical studies [28–31].

Superconductivity was observed in approximants [32,33],
which are periodic rational approximations to the quasicrystal,
shortly after the discovery of quasicrystals. However, only
recently a convincing observation of bulk superconductivity in
the Al-Zn-Mg quasicrystal was reported [34]. Reference [34]
finds that the critical temperature Tc is very low, Tc � 0.05 K,
and that Tc is suppressed as one goes from the approximants to
the quasicrystal. Moreover, the authors show that the thermo-
dynamic properties can be understood within the usual BCS

weak-coupling scenario. Motivated by these experimental
findings, in this paper we study the attractive Hubbard model
in a bidimensional quasicrystal. We employ a Bogoliubov-de
Gennes approach and our results provide a scenario which is
consistent with the experimental observations.

Our paper is organized as follows. In Sec. II, we review
the basic properties of the Ammann-Beenker tiling model and
its electronic properties. In particular, we employ the Kohn’s
localization tensor to probe the spatial extent of the electronic
states. In Sec. III, we introduce the attractive Hubbard model
and the inhomogeneous Bogoliubov-de Gennes (BdG) mean-
field theory to obtain the properties of our model inside the
superconducting phase. In Sec. IV, we then compare our
results to experiments and contrast our findings with the
known results for random systems, after which we conclude
the paper. We also have two appendices. Appendix A dis-
cusses the spectral function of the noninteracting model, while
Appendix B introduces a complementary approach to study
the superconductivity, namel,y the pairing of exact eigenstates
(PoEE).

II. TILING MODEL AND ELECTRONIC PROPERTIES

For simplicity, we consider models on quasiperiodic tilings
to mimic the geometrical properties of a quasicrystal. We
report results obtained for a 2D tiling, where it is easier to
handle large system sizes numerically [35]. The 2D tiling
we consider is the octagonal, or Ammann-Beenker, tiling
[36]. This tiling is composed of two types of decorated tiles:
squares and 45o rhombuses, which combine to create six
distinct local environments with coordination numbers z =
3, · · · , 8, Fig. 1(a). These square approximants are obtained
by the standard method of projecting down from a higher di-
mensional cubic lattice [36–39], and we consider approximant
of sizes N = 41, 239, 1393, 8119, and 47321. Even though
it is easy to convince oneself on the absence of translational
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FIG. 1. (a) Square approximant for the perfect octagonal tiling
with N = 239 sites. There are six local site environments with z =
3, . . . , 8 nearest neighbors in the bulk. Nearest-neighboring sites
are connected along the edges of the squares and the rhombuses.
Superimposed inflated N = 41 approximant (thick lines) with its
length rescaled by the silver ratio s = 1 + √

2. (b) X-ray structure
factor for the N = 8119 approximant displaying the underlying
eightfold symmetry. The width of the disk indicates the intensity of
the peak. The red arrows show the vectors πs(1, 0) and πs/

√
2(1, 1),

connecting the � point to two of the neighboring brighter peaks.
(c) Density of states for the N = 47321 approximant, calculated
considering open boundary conditions and two broadening widths
γ . (d) Integrated density of states showing the electronic filling as
a function of the chemical potential. Local density of states for the
N = 8119 approximant at the fillings: (e) n = 0.25 and (f) n = 1.00.

invariance by examining the real-space arrangement of the
lattice sites in Fig. 1(a), the eightfold rotational symmetry
(present at many different scales) becomes evident as we go
to momentum space and calculate the x-ray structure factor,
Fig. 1(b). The lack of periodicity manifests itself in reciprocal
space both by the absence of a Brillouin zone and the presence
of several intense Bragg peaks. As we increase the approxi-
mant size, more and more spots appear in the structure factor
until it becomes densely filled in the reciprocal space in the
limit of the infinite quasicrystal. Another important property
of quasicrystals is their self-similarity under inflation trans-
formations. These are site-decimation operations on a subset
of vertices of the tiling followed by an increase in the length
scale and the reconnection of the surviving vertices. It globally

preserves the quasiperiodic structure, see Fig. 1(a), and the
infinite quasicrystal is invariant under such transformation
[38,40].

The presence of diffraction spots of widely differing inten-
sities has important consequences on the electronic properties
of the quasicrystal. In a periodic system, if the Fermi wave
vector kF satisfies 2kF = H, where H is a reciprocal lattice
vector, a band gap is expected to emerge. In a quasicrystal,
because the structure factor is densely filled, this condition is
easily met and then we expect the brighter peaks to lead to
strong scattering of conduction electrons, giving rise to spikes
in the density of states (DOS) [see also Fig. 6(b)] [41,42].
The scattering due to the remaining peaks, while weaker,
results in wave functions which show fluctuations at all length
scales. The Fibonacci chain, a one-dimensional quasicrystal,
provides an example of such wave functions [5], often referred
to as critical [3–7,9], in analogy with those found at the
Anderson metal-insulator transition [43–45].

As a minimal model to describe the electronic properties
of quasicrystals, we study a nearest-neighbor tight-binding
Hamiltonian in the Ammann-Beenker tiling,

H0 = −t
∑
〈i j〉,σ

(c†
iσ c jσ + c†

jσ ciσ ), (1)

where c†
iσ (ciσ ) is the creation (annihilation) operator of an

electron at site i with spin σ and t is the hopping amplitude
between sites i and j. In the following, energies are measured
in units of t . In our calculation, we consider open boundary
conditions because: (i) it preserves the particle-hole symmetry
of the tiling and (ii) the finite size effects are comparable to
those of periodic boundary conditions due to the quasiperiodic
arrangement of the different local environments [24].

The resulting DOS ρ(ω) = (1/N )
∑

ν δ(ω − εν ), where εν

are the eigenenergies of H0 in Eq. (1), is shown in Fig. 1(c)
(we replace each delta function by a Lorentzian of width γ ).
As anticipated, ρ(ω) displays a strong energy dependence
with several spikes, which are largely independent of the
broadening γ . The large peak at ω = 0 can be traced to
families of strictly localized states, a consequence of the local
topology of the octagonal tiling [3,12]. The integrated density
of states n(μ) = ∫ μ

−∞ dωρ(ω), μ is the chemical potential,
is shown in Fig. 1(d). Besides the discontinuity close to
μ = 0, corresponding to the peak in ρ(0), n(μ) also shows a
kink at the filling 2/s2 ≈ 0.34315, where s = 1 + √

2 is the
silver ratio. This is analogous to the case of the Fibonacci
chain, where plateaus in n(μ) appear at 2/gn, where n is
an integer and g is the golden ratio [8]. A plateau in n(μ)
corresponds to a gap in the single-particle spectrum of Eq. (1).
However, conversely to the one-dimensional case, the DOS in
the Ammann-Beenker tiling has at most a pseudogap close
to ω ≈ −1.9t , corresponding to the filling 2/s2, and thus we
observe only a kink.

A pseudogap at the Fermi level assists in the stabilization
of the quasiperiodic structure via the Hume–Rothery mech-
anism, and it is indeed predicted and observed in several
quasicrystals [14,16,18,41,46–48].

The unambiguous existence of a pseudogap is hindered
due to the finite broadening γ employed in the numerical
calculation of ρ(ω). Therefore, we now probe the spatial
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extent of the wave function, especially close to the filling 2/s2.
First, we compute the inverse participation ratio (IPR),

IPRν =
∑

i

|ψν (i)|4, (2)

where ψν is an eigenstate of H0 with eigenenergy εν . The
scaling of the IPR with the system size is related to the
spatial structure of the single-particle electronic states. If we
write IPRν ∝ N−β , then β = 1 for extended and β = 0 for
exponentially localized states. In a quasicrystal, we expect
0 � β � 1, due to the multifractal character of the eigenstates
[3,43,44,49]. In Fig. 2, we calculate IPRν at different positions
in the band. For most fillings, we obtain β ≈ 0.90, a value
similar to the one observed in the Penrose tiling [3]. At the
band center, we get β ≈ 1, a value one expects for extended
states (at half filling, we have flat bandlike structures coex-
isting with dispersive ones, see Appendix A). For n = 2/s2,
we have β = 0.55(6). Although smaller than the values at the
other fillings, this value does not indicate that this particular
state is localized and it seems inconsistent with the presence
of a pseudogap.

While the IPR is a very useful tool in the context of disor-
dered systems, it may not be able to capture all the subtleties
of quasicrystalline electronic states. Indeed, a recent study of
the one-dimensional Fibonacci chain showed that the IPR is
unable to capture the expected insulating behavior inside the
band minigaps [50]. Following Ref. [50], we then decided to
study the scaling behavior of the Kohn’s localization tensor
[51–53]:

λγδ = 1

N

∑
i, j

(ri − r j )γ (ri − r j )δ|P(i, j)|2. (3)

Here ri is the position of site i inside the approximant, γ , δ

correspond to the spatial directions x and y, and P(i, j) =∑
ν ψν (i)ψ�

ν ( j), with εν � μ, is the one-particle density ma-
trix for a Slater determinant. Therefore, the localization tensor
takes into account all states up to the chemical potential
and not only a single-particle state. Because time-reversal
symmetry is preserved in the problem, the transverse terms
vanish identically: λxy = λyx = 0. Moreover, we have λxx =
λyy = λ, so we drop the spatial subscripts henceforth. The
scaling of length λ with the approximant size then determines
if the system is a metal or an insulator. In a metal, we expect
λ2 to diverge with N , whereas for an insulator we expect
λ2 to saturate to a constant [50]. If we write λ−2 ∝ N−α ,
we then expect 0 � α � 1. The results for the scaling of
Kohn’s localization tensor are displayed in Fig. 2(b), where
it is clear that its dependence with the band filling is indeed
more pronounced as compared to the IPR. For arbitrary filling,
the states have an extendedlike nature, particularly at the
band center where we have α ≈ 1. For the filling n = 2/s2,
however, λ−2 is weakly size dependent, α ≈ 0.1, suggesting a
localizedlike nature for this state, consistent with the presence
of a pseudogap.

Overall, we find that the Kohn’s localization tensor has
a stronger dependence with the band filling and it is better
suited to decide whether the electronic states are conducting or
insulating [50]. We stress, however, that λ is not simply related
to the spatial extent of the single-particle eigenstates, and a

FIG. 2. (a) Inverse participation ratio IPRν as a function of the
approximant size N for different fillings n on a log-log plot. We fit
IPRν ∝ N−β . (b) Same as (a) for the Kohn’s localization tensor. We
fit λ−2 ∝ N−α .

more detailed characterization of the multifractal character of
the eigenstates is not straightforward within this formalism.

III. SUPERCONDUCTIVITY

After discussing the electronic properties of the octagonal
tiling, we now move to the main topic of this paper, which
is the study of superconductivity. We describe an s-wave
superconductor using the attractive Hubbard Hamiltonian,

H = H0 − U
∑

i

ni↑ni↓, (4)

where H0 is given by Eq. (1), U > 0 is the uniform on-site
pairing attraction, and niσ = c†

iσ ciσ is the number operator.
This model naturally neglects the effects of Coulomb interac-
tion, as well as the nontrivial phonon spectrum of quasicrys-
tals [54–58]. However, we feel that it is a useful exercise to
understand the physics of this simple model, where we can
contrast our results with a similar investigation in the Penrose
tiling [59]. Moreover, we will show that it provides a useful
starting point to understand the recently reported quasicrystal
superconductivity [34].

We study the model in Eq. (4) for different values of
the pairing attraction U and filling n. Because the DOS in
a quasicrystal is strongly energy dependent, Fig. 1(c), one
could expect, in principle, strong filling dependence of the
results. Nevertheless, as we discussed in the previous section,
the behavior of the electronic states is qualitatively the same
for all fillings, i.e., metalliclike, except at the special filling
of 2/s2 where we observe an insulating behavior due to a
pseudogap in the DOS.

To solve the Hamiltonian Eq. (4), we employ the BdG
approach, following the works in Refs. [60,61], to write the
mean-field Hamiltonian:

HBdG = −t
∑
〈i j〉,σ

(c†
iσ c jσ + c†

jσ ciσ ) −
∑
i,σ

μ̃iniσ

+
∑

i

(�ic
†
i↑c†

i↓ + ��
i ci↓ci↑). (5)

The local pairing amplitude �i and the local density ni are
determined via the self-consistent equations,

�i = −U 〈ci↓ci↑〉, 〈ni〉 =
∑

σ

〈c†
iσ ciσ 〉, (6)

where the thermal averages are taken considering the eigen-
states and eigenenergies of Eq. (5), which we determine via
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a numerical Bogoliubov transformation. We also introduce
an effective chemical potential to incorporate a site-depend
Hartree shift: μ̃i = μ + U 〈ni〉/2, building thus the most gen-
eral mean-field theory for an inhomogeneous s-wave super-
conductor [62]. We remark that this mean-field theory keeps
only the amplitude fluctuations of �i and should only be valid
at weak coupling.

We solve the self-consistency Eqs. (6) on finite approx-
imants with N sites, open boundary conditions, and fixed
electronic filling n = ∑

i ni/N . We consider U � 1.5t because
smaller values of U generate very large coherence lengths and
are harder to simulate. To solve Eqs. (6), we start with an
initial guess for the local density ni and the pairing amplitude
�i, and we iterate the procedure until convergence is achieved
on all sites. We then adjust the chemical potential μ to
target the desired filling n. Notice, therefore, that we have
two self-consistency loops, making the whole procedure quite
demanding numerically. To complement this procedure, and
to access larger system sizes, we also implement the method
of PoEE [60,61] (see Appendix B).

We start by showing the spatial distribution of the local
pairing amplitude �i at T = 0 in Figs. 3(a) and 3(b). For
small values of the pairing attraction U , the spatial pattern
of �i roughly follows that of the local density of states
[63], see Figs. 1(e) and 1(f), and it is essentially determined
by the local environment of a given site i. At low fillings,
the sites with a larger coordination number z show larger
values of �i, whereas for n → 1 sites with smaller z are
the ones with larger �i, Figs. 3(c) and 3(d). Importantly,
we do not observe the formation of superconducting islands
as in disordered superconductors [60,61,64–67]. This is not
unexpected because these islands occur in regions where the
random disorder potential is unusually small, corresponding
thus to rare regions [68,69], a situation which cannot take
place in the presence of a deterministic quasiperiodic potential
obeying inflation rules. Because the distribution of �i consists
essentially of six delta peaks, each one associated to a local
environment, and is neither broad nor shows weight at �i ≈ 0,
we also conclude that the system is far away from a possible
quasiperiodicity-induced quantum phase transition.

In smaller approximants, N � 1393, we are able to solve
the BdG solutions at finite temperatures, Figs. 3(e) and 3(f).
Even though �i is spatially inhomogeneous, we find that
the superconducting phase transition takes place at all ap-
proximant sites at once within our numerical precision. In
a translational invariant system, we naturally expect all �i’s
to vanish concomitantly at Tc. For the octagonal tiling, we
believe that its self-similarity under inflation transformations,
see Fig. 1(a), forces all �i’s to vanish simultaneously at Tc.
To see this, suppose we start with a subset of sites for which
�i = 0 inside the superconducting phase. Now we succes-
sively apply the inflation transformations (remember also
that �i is essentially determined by its local environment).
Because these transformations leave the infinite system in-
variant due to their self-similarity, we would then be able to
eventually move the entire system to the normal phase. This
argument also highlights that the existence of rare regions
is not possible, thus precluding both the existence of the
superconducting islands at T = 0, as discussed before, and
the presence of a thermal Griffiths phase close to Tc.

FIG. 3. Color plots of local pairing amplitude �i, normalized
by its maximum value: (a) n = 0.25 and (b) n = 1.00. Average
value of the local pairing amplitude for a given local environment
characterized by the coordination number z, �z. The height of
the bars give the average value and the black lines the standard
deviation: (c) n = 0.25 and (d) n = 1.00. Here we considered T = 0,
the approximant with N = 8119 sites, and U = 1.5t . Temperature
dependence, rescaled by Tc, of the the local pairing amplitude �i,
divided by �0, for the N = 1393 approximant and two different
fillings: (e) n = 0.25 [Tc/t = 0.011, �0 = 0.015(6)] and (f) n =
1.00 [(Tc/t = 0.13, �0 = 0.22(5)]. We compare the results with
BCS theory (blue curve). The black dots represent the average value
of �i, whereas the red dots show all values of �i for the tiling.

To explore the role of the coherence length ξ—as de-
fined by the spatial decay of the sample averaged correlation
function 〈�i� j〉—we study the Fourier transform of both �i

and ni, see Fig. 4. The Fourier transform of �i shows the
expected eightfold structure, as in Fig. 1(b), but there are
several missing peaks which we link to the presence of a
coherence length ξ (ξ is the largest, circa 10 lattice spacing, at
the pseudogap n = 2/s2). As we increase the local attraction
U , the Cooper pairs become more and more local, resulting in
the suppression of ξ and in the observation of a densely filled
�i spectrum in reciprocal space. The local density ni, on the
other hand, is quite insensitive to U as it varies on the scale of
one lattice spacing, always following the lattice potential.

We now investigate the superconducting ground-state evo-
lution as a function of the approximant size N . On one
hand—based on previous studies considering the multifractal
states observed at the Anderson metal-insulator transition—
[43–45] one could naively expect an enhancement of the
superconductivity [70,71] as one moves toward the infinite
quasicrystal since the electronic states become more and more
critical. On the other hand, all experiments so far find a
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FIG. 4. Fourier transform of the local pairing amplitude, (a) and
(c), and the local electronic density ni, (b) and (d), for n = 2/s2 with
U = 1.5t , (a) and (b), and U = 6.0t , (c) and (d). The width of the
disk indicates the intensity of the peak. The red arrows are the same
as in Fig. 1(b). Here we considered N = 8119.

reduction, or even a complete suppression, of Tc as one goes
from the approximant to the quasicrystal [32–34]. In Fig. 5,
we show the superconducting order parameter �0 = ∑

i �i/N
and Tc as a function of the approximant size N . We compare
the results for �0 using the full numerical solution of the
BdG equations, Eqs. (6), and that coming from the PoEE,
Eqs. (B3) and (B4) [the PoEE is cheaper numerically and
allows us to go up to N = 47321 and also to estimate Tc,
see Eq. (B5)]. We find that �0 and Tc remain essentially
constant for N � 239 at all fillings but n = 2/s2, and the
results of both methods agree even quantitatively. This implies
that the approximants are able to capture the behavior of
the infinite quasicrystal, and that the nature of the electronic
wave functions in the infinite quasicrystal does not affect its
superconductivity. This somewhat disappointing result also
shows that the expected analogy to disordered systems close
to the Anderson metal-insulator transition does not hold (for
all parameter sets we simulate, considering U � 1.5t , we
find no enhancement superconductivity as we increase N).
Our scaling results for a general filling in Fig. 5 also do not
agree with the experimentally observed suppression of Tc as
N increases. The only filling which captures the experimental
trend is n = 2/s2, corresponding to the pseudogap in the DOS.
Here, both �0 and Tc are suppressed, at weak coupling, as
we increase the approximant size, due to the pseudogap in
the DOS. From Fig. 2(b), we see that the pseudogap gets
more and more pronounced as N increases, and for N → ∞
we must have U > Uc, a critical coupling, for the system to
display superconductivity. For U = 1.5t , the PoEE approach
suggests that �0 → 0, whereas the full BdG solution finds
�0 > 0, albeit small. The difference comes from the fact that
the BdG method modifies the eigenstates of the noninteracting
Hamiltonian, and it shows that we are already above the

FIG. 5. Superconducting order parameter �0 = ∑
i �i/N and

critical temperature Tc as a function of the approximant size N .
We show the results from both the Bogoliubov-de Gennes (BdG)
(�0) and the pairing of exact eigenstates (PoEE) (�0, Tc ) methods.
(a) U = 1.5t and n = 0.25; (b) U = 3.0t and n = 0.25; (c) U = 1.5t
and n = 2/s2; (d) U = 3.0t and n = 2/s2; (e) U = 1.5t and n =
1.00; (f) U = 3.0t and n = 1.00.

critical coupling Uc. As U increases, all fillings behave sim-
ilarly and the results are essentially size independent. There-
fore, the suppression of Tc in a quasicrystal occurs only if the
Fermi level sits at a pseudogap—a condition routinely met in
real quasicrystals—and at weak coupling.

IV. DISCUSSION AND CONNECTION TO EXPERIMENTS

Our results show that the physics observed at the mean-
field level in randomly disordered superconductors is not
present in quasicrystals. In particular, we do not observe
the formation of superconducting islands due to the deter-
ministic character of the lattice potential we consider [38],
a conclusion which should be valid for a broad range of
quasicrystals that can be similarly constructed via inflation or
substitution rules. As was recently shown [67], the existence
of such islands circumvents Anderson’s theorem [72,73] and
generically enhances Tc. We also do not find an increase of
Tc due to the multifractal nature of the electronic state in
the infinite quasicrystal, as is expected for disordered sys-
tems close to the Anderson metal-insulator transition [70,71].
Taken together, these observations imply that the BdG solu-
tion for superconductivity in a quasicrystal essentially fulfills
Anderson’s theorem, i.e. the electrons form pairs with time-
reversed eigenstates, say ν ↑ and ν̄ ↓, of the noninteracting
model. Thus the superconductivity is of the conventional
weak-coupling BCS type, with both Tc and �0 depending
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weakly on N (this point is further supported by the excellent
agreement between the results of the BdG and PoEE methods
in Fig. 5). An interesting consequence of this observation is
the fact that Anderson’s theorem also implies that Tc does
not depend on the wave functions of H0, but only on its
spectrum, and thus Tc should be mainly governed by the
DOS in Fig. 1(c). Our scaling of the order parameter �0 in
Fig. 5 illustrates this conclusion as the only distinct behavior is
observed at the pseudogap and at weak-coupling. Concerning
the finite temperature critical properties of the model, the
absence of rare regions, together with the fact that Luck’s
criterion [26] holds for the octagonal tilling (as it does for
most tilings constructed via inflation rules), implies that the
mean-field BCS solution is expected to hold, as is observed
experimentally [34].

Although the filling n = 2/s2 looks like a finely tuned
exception in our model, this point is actually very relevant
experimentally, since in most quasicrystals the Fermi energy
is located at a pseudogap [13–16]. Because of that, our results
naturally account for the suppression of superconductivity as
one goes from the approximant to the quasicrystal [32,33],
and for the conventional superconductivity in the Al-Zn-Mg
quasicrystal, as reported in Ref. [34]. One obvious implication
of our findings is that a small amount of nonmagnetic impu-
rities should enhance Tc in a quasicrystal, similarly to what is
predicted for superconducting semimetals [65–67]. A similar
possibility to increase Tc is to dope the system, moving the
Fermi level away from the pseudogap.

We can also use our results to understand the absence
of superconductivity in Au51Al34Yb15 [27] and other related
heavy-fermion quasicrystals [33]. In this class of quasicrys-
tals, a non-Fermi liquid behavior was reported without the
tuning of an external parameter [27]. Interestingly, such elec-
tronic behavior is absent in the approximants. A plausible
scenario to understand these observations is the presence
of unscreened magnetic moments down to T → 0 in the
quasicrystals, while in the approximants the moments are al-
ways screened below a temperature T � [30]. Therefore, while
superconductivity is observed in the approximants of heavy-
fermion quasicrystals [33], the unscreened local moments in
quasicrystals act as local pair-breaking defects and further
suppress the superconductivity, making it unlikely for this
phase to appear in an experimentally accessible temperature.

Overall, despite the fractal geometry of quasicrystals [74],
the observation of unconventional superconductivity in qua-
sicrystals [59] will probably require the same ingredients as in
periodic metals, meaning appreciable electron-electron inter-
action, most likely in a material which does not involve f elec-
trons. Another interesting problem would be to understand the
compounds with a strong electron-phonon coupling where the
ubiquitous phonon spectrum of quasicrystals would come into
play [58], contrasting these findings with superconductivity in
elastically strained crystals where the electronic structure is
modulated in response to local lattice deformations [75].

V. CONCLUSIONS

In this paper, we have studied the electronic properties
and the s-wave superconductivity in the two-dimensional
Ammann-Beenker tiling. For the electronic properties, we

employed the Kohn’s localization tensor and the IPR to access
the extent of the electronic states. As in one-dimensional
examples [50], we find that the localization tensor gives
a more detailed account on the conduction properties of a
quasiperiodic system, as shown, for instance, in the better
description of the insulating behavior expected for the pseu-
dogap at n = 2/s2.

To investigate the superconductivity, we considered both
real-space BdG and the PoEE approaches to calculate the
local pairing amplitude �i. We show that �i is essentially
determined by its local environment and that the formation
of superconducting islands is absent due to the deterministic
nature of the lattice potential we consider [38]. Therefore,
we find conventional BCS superconductivity in a quasicrystal,
despite the nature of their noninteracting electronic states. The
pairing mechanism is the one suggested by Anderson [72],
with time-reversed eigenstates forming the Cooper pairs. In
the weak-coupling limit, the superconductivity is suppressed
at the pseudogap as we increase the approximant size. Our
findings are in accordance with recent experimental observa-
tions [34].

Since the physics of rare events, which has profound
effects in random inhomogeneous systems [76], is absent in
quasicrystals, one may expect their electronic and magnetic
responses to display a more conventional behavior whenever
long-range order is present [21–24,77]. Of course, the local
response is still highly nontrivial due to the fractal geometry of
quasicrystalline lattice [27,30], and future work on correlation
effects on quasicrystals are certain to provide many more
surprises, an avenue that nowadays can also be explored using
different platforms such as cold atoms [78], electronic sys-
tems with incommensurate order [79], or strongly correlated
electronic systems at fractional filling [80].
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APPENDIX A: SPECTRAL FUNCTION

To gain further insight on the electronic structure of the
noninteracting model, we calculate the spectral function

A(k, ω) =
∑

ν

δ(ω − εν )|ψν (k)|2, (A1)

where ψν (k) is the νth eigenstate of the noninteracting tight-
binding Hamiltonian H0, projected onto the momentum ba-
sis, and εν is its corresponding eigenenergy. To calculate
A(k, ω) numerically, we represent the Dirac-delta function as
a Lorentzian with a broadening γ = 0.01t .

In Fig. 6(a), we show the constant energy surfaces for the
filling 2/s2 and the eightfold rotation symmetry is evident
[47,48]. Because of the pseudogap, the Fermi-surface-like
contours are broken into pockets which are centered around
the brightest x-ray spots displayed in Fig. 1(b). Since we
have a dense set of Bragg peaks, there are several of these
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FIG. 6. (a) Surfaces of constant energy for the filling n = 2/s2.
The color intensity is determined by the spectral function A(k, ω)
and is shown in a log scale. The vectors shown here are the ones
in Fig. 1(b) connecting the brightest Bragg peaks. (b) Energy as
a function of momentum for the path defined in (a). The dashed
lines set the energy of the pseudogap. Again, the color intensity
is determined by the spectral function A(k, ω) and is shown in a
log scale. These results were obtained for the approximant with
N = 8119 sites.

pockets and they intersect each other, making an immediate
association to a pseudogap difficult in a finite approximant,
where we superimpose our numerical broadening to the true
physical broadening of the curves, coming from the fact that
momentum is not a good quantum number (see the finite size
scaling in Fig. 2).

The energy as a function of momentum, for a given path
in reciprocal space, is displayed in Fig. 6(b). There, we
see that close to the band edges the dispersionlike curves
show a parabolic behavior. Therefore, a nearly-free-electron
viewpoint appears to be a good starting point to understand
the electronic properties of quasicrystals at these extreme
fillings [41]. As we move on toward the band center, the
dispersive features become more and more blurred due to
the presence of gap openings at the crossing of the many
parabolic bandlike curves. The boundaries between these two
regimes are roughly set by the location of the pseudogap,
where seemly linearly dispersing features are present [19].
Precisely at the band center, there is a flat bandlike structure,
which can be directly linked to the huge peak in the DOS

in Fig. 1(c). However, one also observes dispersive features,
confirming that at half filling, the model given by Eq. (1) is
metallic.

APPENDIX B: PAIRING OF EXACT EIGENSTATES (PoEE)

To complement the BdG results in the main text, we also
consider the so-called pairing of exact eigenstates [60,61].
This approach is a generalization of Anderson’s original idea
of pairing an exact eigenstate of an inhomogeneous system
to its time-reversed pair [72]. Since this formalism considers
only the eigenstates and eigenenergies of Eq. (1), it allows
us to investigate up to the N = 47321 approximant. A full
self-consistent solution of the BdG equations for this num-
ber of sites is computationally prohibitive within our exact
diagonalization scheme, although it may be possible using,
for example, the kernel polynomial method [81,82].

We now briefly review the method. We start with the eigen-
states ψν of the noninteracting Hamiltonian H0 in Eq. (1). We
then pair up electrons in time-reversed eigenstates, say ν ↑
and ν̄ ↓. The analogous BCS Hamiltonian in this basis is then
given by [83]

H̃ =
∑
ν,σ

ξνc†
νσ cνσ − U

∑
ν,ζ

Mν,ζ c†
ν↑c†

ν̄↓cζ̄↓cζ↑, (B1)

where the matrix Mν,ζ is given by

Mν,ζ =
∑

i

|ψν (i)|2|ψζ (i)|2, (B2)

and ξν = εν − μ̃ is the energy of the noninteracting problem
measured with respect to effective, Hartree-shifted, chemical
potential. A mean-field treatment of Eq. (B1) then leads to the
following set of self-consistent equations:

�ν = U
∑

ζ

Mν,ζ

�ζ

2Eζ

tanh
Eζ

2T
, (B3)

〈n〉 = 1

N

∑
ν

(
1 − ξν

Eν

tanh
Eν

2T

)
, (B4)

where Eν = √
ξ 2
ν + �2

ν and T is the temperature. The first
equation determines the pairing amplitude of each eigenstate
ν, whereas the second one fixes the effective chemical poten-
tial μ̃ (notice here we are only able to fix the average elec-
tronic density in the system). Once we solve these equations,
we can then obtain the real space pairing amplitudes at T = 0
[60,61], and we have that 〈�i〉 = 〈�ν〉 = �0. The scaling of
the order parameter is shown in Fig. 5 and we see that the
PoEE results nicely follow the full BdG solution, thus con-
firming Anderson’s pairing and pointing to the conventional
nature of the superconductivity in quasicrystals.

If we now linearize Eq. (B3), we get the following set of
linear equations:

�ν =
∑

ζ

Bνζ (T )�ζ , (B5)

where we defined the matrix Bν,ζ (T ) =
UMν,ζ tanh (|ξζ |/2T )/|ξζ |. Tc is then given by temperature
where the largest eigenvalue of Bν,ζ (T ) becomes equal to
1 with 〈n〉 fixed [although Bν,ζ (T ) is nonsymmetric, we
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checked that its eigenvalues are real]. The resulting Tc are
also shown in Fig. 5, and we can compare it with the BdG
results for N = 1393 in Figs. 3(c) and 3(d). For n = 0.25,

we have Tc/t = 0.011 (BdG) and 0.008 (PoEE) whereas for
n = 1.00 we have Tc/t = 0.137 (BdG) and 0.120 (PoEE),
again showing a good agreement between the methods.

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic
Phase with Long-Range Orientational Order and no Transla-
tional Symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[2] D. Levine and P. J. Steinhardt, Quasicrystals: A New Class of
Ordered Structures, Phys. Rev. Lett. 53, 2477 (1984).

[3] U. Grimm and M. Schreiber, Energy spectra and eigenstates
of quasiperiodic tight-binding Hamiltonians, in Quasicrystals—
Structure and Physical Properties, edited by H.-R. Trebin
(Wiley-VCH, Weinheim, 2003).

[4] A. Jagannathan and F. Piéchon, Energy levels and their correla-
tions in quasicrystals, Philos. Mag. 87, 2389 (2007).

[5] M. Kohmoto, B. Sutherland, and C. Tang, Critical wave func-
tions and a Cantor-set spectrum of a one-dimensional quasicrys-
tal model, Phys. Rev. B 35, 1020 (1987).

[6] H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, Elec-
tronic properties of the Penrose lattice. I. Energy spectrum and
wave functions, Phys. Rev. B 43, 8879 (1991).

[7] H. Q. Yuan, U. Grimm, P. Repetowicz, and M. Schreiber,
Energy spectra, wave functions, and quantum diffusion for
quasiperiodic systems, Phys. Rev. B 62, 15569 (2000).

[8] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaître,
E. Galopin, I. Sagnes, A. Amo, J. Bloch, and E. Akkermans,
Fractal Energy Spectrum of a Polariton Gas in a Fibonacci
Quasiperiodic Potential, Phys. Rev. Lett. 112, 146404 (2014).

[9] N. Macé, A. Jagannathan, P. Kalugin, R. Mosseri, and F.
Piéchon, Critical eigenstates and their properties in one-
and two-dimensional quasicrystals, Phys. Rev. B 96, 045138
(2017).

[10] M. Kohmoto and B. Sutherland, Electronic States on a Penrose
Lattice, Phys. Rev. Lett. 56, 2740 (1986).

[11] M. Arai, T. Tokihiro, T. Fujiwara, and M. Kohmoto, Strictly
localized states on a two-dimensional Penrose lattice, Phys.
Rev. B 38, 1621 (1988).

[12] T. Rieth and M. Schreiber, Identification of spatially confined
states in two-dimensional quasiperiodic lattices, Phys. Rev. B
51, 15827 (1995).

[13] T. Fujiwara, Electronic structure in the Al-Mn alloy crystalline
analog of quasicrystals, Phys. Rev. B 40, 942 (1989).

[14] T. Fujiwara and T. Yokokawa, Universal Pseudogap at Fermi
Energy in Quasicrystals, Phys. Rev. Lett. 66, 333 (1991).

[15] A. Ishikawa, Y. Takagiwa, K. Kimura, and R. Tamura, Probing
of the pseudogap via thermoelectric properties in the Au-Al-Gd
quasicrystal approximant, Phys. Rev. B 95, 104201 (2017).

[16] S. Jazbec, S. Vrtnik, Z. Jaglicčić, S. Kashimoto, J. Ivkov, P.
Popcčević, A. Smontara, Hae Jin Kim, Jin Gyu Kim, and J.
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Dobrosavljević, Non-Fermi-Liquid Behavior in Metallic Qua-
sicrystals with Local Magnetic Moments, Phys. Rev. Lett. 115,
036403 (2015).

[31] S. Takemura, N. Takemori, and A. Koga, Valence fluctuations
and electric reconstruction in the extended Anderson model on
the two-dimensional Penrose lattice, Phys. Rev. B 91, 165114
(2015).

[32] J. E. Graebner and H. S. Chen, Specific Heat of an Icosahedral
Superconductor, Mg3Zn3Al2, Phys. Rev. Lett. 58, 1945 (1987).

[33] K. Deguchi, M. Nakayama, S. Matsukawa, K. Imura, K.
Tanaka, T. Ishimasa, and N. K. Sato, Superconductivity of
Au-Ge-Yb approximants with Tsai-type clusters, J. Phys. Soc.
Jpn. 84, 023705 (2015).

[34] K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada, T. Ishimasa, A.
Ochiai, K. Deguchi, K. Imura, and N. K. Sato, Discovery of
superconductivity in quasicrystal, Nat. Commun. 9, 154 (2018).

[35] As argued in Ref. [54], the lower critical dimension for the
existence of critical states in quasicrystals is 1D. In this sense,
there should not be significant qualitative differences between
electronic quasicrystalline states in 2D and 3D.

014510-8

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1080/14786430701196990
https://doi.org/10.1080/14786430701196990
https://doi.org/10.1080/14786430701196990
https://doi.org/10.1080/14786430701196990
https://doi.org/10.1103/PhysRevB.35.1020
https://doi.org/10.1103/PhysRevB.35.1020
https://doi.org/10.1103/PhysRevB.35.1020
https://doi.org/10.1103/PhysRevB.35.1020
https://doi.org/10.1103/PhysRevB.43.8879
https://doi.org/10.1103/PhysRevB.43.8879
https://doi.org/10.1103/PhysRevB.43.8879
https://doi.org/10.1103/PhysRevB.43.8879
https://doi.org/10.1103/PhysRevB.62.15569
https://doi.org/10.1103/PhysRevB.62.15569
https://doi.org/10.1103/PhysRevB.62.15569
https://doi.org/10.1103/PhysRevB.62.15569
https://doi.org/10.1103/PhysRevLett.112.146404
https://doi.org/10.1103/PhysRevLett.112.146404
https://doi.org/10.1103/PhysRevLett.112.146404
https://doi.org/10.1103/PhysRevLett.112.146404
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevLett.56.2740
https://doi.org/10.1103/PhysRevLett.56.2740
https://doi.org/10.1103/PhysRevLett.56.2740
https://doi.org/10.1103/PhysRevLett.56.2740
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.51.15827
https://doi.org/10.1103/PhysRevB.51.15827
https://doi.org/10.1103/PhysRevB.51.15827
https://doi.org/10.1103/PhysRevB.51.15827
https://doi.org/10.1103/PhysRevB.40.942
https://doi.org/10.1103/PhysRevB.40.942
https://doi.org/10.1103/PhysRevB.40.942
https://doi.org/10.1103/PhysRevB.40.942
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevB.95.104201
https://doi.org/10.1103/PhysRevB.95.104201
https://doi.org/10.1103/PhysRevB.95.104201
https://doi.org/10.1103/PhysRevB.95.104201
https://doi.org/10.1016/j.jallcom.2013.10.073
https://doi.org/10.1016/j.jallcom.2013.10.073
https://doi.org/10.1016/j.jallcom.2013.10.073
https://doi.org/10.1016/j.jallcom.2013.10.073
https://doi.org/10.1126/science.261.5122.737
https://doi.org/10.1126/science.261.5122.737
https://doi.org/10.1126/science.261.5122.737
https://doi.org/10.1126/science.261.5122.737
https://doi.org/10.1103/PhysRevB.50.9843
https://doi.org/10.1103/PhysRevB.50.9843
https://doi.org/10.1103/PhysRevB.50.9843
https://doi.org/10.1103/PhysRevB.50.9843
https://doi.org/10.1103/PhysRevB.87.235121
https://doi.org/10.1103/PhysRevB.87.235121
https://doi.org/10.1103/PhysRevB.87.235121
https://doi.org/10.1103/PhysRevB.87.235121
https://doi.org/10.1016/j.crhy.2013.09.010
https://doi.org/10.1016/j.crhy.2013.09.010
https://doi.org/10.1016/j.crhy.2013.09.010
https://doi.org/10.1016/j.crhy.2013.09.010
https://doi.org/10.1103/PhysRevLett.90.177205
https://doi.org/10.1103/PhysRevLett.90.177205
https://doi.org/10.1103/PhysRevLett.90.177205
https://doi.org/10.1103/PhysRevLett.90.177205
https://doi.org/10.1103/PhysRevLett.94.077201
https://doi.org/10.1103/PhysRevLett.94.077201
https://doi.org/10.1103/PhysRevLett.94.077201
https://doi.org/10.1103/PhysRevLett.94.077201
https://doi.org/10.1103/PhysRevB.92.224409
https://doi.org/10.1103/PhysRevB.92.224409
https://doi.org/10.1103/PhysRevB.92.224409
https://doi.org/10.1103/PhysRevB.92.224409
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.93.235143
https://doi.org/10.1103/PhysRevB.96.214402
https://doi.org/10.1103/PhysRevB.96.214402
https://doi.org/10.1103/PhysRevB.96.214402
https://doi.org/10.1103/PhysRevB.96.214402
https://doi.org/10.1209/0295-5075/24/5/007
https://doi.org/10.1209/0295-5075/24/5/007
https://doi.org/10.1209/0295-5075/24/5/007
https://doi.org/10.1209/0295-5075/24/5/007
https://doi.org/10.1038/nmat3432
https://doi.org/10.1038/nmat3432
https://doi.org/10.1038/nmat3432
https://doi.org/10.1038/nmat3432
https://doi.org/10.7566/JPSJ.82.083704
https://doi.org/10.7566/JPSJ.82.083704
https://doi.org/10.7566/JPSJ.82.083704
https://doi.org/10.7566/JPSJ.82.083704
https://doi.org/10.1103/PhysRevB.87.245122
https://doi.org/10.1103/PhysRevB.87.245122
https://doi.org/10.1103/PhysRevB.87.245122
https://doi.org/10.1103/PhysRevB.87.245122
https://doi.org/10.1103/PhysRevLett.115.036403
https://doi.org/10.1103/PhysRevLett.115.036403
https://doi.org/10.1103/PhysRevLett.115.036403
https://doi.org/10.1103/PhysRevLett.115.036403
https://doi.org/10.1103/PhysRevB.91.165114
https://doi.org/10.1103/PhysRevB.91.165114
https://doi.org/10.1103/PhysRevB.91.165114
https://doi.org/10.1103/PhysRevB.91.165114
https://doi.org/10.1103/PhysRevLett.58.1945
https://doi.org/10.1103/PhysRevLett.58.1945
https://doi.org/10.1103/PhysRevLett.58.1945
https://doi.org/10.1103/PhysRevLett.58.1945
https://doi.org/10.7566/JPSJ.84.023705
https://doi.org/10.7566/JPSJ.84.023705
https://doi.org/10.7566/JPSJ.84.023705
https://doi.org/10.7566/JPSJ.84.023705
https://doi.org/10.1038/s41467-017-02667-x
https://doi.org/10.1038/s41467-017-02667-x
https://doi.org/10.1038/s41467-017-02667-x
https://doi.org/10.1038/s41467-017-02667-x


CONVENTIONAL SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 100, 014510 (2019)

[36] J. E. S. Socolar, Simple octagonal and dodecagonal quasicrys-
tals, Phys. Rev. B 39, 10519 (1989).

[37] D. Levine and P. J. Steinhardt, The Physics of Quasicrystals
(World Scientific, Singapore, 1987).

[38] M. Duneau, R. Mosseri, and C. Oguey, Approximants of
quasiperiodic structures generated by the inflation mapping,
J. Phys. A: Math. Gen. 22, 4549 (1989).

[39] V. G. Benza and C. Sire, Band spectrum of the octagonal
quasicrystal: Finite measure, gaps, and chaos, Phys. Rev. B 44,
10343 (1991).

[40] A. Jagannathan, Self-similarity under inflation and level statis-
tics: A study in two dimensions, Phys. Rev. B 61, R834
(2000).

[41] A. P. Smith and N. W. Ashcroft, Pseudopotentials and Qua-
sicrystals, Phys. Rev. Lett. 59, 1365 (1987).

[42] E. S. Zijlstra and T. Janssen, Non-spiky density of states of an
icosahedral quasicrystal, Europhys. Lett. 52, 578 (2000).

[43] A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse,
D. D. Awschalom, and A. Yazdani, Visualizing critical cor-
relations near the metal-insulator transition in Ga1−xMnxAs,
Science 327, 665 (2010).

[44] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer,
Critical Parameters from a Generalized Multifractal Analysis at
the Anderson Transition, Phys. Rev. Lett. 105, 046403 (2010).

[45] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer,
Multifractal finite-size scaling and universality at the Anderson
transition, Phys. Rev. B 84, 134209 (2011).

[46] Z. M. Stadnik, D. Purdie, M. Garnier, Y. Baer, A.-P. Tsai, A.
Inoue, K. Edagawa, S. Takeuchi, and K. H. J. Buschow, Elec-
tronic structure of quasicrystals studied by ultrahigh-energy-
resolution photoemission spectroscopy, Phys. Rev. B 55, 10938
(1997).

[47] E. Rotenberg, W. Theis, K. Horn, and P. Gille, Quasicrystalline
valence bands in decagonal AlNiCo, Nature 406, 602 (2000).

[48] V. A. Rogalev, O. Gröning, R. Widmer, J. H. Dil, F. Bisti,
L. L. Lev, T. Schmitt, and V. N. Strocov, Fermi states and
anisotropy of Brillouin zone scattering in the decagonal Al-Ni-
Co quasicrystal, Nat. Commun. 6, 8607 (2015).

[49] A. Chhabra and R. V. Jensen, Direct Determination of the f(α)
Singularity Spectrum, Phys. Rev. Lett. 62, 1327 (1989).

[50] V. K. Varma, S. Pilati, and V. E. Kravtsov, Conduction in
quasiperiodic and quasirandom lattices: Fibonacci, Riemann,
and Anderson models, Phys. Rev. B 94, 214204 (2016).

[51] R. Resta and S. Sorella, Electron Localization in the Insulating
State, Phys. Rev. Lett. 82, 370 (1999).

[52] R. Resta, The insulating state of matter: A geometrical theory,
Eur. Phys. J. B 79, 121 (2011).

[53] I. Souza, T. Wilkens, and R. M. Martin, Polarization and local-
ization in insulators: Generating function approach, Phys. Rev.
B 62, 1666 (2000).

[54] J. M. Luck and D. Petritis, Phonon spectra in one-dimensional
quasicrystals, J. Stat. Phys. 42, 289 (1986).

[55] J. Los, T. Janssen, and F. Gähler, The phonon spectrum of the
octagonal tiling, Int. J. Mod. Phys. B 07, 1505 (1993).

[56] M. Quilichini, Phonon excitations in quasicrystals, Rev. Mod.
Phys. 69, 277 (1997).

[57] M. de Boissieu, Phonons, phasons and atomic dynamics in
quasicrystals, Chem. Soc. Rev. 41, 6778 (2012).

[58] P. Brown, K. Semeniuk, D. Wang, B. Monserrat, C. J. Pickard,
and F. M. Grosche, Strong coupling superconductivity in

a quasiperiodic host-guest structure, Sci. Adv. 4, eaao4793
(2018).

[59] S. Sakai, N. Takemori, A. Koga, and R. Arita, Superconductiv-
ity on a quasiperiodic lattice: Extended-to-localized crossover
of Cooper pairs, Phys. Rev. B 95, 024509 (2017).

[60] A. Ghosal, M. Randeria, and N. Trivedi, Role of Spatial Ampli-
tude Fluctuations in Highly Disordered s-wave Superconduc-
tors, Phys. Rev. Lett. 81, 3940 (1998).

[61] A. Ghosal, M. Randeria, and N. Trivedi, Inhomogeneous pair-
ing in highly disordered s-wave superconductors, Phys. Rev. B
65, 014501 (2001).
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