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Phase stiffness in an antiferromagnetic superconductor
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We analyze the suppression of the phase stiffness in a superconductor by antiferromagnetic order. The analysis
is based on a general expression for the phase stiffness in a mean-field state with coexisting spin-singlet
superconductivity and spiral magnetism. Néel order is included as a special case. Close to half filling, where
the pairing gap is much smaller than the magnetic gap, a simple formula for the phase stiffness in terms of
magnetic quasiparticle bands is derived. The phase stiffness is determined by charge carriers in small electron
or hole pockets in this regime. The general analysis is complemented by a numerical calculation for the
two-dimensional Hubbard model with nearest- and next-to-nearest-neighbor hopping amplitudes at a moderate
interaction strength. The resulting phase stiffness exhibits a striking electron-hole asymmetry. In the ground state,
it is larger than the pairing gap on the hole-doped side and smaller for electron doping. Hence, in the hole-doped
regime near half filling, the ground-state pairing gap sets the scale for the Kosterlitz-Thouless temperature T KT

c ,
while in the slightly electron-doped regime, T KT

c is determined essentially by the ground-state phase stiffness.
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I. INTRODUCTION

Unconventional superconductivity in transition-metal ox-
ides and heavy fermion compounds frequently appears in
the vicinity of antiferromagnetically ordered states. Antifer-
romagnetic fluctuations seem to provide the dominant pairing
interaction in these systems. Occasionally, even the coexis-
tence of magnetic order and superconductivity is observed,
such as in La2−xSrxCuO4 [1,2], YBa2Cu3O6+x [3,4], and
multilayer cuprates [5].

The coexistence of antiferromagnetism and unconventional
superconductivity has also been found in various theoretical
studies of the two-dimensional Hubbard model, the most
popular model for the copper-oxide planes in cuprate high-
temperature superconductors. At weak coupling, functional
renormalization-group (fRG) calculations revealed the coex-
istence of magnetic order and d-wave pairing in the ground
state, both in the electron- and hole-doped regimes [6–8].
Similar results were obtained from quantum cluster meth-
ods at strong coupling [9–12]. For the two-dimensional t-J
model, which is closely related to the Hubbard model in the
strong-coupling limit, superconductivity in the coexistence
with antiferromagnetic order has been found in analytic calcu-
lations based on slave boson mean-field theory [13] and chiral
perturbation theory [14].

In two-dimensional systems, the thermal phase transition
between the superconducting and the normal state is of the
Kosterlitz-Thouless type, that is, it is associated with vortex-
antivortex unbinding. The transition temperature Tc is thus
not necessarily determined by the size of the pairing gap,
but also limited by the stiffness of the phase of the su-
perconducting order parameter [15]. In continuum systems
such as liquid helium, the phase stiffness is proportional to
a “superfluid density,” which can be interpreted as the density
of particles contributing to superfluidity. The phase stiffness in

superconductors is inversely proportional to the square of the
London penetration depth. The famous Uemura plot exhibits a
direct proportionality between Tc and λ−2

L for a large number
of high-temperature superconductors [16], indicating that Tc

is determined by the phase stiffness.
The undoped parent compounds of cuprate superconduc-

tors are Mott insulators. Hence, the density of charge carriers
vanishes upon reducing the doping. The phase stiffness should
thus be reduced, too. This yields a natural mechanism for the
suppression of Tc in the underdoped regime [17].

Mott’s metal-to-insulator transition is a strong-coupling
phenomenon. However, for weaker electron-electron interac-
tions, the density of the charge carriers can also be reduced
by antiferromagnetic order or by strong antiferromagnetic
fluctuations. At half filling, band splitting due to antiferromag-
netism can turn a metal into an insulator—known as Slater
insulator. Away from but still close to half filling, gapless
charge excitations in an antiferromagnetic state are restricted
to the Fermi surface of small electron or hole pockets. While
the Cooper instability still exists in this situation, the phase
stiffness of a superconductor is expected to be reduced by
antiferromagnetism.

In this paper, we present a quantitative analysis of the
suppression of the phase stiffness by antiferromagnetic order.
We derive a general formula for the phase stiffness in a spin-
singlet superconductor coexisting with antiferromagnetism.
The derivation is valid for momentum-dependent gap func-
tions of arbitrary symmetry, including s wave and d wave. The
antiferromagnetic order is assumed to be of a spiral form. This
includes the Néel state as a special case. A formula for the
phase stiffness in a superconducting ground state coexisting
with Néel order has already been published by Tobijaszewska
and Micnas [18]. We extend their result to spiral order with
arbitrary wave vectors and to finite temperature. The formula
can be substantially simplified if the pairing gap is much
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smaller than the magnetic gap. Sharapov and Carbotte [19]
have derived a low-energy theory for the influence of spin
density wave order on the temperature and magnetic field
dependence of the phase stiffness in a d-wave superconductor,
where only excitations in the nodal region were taken into
account. Their analysis is restricted to the special case where
the magnetic wave vector connects opposite nodal points.

We evaluate the phase stiffness for the two-dimensional
Hubbard model with moderate interaction strength in the
weakly hole- and electron-doped regime around half filling.
To this end, we compute effective magnetic and pairing
interactions from a functional renormalization-group flow
and insert these into the mean-field gap equations for the
ordered state [7,8]. The superconducting phase stiffness can
then be calculated from the resulting magnetic and pairing
order parameters. We also compute the Kosterlitz-Thouless
transition temperature T KT

c . Both the phase stiffness and T KT
c

vanish upon approaching half filling, as expected by the
above qualitative arguments. At first sight surprisingly, the
Kosterlitz-Thouless temperature is significantly smaller than
the mean-field transition temperature only on the electron-
doped, not on the hole-doped, side. Performing an analytic
evaluation of the phase stiffness near half filling, we provide
a transparent explanation for this behavior.

The article is structured as follows. In Sec. II, we derive
the formula for the phase stiffness in a mean-field state with
coexisting spiral magnetic order and superconductivity. The
simpler case of a pure BCS superconductor is discussed in
the Appendix for comparison. Analytic results in special cases
are obtained in Sec. III. Finally, in Sec. IV, we compute the
phase stiffness and the Kosterlitz-Thouless temperature for the
Hubbard model close to half filling and discuss the results. A
conclusion in Sec. V closes the presentation.

II. GENERAL FORMALISM

In this section, we will derive a general expression for the
phase stiffness in a mean-field state with coexisting spiral
magnetic order and superconductivity at finite temperatures.
We will be using natural units h̄ = kB = c = 1.

A. Mean-field action

We consider a single-band spin- 1
2 fermion system with a

bare dispersion relation εk in a mean-field state with coex-
isting spiral magnetic and spin-singlet superconducting order.
The corresponding mean-field Hamiltonian has the form H =
H0 + HM + HSC, where H0 = ∑

p,σ εpa†
pσ apσ is the kinetic

term, and

HM =
∑

p

Ap(a†
p+Q↓ap↑ + a†

p↑ap+Q↓), (1)

HSC =
∑

p

(�p a†
−p↓a†

p↑ + �∗
p ap↑a−p↓). (2)

Here, a†
pσ and apσ are the creation and annihilation oper-

ators for fermions with momentum p and spin orientation
σ , respectively. The spiral order is characterized by a wave
vector Q and a (real) magnetic gap function Ap. Note that
we have dropped a constant from the mean-field Hamiltonian

which contributes to the condensation energy, but not to the
electromagnetic response and phase stiffness.

In a functional integral formalism [20], the creation and
annihilation operators are replaced by Grassmann fields ψ̄pσ

and ψpσ , respectively, where the index p = (p, p0) con-
tains the momentum variable p and the fermionic Mat-
subara frequency p0. Introducing Nambu spinors �p =
(ψp↑, ψ̄−p↓, ψp+Q↓, ψ̄−p−Q↑), the action corresponding to the
mean-field Hamiltonian H can be written as

S = −
∑

p0

∑
p∈M

�̄pG−1(p)�p + T −1
∑

p

ξp, (3)

with ξp = εp − μ, where T is the temperature and μ is the
chemical potential. The field-independent term is generated
by the anticommutation of operators required for normal or-
dering before passing to the functional integral representation.
The inverse propagator in Eq. (3) is a 4 × 4 matrix of the form

G−1(p) = ip0I − Hp, (4)

where I is the 4 × 4 unit matrix, and

Hp =

⎛
⎜⎜⎝

ξp −�p Ap 0
−�∗

p −ξ−p 0 −A−p−Q

Ap 0 ξp+Q �−p−Q

0 −A−p−Q �∗
−p−Q −ξ−p−Q

⎞
⎟⎟⎠. (5)

The momentum summation is restricted to a reduced (mag-
netic) Brillouin zone M, which must be chosen such that there
is no double counting. For example, for spiral states with wave
vectors of the form Q = (π − 2πη, π ), a convenient choice
of M is defined by restricting py to |py| � π/2. For the Néel
state, the magnetic zone defined by cos px + cos py � 0 is the
most common choice.

B. Coupling to electromagnetic field

The phase stiffness of a superconductor can be computed
from the linear response function which determines the cur-
rent induced by an external electromagnetic field. Describing
the latter by a vector potential A in a gauge where the
scalar potential φ vanishes and divA = 0, the induced electric
current density is given by

jα (q, ω) = −
∑
α′

Kαα′ (q, ω) Aα′ (q, ω). (6)

This defines the response function Kαα′ (q, ω). The phase
stiffness is related to its static limit,

Kαα′ = lim
q→0

Kαα′ (q, 0). (7)

Kαα′ is usually diagonal, Kαα′ = Kαδαα′ , and the phase stiff-
ness Jα is given by

Kα = (2e)2Jα. (8)

This relation follows directly from the form of the Ginzburg-
Landau action for a superconductor coupled to an electromag-
netic field [21]. In isotropic systems or systems with cubic
symmetry, Kα and Jα do not depend on the direction, that is,
Kα = K and Jα = J are independent of α. In a superconductor
with a parabolic dispersion εk = k2

2m , one can relate K to a
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“superfluid density” ns via the formula K = nse2/m [22]. For
electrons in a crystal, there is no such relation.

For electrons moving in a crystal lattice, the vector poten-
tial couples to the electrons via a phase factor multiplying the
hopping amplitudes,

t j j′ (A) = t j j′ exp

[
ie

∫ r j′

r j

A(r, t ) · dr

]
, (9)

where e is the electron charge (that is, negative), r j is the
position vector of the site j in real space, and the integral is
along a straight line from r j to r j′ . This yields a contribution
to the action of the form [23]

SA =
∑
p,p′

∑
σ

ψ̄pσVpp′[A]ψp′σ , (10)

where

Vpp′[A] = e
∑

α

εα
p/2+p′/2 Aα (p − p′)

+e2

2

∑
α,α′

εαα′
p/2+p′/2

∑
k

Aα (p − p′ − k)Aα′ (k)

+ · · · , (11)

with εα
p = ∂εp/∂ pα , and εαα′

p = ∂2εp/(∂ pα∂ pα′ ). Contribu-
tions beyond quadratic order in A do not contribute to
Kαα′ (q, ω). For electrons in a continuum with a quadratic dis-
persion relation εp = p2/(2m), the above expressions are the
same as those obtained by minimal gauge-invariant coupling.

In lattice models with density-density interactions, such
as the Hubbard model or the extended Hubbard model, the
vector potential couples only to the hopping amplitudes,
not to the interaction terms. However, in an effective low-
energy model, additional terms corresponding to vertex cor-
rections generally appear even on the mean-field level. Here
we neglect these contributions. For a momentum-dependent
magnetic gap function Ap, this approximation violates gauge
invariance.

The coupling term SA can also be transformed to Nambu
representation. The linear (in A) contribution to SA can be
written as

S (1)
A =

∑
α

∑
p0,p′

0

∑
p,p′∈M

�̄pλ
(1)
pp′,α�p′ Aα (p − p′), (12)

with

λ
(1)
pp′,α = e

⎛
⎜⎜⎜⎜⎝

εα
p/2+p′/2 0 0 0

0 −εα
−p/2−p′/2 0 0

0 0 εα
p/2+p′/2+Q 0

0 0 0 −εα
−p/2−p′/2−Q

⎞
⎟⎟⎟⎟⎠. (13)

A constant e
∑

p,α εα
p Aα (0) arising from the anticommutation of the field operators for spin-↓ particles vanishes due to the

antisymmetry of εα
p , and thus does not yield a contribution to S(1)

A . The quadratic term can be written as

S (2)
A =

∑
α,α′

∑
p0,p′

0

∑
p,p′∈M

�̄pλ
(2)
pp′,αα′�p′

∑
k

Aα (p − p′ − k)Aα′ (k) + e2

2T

∑
α,α′

∑
p

εαα′
p

∑
k

Aα (−k)Aα′ (k), (14)

with

λ
(2)
pp′,αα′ = e2

2

⎛
⎜⎜⎜⎜⎜⎝

εαα′
p/2+p′/2 0 0 0

0 −εαα′
−p/2−p′/2 0 0

0 0 εαα′
p/2+p′/2+Q 0

0 0 0 −εαα′
−p/2−p′/2−Q

⎞
⎟⎟⎟⎟⎟⎠. (15)

The second term in S(2)
A arises from the anticommutation of

the creation and annihilation operators for spin-↓ particles
in the Nambu representation. Contributions where one of the
original momentum variables p and p′ lies inside M and the
other outside M have been discarded. They do not contribute
to Kαα′ (q) for q → 0.

C. Evaluation of response function K

The current density is given by

jα (q, ω) = − 1

V

∂�[A]

∂Aα (−q,−ω)
, (16)

where �[A] is the grand-canonical potential in the presence
of the vector potential A, and V is the volume of the system.
The response function Kαα′ (q, ω) can thus be obtained by
expanding �[A] to second order in A. The grand-canonical
potential is given by the functional integral

�[A] = −T ln
∫

D[ψ̄, ψ]e−S[ψ̄,ψ]−SA[ψ̄,ψ,A]. (17)

There are two distinct contributions to �[A] which are
quadratic in A, i.e., a diamagnetic contribution from the first-
order term in an expansion of �[A] in powers of SA with the
second order (in A) contribution to SA, and a paramagnetic

014504-3



WALTER METZNER AND HIROYUKI YAMASE PHYSICAL REVIEW B 100, 014504 (2019)

contribution from the second-order term in SA with the first-
order contribution to SA. Both contributions are determined by
a Gaussian integral. The diamagnetic contribution is obtained
as

�dia[A] = T tr(GV (2)[A])

+e2

2

∑
α,α′

∑
p

εαα′
p

∑
k

Aα (−k)Aα′ (k), (18)

where

V (2)
pp′ [A] =

∑
α,α′

λ
(2)
pp′,αα′

∑
k

Aα (p − p′ − k)Aα′ (k), (19)

and the paramagnetic contribution as

�para[A] = T

2
tr(GV (1)[A]GV (1)[A]), (20)

where

V (1)
pp′ [A] =

∑
α

λ
(1)
pp′,α Aα (p − p′). (21)

The matrix propagator G in Eqs. (18) and (20) is given by
Eq. (4). The traces and matrix products involve sums over
fermion momenta (restricted to M), Matsubara frequencies,
and Nambu indices.

Taking derivatives with respect to Aα (−q), one obtains
the corresponding contributions to the current densities, from
which one can read off the diamagnetic and paramagnetic
contributions to the response function Kαα′ (q),

Kdia
αα′ = 2T

V

∑
p0

∑
p∈M

tr
[
G(p) λ

(2)
pp,αα′

] + e2 1

V

∑
p

εαα′
p , (22)

Kpara
αα′ (q) = T

V

∑
p0

∑
p∈M

tr
[
G(p)λ(1)

p,p+q,αG(p + q)λ(1)
p+q,p,α′

]
.

(23)

Here the traces and matrix products refer only to the 4 ×
4 Nambu structure. All frequency variables are Matsubara
(imaginary) frequencies so far. The diamagnetic contribution
does not depend on momenta and frequencies.

The matrix propagator can be diagonalized by a unitary
transformation,

G̃(p) = U †
p G(p)Up

= diag
[
(ip0 − E1p)−1, . . . , (ip0 − E4p)−1

]
, (24)

where Ejp are the four eigenvalues of Hp in Eq. (5).
For real �p, the transformation matrix Up can be chosen
real. The traces can be evaluated with the diagonalized
propagator G̃(p) and correspondingly transformed vertices
λ̃

(1)
pp′,α = U †

p λ
(1)
pp′,αUp′ and λ̃

(2)
pp′,αα′ = U †

p λ
(2)
pp′,αα′Up′ . The Mat-

subara sums and the analytic continuation to real frequencies
ω can then be easily performed. Taking the limit q → 0 after
ω → 0, one obtains

Kdia
αα′ = 2

∫
p∈M

∑
j

f (Ejp)
(
λ̃

(2)
pp,αα′

)
j j +

∫
p

e2εαα′
p , (25)

Kpara
αα′ (0, 0)

=
∫

p∈M

∑
j

f ′(Ejp)
(
λ̃(1)

pp,α

)
j j

(
λ̃

(1)
pp,α′

)
j j

+
∫

p∈M

∑
j, j′ �= j

f (Ejp) − f (Ej′p)

Ejp − Ej′p

(
λ̃(1)

pp,α

)
j j′

(
λ̃

(1)
pp,α′

)
j′ j . (26)

The total current response for q → 0 and ω → 0 is the sum

Kαα′ = Kdia
αα′ + Kpara

αα′ (0, 0), (27)

with Kdia
αα′ from Eq. (25) and Kpara

αα′ from Eq. (26).

III. ANALYTIC RESULTS

For Néel antiferromagnets, the magnetic gap obeys the
relation A−p−Q = Ap+Q = Ap. The same relation is trivially
satisfied for spiral states with arbitrary Q, if Ap is momentum
independent. This is the case for mean-field solutions of
models with a Hubbard interaction [24]. More sophisticated
fRG calculations yield magnetic gap functions with a weak
momentum dependence [8], such that A−p−Q = Ap is approx-
imately valid also for non-Néel states. A particularly simple
formula for the phase stiffness can be derived for the ground
state near half filling, where the pairing gap is much smaller
than the magnetic gap.

A. Diagonalization for A−p−Q = Ap

For A−p−Q = Ap, the eigenvalue equation for the 4 × 4 ma-
trix Hp in Eq. (5) is biquadratic so that it can be easily solved
analytically. Fixing the phase of the pairing gap such that �p
is real, one finds E1p = E+

p , E2p = −E+
p , E3p = E−

p , E4p =
−E−

p , where

E±
p =

√
1

2
(E2

p + E2
−p−Q) ± 1

2

√(
E2

p − E2
−p−Q

)2 + 4
[
(ξp + ξ−p−Q)2 + (�p + �−p−Q)2

]
A2

p, (28)

with Ep =
√

ξ 2
p + A2

p + �2
p. The transformation matrix can be

written as Up = (e1p, e2p, e3p, e4p), where e1p, . . . , e4p are the
four normalized eigenvectors corresponding to the four eigen-
values. Their components can be chosen real. The eigenvec-
tors belonging to eigenvalues with opposite signs are related
to each other by an exchange of the first with the second, and
the third with the fourth, component, and a sign change in the

second and fourth component. Hence, Up can be written in the
form

Up =

⎛
⎜⎜⎝

up vp r̄p s̄p

−vp up −s̄p r̄p

rp sp ūp v̄p

−sp rp −v̄p ūp

⎞
⎟⎟⎠. (29)
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The normalization of the sum of squares in each line and
column implies that u2

p + v2
p = ū2

p + v̄2
p and r2

p + s2
p = r̄2

p +
s̄2

p. The eigenvectors and hence the matrix Up can, in princi-
ple, be computed explicitly by solving the linear eigenvector
equations Upe jp = Ejpe jp and normalizing the eigenvectors.
This yields elementary but lengthy expressions.

The matrix elements of the vertices λ̃(1)
pp,α and λ̃(2)

pp,α depend
on the matrix elements of the transformation matrix Up.
With Up of the form Eq. (29), the first-order vertex λ̃(1)

pp,α =
U †

p λ(1)
pp,αUp is determined by only four distinct nonzero matrix

elements,(
λ̃(1)

pp,α

)
11 = e

[(
u2

p + v2
p

)
εα

p + (
r2

p + s2
p

)
εα

p+Q

]
,(

λ̃(1)
pp,α

)
33 = e

[(
r̄2

p + s̄2
p

)
εα

p + (
ū2

p + v̄2
p

)
εα

p+Q

]
,(

λ̃(1)
pp,α

)
13 = e

[
(upr̄p + vps̄p)εα

p + (rpūp + spv̄p)εα
p+Q

]
,(

λ̃(1)
pp,α

)
14 = e

[
(ups̄p − vpr̄p)εα

p + (rpv̄p − spūp)εα
p+Q

]
.

The remaining matrix elements can be expressed in terms of
these four or vanish:(

λ̃(1)
pp,α

)
12 = (

λ̃(1)
pp,α

)
21 = (

λ̃(1)
pp,α

)
34 = (

λ̃(1)
pp,α

)
43 = 0,(

λ̃(1)
pp,α

)
22 = (

λ̃(1)
pp,α

)
11,(

λ̃(1)
pp,α

)
44 = (

λ̃(1)
pp,α

)
33,(

λ̃(1)
pp,α

)
23 = (

λ̃(1)
pp,α

)
32 = −(

λ̃(1)
pp,α

)
41 = −(

λ̃(1)
pp,α

)
14,(

λ̃(1)
pp,α

)
24 = (

λ̃(1)
pp,α

)
42 = (

λ̃(1)
pp,α

)
31 = (

λ̃(1)
pp,α

)
13. (30)

From the second-order vertex λ̃
(2)
pp,αα′ = U †

p λ
(2)
pp,αα′Up, only the

diagonal elements

(
λ̃

(2)
pp,αα′

)
11 = e2

2

[(
u2

p − v2
p

)
εαα′

p + (
r2

p − s2
p

)
εαα′

p+Q

]
= −(

λ̃
(2)
pp,αα′

)
22,(

λ̃
(2)
pp,αα′

)
33 = e2

2

[(
r̄2

p − s̄2
p

)
εαα′

p + (
ū2

p − v̄2
p

)
εαα′

p+Q

]
= −(

λ̃
(2)
pp,αα′

)
44 (31)

are needed.
Inserting the above expressions for the vertices into

Eqs. (25) and (26), one obtains the current response func-
tion in terms of the eigenvalues Ejp and the matrix ele-
ments of Up. The formulas simplify considerably in the zero-
temperature limit, where f (E1p) = f (E3p) = 0, f (E2p) =
f (E4p) = 1, and f ′(Ejp) = 0 (except at special momenta as-
sociated with nodes in the pairing gap), so that

Kdia
αα′ = e2

∫
p
εαα′

p − e2
∫

p∈M

[(
u2

p − v2
p + r̄2

p − s̄2
p

)
εαα′

p

+ (
r2

p − s2
p + ū2

p − v̄2
p

)
εαα′

p+Q

]
, (32)

Kpara
αα′ = −4e2

∫
p∈M

1

E+
p + E−

p

∏
i=α,α′

[
(ups̄p − vpr̄p)εi

p

+ (rpv̄p − spūp)εi
p+Q

]
. (33)

Both results agree with the corresponding expressions for
the phase stiffness Jα = Kαα/(2e)2 in a Néel antiferromagnet
coexisting with superconductivity reported by Tobijaszewska
and Micnas [18] in their Eqs. (13) and (14). The mathematical
structure is the same for a spiral state with arbitrary Q.
Note that

∫
p εαα′

p = ∫
p∈M [εαα′

p + εαα′
p+Q] actually vanishes for

electrons in a crystal, where εp is a periodic function.

B. Phase stiffness near half filling

Close to half filling, the pairing gap �p is much smaller
than the magnetic gap Ap. In this situation, the influence of
pairing on magnetism is negligible, and we may compute
the quasiparticle bands associated with the antiferromagnetic
order and the transformation matrix Up in the limit �p → 0.
For a Néel state, as well as for spiral magnetic states with
arbitrary momentum vectors Q, the bare band is split in two
quasiparticle bands ε+

p and ε−
p of the form [23,25]

ε±
p = 1

2 (εp + εp+Q) ±
√

1
4 (εp − εp+Q)2 + A2

p. (34)

In the following, we assume A−p−Q = Ap, which is always
valid for a Néel state, and for spiral states with any wave
vector if the gap function is momentum independent.

For �p → 0, the four eigenvalues of Hp, see Eq. (5),
are then given by E1p = E+

p , E2p = −E+
p , E3p = E−

p , E4p =
−E−

p , where

E±
p = |ξ±

p | with ξ±
p = ε±

p − μ. (35)

In this limit, the matrix elements of the transformation matrix
Up, see Eq. (29), are given by simple expressions. From
the eigenvector equation for the eigenvalue E1p = E+

p , one
obtains

up = Ap

(ξ+
p − ξp)2 + A2

p
�(ξ+

p ),

vp = Ap

(ξ+
p − ξp)2 + A2

p
�(−ξ+

p ),

rp = ξ+
p − ξp

(ξ+
p − ξp)2 + A2

p
�(ξ+

p ),

sp = ξ+
p − ξp

(ξ+
p − ξp)2 + A2

p
�(−ξ+

p ). (36)

The eigenvector equation for the eigenvalue E3p = E−
p yields

ūp = ξ−
p − ξp

(ξ−
p − ξp)2 + A2

p
�(ξ−

p ),

v̄p = ξ−
p − ξp

(ξ−
p − ξp)2 + A2

p
�(−ξ−

p ),

r̄p = Ap

(ξ−
p − ξp)2 + A2

p
�(ξ−

p ),

s̄p = Ap

(ξ−
p − ξp)2 + A2

p
�(−ξ−

p ). (37)

014504-5



WALTER METZNER AND HIROYUKI YAMASE PHYSICAL REVIEW B 100, 014504 (2019)

Up to a global sign, the above expressions for the matrix
elements are fixed uniquely by the eigenvector equations
and the normalization of the eigenvectors. Note that the
matrix elements depend only via the difference εp+Q − εp on
the dispersion since ξ±

p − ξp = hp ± (h2
p + A2

p)1/2 with hp =
1
2 (εp+Q − εp).

We will now apply the above simplified formulas for the
quasiparticle bands and for the transformation matrix Up to
evaluate the response function K at and near half filling in the
ground state (T = 0).

1. Half filling

For a sufficiently large magnetic gap Ap, the lower and
upper quasiparticle bands are separated by a global energy
gap. At half filling, the lower band is completely filled and the
upper band completely empty, that is, ξ−

p < 0 and ξ+
p > 0 for

all p. There is no Fermi surface and the system is an insulator.
For ξ−

p < 0 and ξ+
p > 0, the matrix elements vp, sp, ūp,

and r̄p vanish for �p → 0. Inserting the expressions from
Eqs. (36) and (37) for the remaining matrix elements into
Eqs. (32) and (33), and collecting the various terms, one
obtains

Kdia
αα′ = −2e2

∫
p∈M

hp(
h2

p + A2
p

)1/2 hαα′
p , (38)

Kpara
αα′ = −2e2

∫
p∈M

A2
p(

h2
p + A2

p

)3/2 hα
phα′

p . (39)

For a momentum-independent Ap = A, a partial integration
yields Kpara

αα′ = −Kdia
αα′ , that is, Kαα′ = Kdia

αα′ + Kpara
αα′ vanishes,

as expected for an insulator. For a momentum-dependent
magnetic gap function Ap, the diamagnetic and paramagnetic
contributions do not cancel each other completely. This re-
flects the fact that our expressions for Kαα′ violate gauge
invariance for a momentum-dependent Ap.

2. Hole doping

We now consider the case of an electron density slightly
below half filling. The upper quasiparticle band remains
empty, while the lower band is almost completely filled,
except for momenta near the top of the band. Hence, ξ+

p > 0
for all p, and ξ−

p > 0 for momenta in small hole pockets H,
while ξ−

p < 0 for p /∈ H.
Compared to the half-filled case, the response function

Kαα′ differs only due to the opposite sign of ξ−
p for momenta

in the hole pockets H. We thus compute the contribution
from the hole pockets to Kαα′ with ξ−

p > 0, and subtract the
contribution at half filling, where ξ−

p < 0 for all momenta.
Inserting once again Eqs. (36) and (37) into Eqs. (32) and (33),
we find

δKdia
αα′ = −e2

∫
p∈H

[(
r̄2

p + s̄2
p

)
εαα′

p + (
ū2

p + v̄2
p

)
εαα′

p+Q

]

= −2e2
∫

p∈H

[
εαα′

p + 2(ξ−
p − ξp)2

(ξ−
p − ξp)2 + A2

p
hαα′

p

]
(40)

and

δKpara
αα′ = −4e2

∫
p∈H

1

E+
p + E−

p

×
[

02 −
∏

i=α,α′

(
ups̄pε

i
p + rpv̄pε

i
p+Q

)]

= 2e2
∫

p∈H

A2
p(

h2
p + A2

p

)3/2 hα
phα′

p . (41)

Using

∂2ξ−
p

∂ pα∂ pα′
= ξαα′

p + 2(ξ−
p − ξp)2

(ξ−
p − ξp)2 + A2

p
hαα′

p

− A2
p(

h2
p + A2

p

)3/2 hα
phα′

p , (42)

the sum δKαα′ = δKdia
αα′ + δKpara

αα′ can be written in the simple
form

δKαα′ = −2e2
∫

p∈H

∂2ξ−
p

∂ pα∂ pα′
. (43)

Since Kαα′ vanishes at half filling, we have Kαα′ = δKαα′ for
the hole-doped system.

The result (43) has a simple interpretation. In a BCS
superconductor, the paramagnetic contribution to the response
function Kαα′ vanishes at zero temperature, and the diamag-
netic contribution is given by (Appendix A)

Kdia
αα′ = e2

∫
p
(1 − ξp/Ep)

∂2ξp

∂ pα∂ pα′
, (44)

where ξp = εp − μ and Ep = (ξ 2
p + �2

p)1/2 is the Bogoliubov
quasiparticle energy in the superconductor. For a small �p,
one can approximate (1 − ξp/Ep) = 2�(−ξp), such that

Kdia
αα′ = 2e2

∫
p
�(−ξp)

∂2ξp

∂ pα∂ pα′
. (45)

The formula (43) thus could have been obtained from the
standard BCS formula, replacing the bare dispersion ξp by the
dispersion of holes in the lower quasiparticle band, that is, by
−ξ−

p .

3. Electron doping

For an electron density slightly above half filling, the lower
quasiparticle band is completely filled, while the upper band is
almost empty except for momenta near the bottom of the band.
Hence, ξ−

p < 0 for all p, and ξ+
p < 0 for momenta in small

electron pockets E , while ξ+
p > 0 for p /∈ E . A calculation

in complete analogy to the hole-doped case in the preceding
section yields

δKαα′ = 2e2
∫

p∈E

∂2ξ+
p

∂ pα∂ pα′
. (46)

This simple expression also agrees with the conventional
BCS formula for the phase stiffness at zero temperature, for
electrons moving in a quasiparticle band ξ+

p .
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IV. RESULTS FOR THE HUBBARD MODEL

The formulas derived so far do not refer to any particular
microscopic model. In this section, we present results for
the phase stiffness and the Kosterlitz-Thouless temperature
for the two-dimensional Hubbard model. The magnetic and
superconducting order parameters Ap and �p, which enter the
expressions for the response function Kα derived in Sec. II,
are computed from mean-field equations with effective in-
teractions as obtained from a fRG flow [7]. The flow is
approximated by a one-loop truncation, with a frequency-
independent two-particle vertex parametrized via a decom-
position in charge, magnetic, and pairing channels with s-
wave and d-wave form factors [26]. These approximations are
applicable only for sufficiently weak interactions.

We choose a dispersion relation

εp = −2t (cos px + cos py) − 4t ′ cos px cos py, (47)

corresponding to nearest- and next-to-nearest-neighbor hop-
ping with amplitudes t and t ′ on a square lattice (with lattice
constant one). In cuprate superconductors, the ratio t ′/t is
negative and ranges between −0.15 and −0.35. We will use
t as our unit of energy. All presented results are obtained for
t ′ = −0.15t and a Hubbard interaction U = 3t .

A. Magnetic and pairing gap

In Fig. 1, we show results from the fRG calculation for
the amplitudes of the magnetic gap function A = maxp Ap
and the pairing gap function � = maxp �p, respectively, as
a function of the electron density near half filling (n = 1).
The zero-temperature results have already been presented
in Ref. [8]. The results at T = T KT

c have been obtained by
solving the mean-field equations for the gap functions at
the Kosterlitz-Thouless critical temperature, which will be
discussed below. The magnetic order is of Néel type, with
Q = (π, π ), in the density range shown. Incommensurate
spiral order is found only for densities n < 0.9 (not shown
here) [8]. The momentum dependence of Ap is very weak. At
half filling, the system is an insulator, while small pocketlike
Fermi surfaces form in the magnetic state away from half
filling (see insets). For densities n > 1.06, the magnetic order
vanishes and a single large Fermi surface is recovered. Pairing
with d-wave symmetry is found for all densities, except at
half filling. Below half filling, the largest gap is obtained for
n ≈ 0.88 (not shown here) [8]. Close to half filling, pairing
involves mostly electrons near the pocket Fermi surfaces,
where gapless excitations trigger a Cooper instability. The
pairing gap increases more steeply for n > 1 than for n < 1
since the electron pockets are in a momentum regime where
the effective interaction leading to pairing with dx2−y2 sym-
metry is maximal. For the same reason, the pairing gap on the
electron-doped side is practically not affected by the sudden
onset of magnetic order at n ≈ 1.06.

B. Phase stiffness

For a d-wave superconductor on a square lattice, the off-
diagonal elements of the tensor Kαα′ vanish, and the diagonal
elements Kxx and Kyy are equal. This also remains true in
the case of coexisting Néel antiferromagnetic order. Hence,
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Δ Tc
KTat T=

Δ at T= 0
U=3
t’=-0.15

n

Δ 

0

0.1

0.2

0.3

0.4

0.9 0.95 1 1.05 1.1 1.15

A Tc
KTat T=

A at T= 0
U=3
t’=-0.15

n

A 

0

0 π

π

−π−π

0

0 π

π

−π
−π

FIG. 1. Top: Amplitude of magnetic gap function A = maxp Ap

as a function of electron density n at T = 0 and T = T KT
c . The inset

shows hole and electron pockets for densities slightly below and
slightly above half filling (n = 1), respectively. Bottom: Amplitude
of pairing gap function � = maxp �p as a function of electron
density at T = 0 and T = T KT

c .

the phase stiffness J = K/(2e)2 with K = Kxx = Kyy is also
just a number. In Fig. 2, we show the phase stiffness as a
function of density as obtained by evaluating the expressions
(25) and (26) in Sec. II, with the gap functions computed as
described above. Let us first discuss the ground-state result
(T = 0). The phase stiffness at T = T KT

c is closely related to
the Kosterlitz-Thouless temperature itself, as will be discussed

n
0

0.05

0.1

0.15

0.2

0.9 0.95 1 1.05 1.1 1.15

J

U=3
t’=-0.15

J Tc
KTat T=

J at T= 0

FIG. 2. Phase stiffness J as a function of electron density at T =
0 and T = T KT

c .
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below [see Eq. (49)]. The phase stiffness vanishes at half
filling, where the pairing gap vanishes too. There is a striking
asymmetry between the electron- and hole-doped sides. While
the pairing gap rises much more steeply upon doping on the
electron-doped side, the phase stiffness increases much more
steeply on the hole-doped side. On the electron-doped side,
one can see that the phase stiffness jumps to a much larger
value when the magnetic order disappears (discontinuously) at
n ≈ 1.06. The drop of J at n = 1.14 is due to a tiny but finite
temperature (T = 10−4) in the numerical evaluation, which
suppresses J if the gap is tiny too. Note that in the absence of
disorder, there is no critical doping at which the ground-state
pairing gap vanishes since an attractive pairing interaction is
present at any doping [27].

Close to half filling, pairing takes place in small Fermi
pockets in a robust antiferromagnetic background. The mag-
netic order remains practically unaffected by pairing since
� 
 A. In this situation, one may compute the phase stiffness
from the simpler formulas valid for a BCS superconductor
(see Sec. III B), with the bare dispersion replaced by the
magnetic quasiparticle dispersion of the partially filled band
related to the Fermi pockets. Expanding the quasiparticle
bands (34) with a bare dispersion of the form (47) about
their extrema, we obtain the following analytic results for the
ground-state phase stiffness close to half filling:

J =
{

(1 − n) t2/A for n < 1,

(n − 1) |t ′| for n > 1.
(48)

The derivation of these formulas is presented in Appendix B.
Note that these results are valid only for t ′ < 0. For t ′ > 0,
the expressions for electron and hole doping are reversed. The
derivation of Eq. (48) reveals that the pronounced electron-
hole asymmetry of the ground-state phase stiffness in Fig. 2
is entirely due to the different curvature of the quasiparticle
bands near their extrema in the electron and hole pockets. The
numerical results for the phase stiffness are consistent with
Eq. (48) for n < 1. For n > 1, the asymptotic regime near half
filling described by Eq. (48) seems to be very small, so that
the prefactor of the linear doping dependence of J cannot be
extracted from the numerical data.

C. Kosterlitz-Thouless temperature

In a two-dimensional system, the thermal phase transition
between the superfluid and the normal phase is a Kosterlitz-
Thouless transition associated with the unbinding of vortices.
Magnetic order or magnetic fluctuations do not affect the
universal properties of this transition, as long as they are not
critical at the same temperature. The transition temperature is
related to the phase stiffness by the universal relation [15]

T KT
c = π

2
J
(
T KT

c

)
, (49)

where J (T KT
c ) is the phase stiffness at the transition tempera-

ture (approached from below).
If the phase stiffness is much smaller than the pairing

gap in the ground state, one may approximate J (T KT
c ) in

Eq. (49) by the ground-state phase stiffness J (0), such that
T KT

c ≈ π
2 J (0). The phase stiffness generally decreases upon

increasing temperature. In our mean-field theory, this decrease

0
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0.04

0.05

0.9 0.95 1 1.05 1.1 1.15
n

T

Tc
KT

MFTc

Tc
KT
0

U=3
t’=-0.15

FIG. 3. Mean-field and Kosterlitz-Thouless critical temperatures
for the superconducting phase transition as a function of electron
density. At the mean-field critical temperature T MF

c , the pairing
gap vanishes. The Kosterlitz-Thouless temperature T KT

c has been
computed self-consistently from the phase stiffness at T KT

c , with
gap functions computed at T KT

c , while T KT
c0 has been obtained with

ground-state gaps.

is partially due to the Fermi functions in Eqs. (25) and (26),
and partially due to a decrease of the pairing gap.

In Fig. 3, we show a comparison of transition temperatures
as obtained from three distinct approximations. T KT

c0 is the
Kosterlitz-Thouless temperature computed from the phase
stiffness J (T KT

c0 ) determined by Eqs. (25) and (26), with the
ground-state gaps (see Fig. 1) as input. The other two curves
are based on finite-temperature solutions of the gap equations.
The temperatures are still low enough so that they do not
affect the fRG flow, which is stopped at the relatively high-
energy scale associated with the magnetic instability. T MF

c is
the mean-field transition temperature, where the pairing gap
vanishes. T KT

c is the Kosterlitz-Thouless temperature obtained
self-consistently from the phase stiffness at T KT

c , with gap
functions computed at the same temperature. The magnetic
gap and the pairing gap at T KT

c are shown in Fig. 1, together
with the ground-state gaps. The magnetic gap at T KT

c is practi-
cally the same as in the ground state since T KT

c is much smaller
than the magnetic energy scale. The phase stiffness at T KT

c is
compared to the ground-state phase stiffness in Fig. 2. The
temperature dependence of the phase stiffness is mostly due to
the temperature dependence of the paramagnetic contribution,
given by Eq. (26).

In the hole-doped regime, the transition temperature scale
is essentially determined by the pairing gap since the ground-
state phase stiffness is much larger than the ground-state gap.
The self-consistently determined Kosterlitz-Thouless temper-
ature T KT

c is only slightly lower than the mean-field transition
temperature. T KT

c0 substantially overestimates the transition
temperature since the ground-state phase stiffness is not much
smaller than the ground-state gap. The same behavior is
observed in the nonmagnetic regime for n > 1.06 on the
electron-doped side. By contrast, the transition temperature
scale in the magnetic regime for low electron doping is limited
by the phase stiffness. Here, the Kosterlitz-Thouless transition
temperature computed with the ground-state pairing gap is
always smaller than the mean-field transition temperature at
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which the gap vanishes. For low electron doping, T KT
c and

T KT
c0 are practically identical, and the phase stiffness at T KT

c
practically coincides with the ground-state phase stiffness (see
Fig. 2).

V. CONCLUSION

We have analyzed the suppression of the phase stiffness in
a superconductor due to antiferromagnetic order. To this end,
we have derived a general formula for the phase stiffness in a
mean-field state with coexisting spin-singlet superconductiv-
ity and spiral magnetic order. Antiferromagnetic Néel order is
included as a special case. Our formula extends an expression
derived previously by Tobijaszewska and Micnas [18] to spiral
order with arbitrary wave vectors and to finite temperatures.

We have shown analytically that close to half filling, where
the pairing gap is much smaller than the magnetic gap, the
phase stiffness is given by the standard expression for a
superconductor, with magnetic quasiparticle bands instead of
the bare electron band. Hence, the phase stiffness near half
filling is determined by the charge carriers in small electron
or hole pockets, and thus reduced.

While our general formula for the phase stiffness is valid
in any dimension, it is most relevant in two dimensions, where
the phase stiffness is related to the Kosterlitz-Thouless transi-
tion temperature T KT

c . We have obtained numerical results for
the phase stiffness and T KT

c in the two-dimensional Hubbard
model at a moderate interaction strength (U = 3t) around half
filling. Magnetic and pairing gap functions were computed
from effective magnetic and pairing interactions as derived
from an fRG flow [8]. The phase stiffness in the ground
state exhibits a striking electron-hole asymmetry. It is much
larger for hole doping than for electron doping, which can be
traced back analytically to a smaller effective mass of particles
in the hole pockets, compared to the rather large effective
mass in electron pockets. On the electron-doped side, the
Kosterlitz-Thouless temperature in the magnetically ordered
regime is limited by the relatively small phase stiffness,
compared to the ground-state pairing gap. By contrast, for
U = 3t , the ground-state pairing gap on the hole-doped side is
smaller than the phase stiffness in the ground state, so that the
Kosterlitz-Thouless temperature is only slightly lower than
the mean-field transition temperature where the gap vanishes.
However, this may change for stronger interactions, where
the phase stiffness may decrease due to a larger magnetic
(or Mott) gap, while the pairing gap is expected to increase.
A calculation with an fRG flow starting from the dynamical
mean-field solution of the Hubbard model [28,29] could clar-
ify the behavior at strong coupling.
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APPENDIX A: PHASE STIFFNESS IN BCS
SUPERCONDUCTOR

Here we derive an expression for the phase stiffness of a
BCS superconductor without magnetic order. This may serve
as a warm-up for readers who like to follow in detail the
more complicated derivation for antiferromagnetic supercon-
ductors in the main text. Derivations of the phase stiffness of
superconductors presented in textbooks are usually presented
for electrons in a continuum with a parabolic dispersion,
which partially masks the general structure emerging for band
electrons with a generic dispersion εk.

In a spin-singlet BCS superconductor, the A-independent
part of the action is given by

SBCS =
∑
p,σ

(−ip0 + ξp)ψ̄pσψpσ

+
∑

p

(�pψ̄−p↓ψ̄p↑ + �∗
pψp↑ψ−p↓), (A1)

with the (generally complex) gap function �p. Using the
Nambu representation �p = (ψp↑, ψ̄−p↓), this can be written
in matrix form

SBCS = −
∑

p

�̄p G−1(p)�p + T −1
∑

p

ξp, (A2)

where

G−1(p) =
(

ip0 − ξp �p

�∗
p ip0 + ξ−p

)
. (A3)

The field-independent term is due to the anticommutation
of creation and annihilation operators for spin-↓ particles in
the Nambu representation (before passing to the functional
integral representation). We assume ξ−p = ξp.

The A-dependent part of the action SA, given by Eq. (10),
is also transformed to Nambu representation. The linear (in A)
term can be written as

S (1)
A =

∑
p,p′,α

�̄pλ
(1)
pp′,α�p′ Aα (p − p′), (A4)

with

λ
(1)
pp′,α = e

(
εα

p/2+p′/2 0

0 −εα
−p/2−p′/2

)
= e εα

p/2+p′/2

(
1 0
0 1

)
.

(A5)

Note that a constant e
∑

p,α εα
p Aα (0) arising from the anticom-

mutation of the field operators for spin-↓ particles vanishes
due to the antisymmetry of εα

p , and thus does not yield a

contribution to S (1)
A . The quadratic term can be written as

S (2)
A =

∑
α,α′

∑
p,p′

�̄pλ
(2)
pp′,αα′�p′

∑
k

Aα (p − p′ − k)Aα′ (k)

+ e2

2T

∑
α,α′

∑
p

εαα′
p

∑
k

Aα (−k)Aα′ (k), (A6)
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with

λ
(2)
pp′,αα′ = e2

2

(
εαα′

p/2+p′/2 0

0 −εαα′
−p/2−p′/2

)

= e2

2
εαα′

p/2+p′/2

(
1 0
0 −1

)
. (A7)

The second term in S (2)
A arises from the anticommutation of

the creation and annihilation operators for spin-↓ particles in
the Nambu representation.

The quadratic contributions to �[A] are then obtained as

�dia[A] = T tr(GV (2)[A])

+e2

2

∑
α,α′

∑
p

εαα′
p

∑
k

Aα (−k)Aα′ (k), (A8)

where

V (2)
pp′ [A] =

∑
α,α′

λ
(2)
pp′,αα′

∑
k

Aα (p − p′ − k)Aα′ (k), (A9)

and

�para[A] = T

2
tr(GV (1)[A]GV (1)[A]), (A10)

where

V (1)
pp′ [A] =

∑
α

λ
(1)
pp′,α Aα (p − p′). (A11)

The traces sum over momentum, energy, and Nambu indices.
Taking derivatives with respect to Aα (−q), one obtains the
corresponding current densities, from which one can read off
the response functions

Kdia
αα′ = 2T

V

∑
p

tr
[
G(p) λ

(2)
pp,αα′

] + 1

V

∑
p

e2εαα′
p , (A12)

Kpara
αα′ (q) = T

V

∑
p

tr
[
G(p)λ(1)

p,p+q,αG(p + q)λ(1)
p+q,p,α′

]
. (A13)

Here the traces sum only over the Nambu indices.
The response kernel Kαα′ (q) does not depend on the global

phase of �p. In the following, we assume that �p is real. To
evaluate the traces, it is convenient to choose a basis in which
the propagator is diagonal in Nambu space. This is achieved
by the Bogoliubov transformation

Up =
(

up vp

−vp up

)
, (A14)

where

up = 1√
2

√
1 + ξp/Ep, vp = sgn(�p)√

2

√
1 − ξp/Ep, (A15)

with the Bogoliubov energy Ep =
√

ξ 2
p + �2

p. The trans-

formed Nambu propagator is given by

G̃(p) = U †
p G(p)Up =

(
(ip0 − Ep)−1 0

0 (ip0 + Ep)−1

)
.

(A16)

The linear vertex λ
(1)
pp′,α is proportional to the unit matrix

and is therefore not affected by the Bogoliubov transforma-
tion, that is, λ̃

(1)
pp′,α = λ

(1)
pp′,α . The quadratic vertex λ

(2)
pp′,αα′ is

needed only for p = p′, where the Bogoliubov transformation
yields

λ̃
(2)
pp,αα′ = e2

2
εαα′

p

(
ξp/Ep �p/Ep

�p/Ep −ξp/Ep

)
. (A17)

Since G̃(p) is diagonal, only the diagonal elements of λ̃
(2)
pp,αα′

contribute to Kdia
αα′ .

Inserting G̃(p) and λ̃
(2)
pp,αα′ into the expression for Kdia

αα′ ,
and performing the Matsubara sum T

∑
p0

(ip0 ∓ Ep)−1 =
f (±Ep), one obtains the diamagnetic contribution to Kαα′ in
its final form,

Kdia
αα′ = e2

∫
p

[
1 − ξp

Ep
+ 2ξp

Ep
f (Ep)

]
εαα′

p . (A18)

For a quadratic dispersion, this reduces to Kdia
αα′ = δαα′e2n/m,

where n is the electron density. Inserting G̃(p) and λ̃(1)
pp,α into

the expression for Kpara
αα′ , and performing the Matsubara sum

T
∑

p0
(ip0 ∓ Ep)−1(ip0 ∓ Ep+q)−1 → f ′(Ep) for q → 0, one

obtains the paramagnetic contribution

Kpara
αα′ (0, 0) = 2e2

∫
p

f ′(Ep) εα
p εα′

p . (A19)

The off-diagonal elements (α �= α′) vanish if εp is symmetric
in px and py. For �p = 0, a partial integration yields Kdia

αα′ +
Kpara

αα′ (0, 0) = 0, that is, Kαα′ vanishes. At zero temperature,
one has f (Ep) = 0, so that Kdia

αα′ = e2
∫

p (1 − ξp/Ep) εαα′
p and

Kpara
αα′ (0, 0) = 0.

APPENDIX B: PHASE STIFFNESS NEAR HALF FILLING

In this Appendix, we derive the analytic results given
by Eq. (48) for the phase stiffness in the two-dimensional
Hubbard model close to half filling, under the condition that
the pairing gap is much smaller than the magnetic gap, such
that the mean-field theory for pairing in coexistence with
magnetic order can be simplified to a BCS theory for electrons
moving in the quasiparticle bands ε±

p associated with the
magnetic order (see Sec. III B). We assume Néel order, that
is, Q = (π, π ) near half filling.

1. Hole doping

For electron densities smaller than but close to half fill-
ing, the lower quasiparticle band ε−

p is partially filled, with
empty states (holes) only near the maxima of the band, while
the upper quasiparticle band ε+

p is completely empty. For a
bare dispersion of the form Eq. (47) with t > 0 and t ′ < 0,
the maxima of the lower quasiparticle band ε−

p in Eq. (34) are
situated at the four symmetric points ±(π/2,±π/2) in the
Brillouin zone, if |t ′/t | is not unrealistically large. Neglect-
ing the generally weak momentum dependence of Ap, and
expanding for example around the maximum at (π/2, π/2),
one finds

ε−
p = −A − 2t2

A
(δpx + δpy)2 − 4t ′δpxδpy, (B1)
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where δpα = pα − π/2 for α = x, y. The matrix of second
derivatives of ξ−

p = ε−
p − μ is thus given by(

∂2ξ−
p

∂ pα∂ pα′

)
= −4

(
t2/A t2/A + t ′

t2/A + t ′ t2/A

)
. (B2)

Both eigenvalues of this matrix, −(8t2/A + 4t ′) and 4t ′, are
negative if t ′ < 0 and |t ′/t | < 2t/A.

The signs of the diagonal elements of the matrix of deriva-
tives are the same for all four extrema, while the off-diagonal
elements at the extrema (±π/2,∓π/2) are negative. Hence,
the latter cancel when summing over all four pockets in
Eq. (43), such that Kαα′ = Kδαα′ , where

K = −2e2
∫

p∈H

−4t2

A
= 4e2t2

A
(1 − n). (B3)

The phase stiffness J = K/(4e2) is thus obtained as J =
(1 − n)t2/A.

2. Electron doping

For electron densities larger than but close to half fill-
ing, the upper quasiparticle band ε+

p is partially filled, with

occupied states only near the bottom of the band, while the
lower quasiparticle band ε−

p is completely filled. For a bare
dispersion of the form Eq. (47) with t > 0 and t ′ < 0, the
minima of the upper quasiparticle band ε+

p in Eq. (34) are sit-
uated at the two points (π, 0) and (0, π ) in the Brillouin zone.
Neglecting the momentum dependence of Ap, and expanding
for example around the maximum at (π, 0), one finds

ε+
p = 4t ′ + A − 2t ′(δp2

x + δp2
y

)
, (B4)

where δpx = px − π and δpy = py. The matrix of second
derivatives of ξ+

p = ε+
p − μ is thus given by

(
∂2ξ+

p

∂ pα∂ pα′

)
= −4

(
t ′ 0
0 t ′

)
. (B5)

Inserting this in Eq. (46) yields Kαα′ = Kδαα′ , where

K = 2e2
∫

p∈E
(−4t ′) = 4e2|t ′|(n − 1). (B6)

The phase stiffness J = K/(4e2) is thus obtained as J =
(n − 1)|t ′|.
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