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In quantum critical heavy fermion systems, local moments are coupled to both collective spin fluctuations
and conduction electrons. As such, the Bose-Fermi Anderson model, describing the coupling of a local moment
to both a bosonic and a fermionic bath, has been of extensive interest. For the model in the presence of SU(2)
spin rotational symmetry, questions have been raised about its phase diagram. Here we develop a version of
continuous-time quantum Monte Carlo (CT-QMC) method suitable for addressing this issue; this procedure can
reach sufficiently low temperatures while preserving the SU(2) symmetry. Using this method for the Bose-Fermi
Anderson model, we clarify the renormalization-group fixed points and the phase diagram for the case with a con-
stant fermionic-bath density of states and a power-law bosonic-bath spectral function ρb(ω) ∝ ωs (0 < s < 1).
Importantly, we find that two types of Kondo destruction quantum critical point (QCP) can arise in a single
model. They are distinguished by the nature of the Kondo destroyed state: The local spin correlation either
decays in imaginary time as a power law or remains a constant in the long-time limit. Specifically, for the model
with s∗ < s < 1, both types of QCPs exist and, in the parameter regime accessible by an analytical ε-expansion
renormalization-group calculation (here ε = 1 − s), the CT-QMC result is fully consistent with prior predictions
by the latter method. For s < s∗, there is only one type of QCP. At both types of Kondo destruction QCPs, we find
that the exponent of the local spin susceptibility η obeys the relation η = ε, which has important implications
for Kondo destruction QCP in the Kondo lattice problem.
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I. INTRODUCTION

Heavy fermion systems serve as a prototype setting to
study quantum criticality [1,2]. Experimental discoveries in
various heavy fermion compounds open up the opportunity to
explore beyond-Landau type quantum critical points (QCP)
in the context of antiferromagnetic Kondo lattice systems.
One prominent example is the Kondo destruction QCP [3–5],
where the phase transition at zero temperature not only in-
volves the magnetic order parameter but also the localization
to delocalization transition of the 4f electrons constituting
the local moments. Some of the hallmarks of the Kondo
destruction type QCP are ω/T scaling of the dynamical spin
susceptibility as seen from inelastic neutron scattering, and
a jump of the fermi surface volume from magnetotransport
and quantum oscillation measurement [6]. Such properties are
inconsistent with predictions from the traditional description
within the Landau framework, the spin-density-wave type
QCP [7–9].

One of the simplest models that contain a Kondo destruc-
tion type QCP is the Bose-Fermi Kondo model (BFKM)
[10]. It arises in the context of understanding the competition
between Kondo effect and magnetic fluctuations in the Kondo
lattice model using extended dynamical mean field theory
(EDMFT) [3,11]. It describes a local moment coupled to both
itinerant electrons as well as free bosons, which are usually
referred to as fermionic bath and bosonic bath. Typically
the fermionic bath will assume a constant density of states,
and the bosonic bath has a sub-Ohmic spectrum: Its den-
sity of states at low frequencies (ω) has a power-law form,
ρb(ω) ∝ ωs with s < 1. It characterizes the softened spectrum

of the magnons near the magnetic QCP, which compete with
the conduction electrons in their couplings to the local mo-
ment and causes the suppression of the Kondo effect.

This model is first treated with the ε-expansion renor-
malization group (RG) method, using ε = 1 − s as a small
parameter [3,11–16]. It turns out the fixed points structure
will depend on the symmetry of the spin boson coupling:
For the SU(2) and XY symmetric cases, it has a Kondo
screened stable fixed point (K) at strong coupling, a bosonic
bath dominated stable fixed point (L) at intermediate coupling
(so-called critical phase), and an unstable critical point (C)
describing the quantum phase transition. Both L and C can
be accessed by the ε expansion; for the Ising anisotropic
case, on the other hand, the critical phase controlled by L
is unstable and is replaced by the local moment fixed point
(L′) at strong coupling. In all three cases, it is predicted that
at the critical point (C) where the Kondo effect is critically
destroyed, the local spin correlation function will behave as
χspin(τ ) ∼ (1/τ )η, with an exact relation η = ε [15,16]. This
has important implications for the EDMFT calculation of
the Kondo lattice problem. For two-dimensional magnetic
fluctuations, it predicts a Kondo destruction QCP solution,
provided that the relation η = ε will remain valid at ε → 1−
[3,11].

The numerical calculations of the Bose-Fermi Kondo
model and the closely related Bose-Fermi Anderson model
(BFAM) include treating it either as a standalone model
using numerical renormalization group (NRG) [17,18] and
continuous-time quantum Monte Carlo (CT-QMC) [19–21] or
as an effective model under EDMFT [22–25]. Our focus in
this work is on the CT-QMC method, from which a seeming
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controversy existed for the SU(2) symmetric BFAM: For s =
0.2, it was shown [21] that the Kondo-destruction phase has
the local-moment character instead of being critical; in the
temperature dependence of the local spin susceptibility in this
Kondo-destruction phase, it was found χ spin ∼ 1/T instead
of the χ spin ∼ 1/T s behavior predicted by ε-expansion RG
[15,16] for the fixed point L.

To resolve this seeming inconsistency, we start with the
observation that, if s is close to 1, the CT-QMC result must be
consistent with that of the ε-expansion RG in the range of cou-
pling constants accessed by this expansion (again ε = 1 − s).
To make progress, in this paper we develop the CT-QMC
procedure for the BFAM such that it can reach sufficiently low
temperatures while preserving the SU(2) symmetry. Using
this procedure, we carry out a comprehensive study of the
SU(2) BFAM for s ranging from close to 0 to close to 1. We
study a variety of observables in order to identify all the QCPs
between different phases, combined with detailed finite size
scaling analysis to extract critical exponents.

Our analysis shows that the ε-expansion [15,16] and CT-
QMC results are fully compatible with each other. Our results
are summarized by the RG-flow diagrams of Fig. 1. We find
that the fixed point structure will depend on the value of the
bosonic bath exponent s. For the s > s∗ regime, we identify
(i) the critical point C separating the Kondo screened phase
controlled by strong coupling fixed point K and critical phase
governed by the intermediate coupling stable fixed point L,
as predicted from ε-expansion RG for the coupling constants
accessible by the latter method, and (ii) a separate critical
point C′ and local moment fixed point L′, which occurs for
larger values of the bosonic-Kondo coupling g inaccessible
by ε-expansion RG. For s < s∗, the intermediate coupling
fixed point L and the associated Kondo destruction fixed
point C disappears, and there exists only a type (ii) quantum
phase transition C′. We also determine the correlation length
exponent ν at both C and C′ and show that they are indeed
distinct. On the other hand, the anomalous dimension η in the
critical spin correlation function at C and C′ are the same:
They both satisfy the relation η = 1 − s within numerical
uncertainty. Additionally, we find another unstable fixed point
LC that controls the transition between the fixed points L and
L′. Finally, we quantitatively estimate s∗ (cf. Fig. 15).

The remainder of the paper is organized as follows. In
Sec. II we introduce the SU(2) Bose-Fermi Anderson model
and give an overview of the CT-QMC method as well as the
physical quantities we will investigate in this work. We will
present the numerical results in Sec. III. We will start with
a detailed study for the s = 0.6 case in Sec. III A, followed
by the s = 0.2 case in Sec. III B, before carrying through
the analysis that leads to an estimate for the value of s∗ in
Sec. III C. We will discuss the implication of our results in
Sec. IV and conclude the paper in Sec. V.

II. MODEL AND METHOD

The Hamiltonian for the SU(2) symmetric BFAM reads

H = Hc + Hb + Hd + Hg + HV , (1)

K

L´

C´

C

LCL

(a)

K

L´

(b)

C´

FIG. 1. RG flow of SU(2) BFAM suggested by our CT-QMC
results. Filled black (gray) dots represent stable (unstable) fixed
points. Blue lines denote separatrix between different stable phases.
(a) s∗ < s < 1: There are two stable fixed points L and L′, one
unstable fixed point LC along the 	0 = 0 axis, and one stable Kondo
fixed point K along the g = 0 axis. C and C′ are two unstable fixed
points associated with Kondo destruction towards fixed points L
and L′. (b) 0 < s < s∗: Fixed point L disappears, leaving only one
unstable fixed point C′ between the Kondo fixed point and the stable
fixed point L′. We have estimated s∗ � 0.47, as shown in Fig. 15.
The fixed points K, C, and L were identified for s close to 1 (by
the ε-expansion RG, where ε ≡ 1 − s) [3,11–16], and the difference
of the properties of the system on the g axis at s = 0.2 from that
expected for the fixed point L [21] raised the question about the
validity of the ε-expansion result. In this study we have shown that
there are two types of Kondo destruction QCP (C and C′) and two
types of stable fixed points on the g axis (L and L′), as well as a
critical point between these stable fixed points on the g axis (LC),
for s∗ < s < 1; while for 0 < s < s∗, the fixed points C and L no
longer occur, leaving only the fixed points C′ and L′. We have also
shown that s = 0.2 falls in the range 0 < s < s∗ (Fig. 15). Our results
reaffirm the validity of the ε-expansion RG approach in its region
of applicability, i.e., when s is close to 1 and for small coupling
constants 	0 and g.

where Hc and Hb describe the bosonic and fermionic bath part,
respectively,

Hc =
∑
k,σ

εkc†
k,σ

ck,σ , Hb =
∑

α

Hα
b =

∑
p,α

ωpφ
α
p

†
φα

p . (2)
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Hd contains the local electron part,

Hd =
∑

σ

εd d†
σ dσ + Ud†

↑d↑d†
↓d↓.

HV and Hg couple the local orbital to the bosonic and
fermionic bath,

HV =
∑
k,σ

V d†
σ ck,σ + H.c., Hg =

∑
p,α

gSα

(
φα

p
† + φα

−p

)
,

(3)
where the summation over α runs through x, y, z, Sα =∑

σ,σ ′ d†
σ τα

σσ ′dσ ′ , and τα
σσ ′ is the three components of the Pauli

matrices.
The properties of the fermionic and bosonic bath are spec-

ified by their density of states. For the fermionic bath, we
choose a constant density of states,

ρF (ε) =
∑

k

δ(ε − εk ) = ρ0�(|D − ε|), (4)

which leads to a hybridization function 	(ε) = 	0�(|D − ε|),
with 	0 = πρ0V 2.

Unless specified otherwise, the density of states for the
sub-Ohmic bosonic bath has an exponential cutoff, given by
the following,

ρb(ω) =
∑

q

δ(ω − ωq) = K0(ω/�)se−ω/��(ω). (5)

Throughout the text we fix D = 1, � = 1, and stays at the
particle-hole symmetric point U = −2εd = 0.1. The prefac-
tor ρ0 and K0 in the density of states of the fermionic bath and
bosonic bath are determined from the normalization condition∫ D
−D ρF (ε)dε = 1 and

∫ ∞
0 ρb(ω)dω = 1. We will use either

the amplitude of the hybridization function 	0 or the spin-
boson coupling g as our tuning parameter.

A. Monte-Carlo procedure

We will employ the CT-QMC algorithm, first introduced
in Refs. [26,27] and then generalized to treat the BFAM in
Refs. [19–21]. We start with removing the z component of the
spin-boson coupling by employing a Firsov-Lang transforma-
tion H̃ = eSHe−S with S = gSz

∑
p

1
ωp

(φz
p

† + φz
−p) (similar to

Ref. [28]) and work with the transformed Hamiltonian H̃ ,

H̃ = Hc + Hb + H̃d + H̃V + H̃g

H̃d =
∑

σ

ε̃d†
σ dσ + Ũd†

↑d↑d†
↓d↓

H̃V = V
∑
k,σ

(
d†

σ ck,σ e
∑

p
gsσ
ωp

(φz
p

†−φz
p) + H.c.

)

H̃g =
∑

p

(g/
√

2)
(
S+φ−

p e
∑

p
g

ωp
(φz

p
†−φz

p)

+ S−φ+
p e− ∑

p
g

ωp
(φz

p
†−φz

p))
, (6)

where we have defined the renormalized parameters ε̃d =
εd − (g2/4)

∑
q(1/ωq)2, Ũ = U + (g2/2)

∑
q(1/ωq)2, sσ =

±1/2 for σ =↑ / ↓. and recombined the x and y com-
ponents of Sα and φα into S+ = d†

↑d↓, S− = d†
↓d↑, φ±

p =
(1/

√
2)((φx

p
† + φx

p) ± i(φy
p

† + φ
y
p)). The partition function

is constructed by expanding in the nondiagonal terms
[19–21,26,27], H̃V and H̃g under the interaction representation
of H0 ≡ Hb + Hc + H̃d . It has the following form [19–21]:

Z = Z0

∑
m

∫ m∏
i=1

dτ s
i dτ s′

i

∏
σ=↑,↓

(∫ nσ∏
i=1

dτ dσ
i dτ d ′σ

i

)

wd
({τ tot}ntot

) ∏
σ=↑,↓

wσ
c

({τ dσ }nσ
, {τ d ′σ }nσ

)

wz
({τ tot}ntot

)
wp({τ s}m, {τ s′ }m), (7)

where Z0 = Tr[e−βHc ]Tr[e−βHz
B ]Tr[e−β(Hx

B+Hy
B )] is

the partition function of the bath, β being the
inverse temperature: β = 1/T .

∫ ∏m
i=1 dτα

i dτα′
i = ∫ β

0

dτα
1 · · · ∫ β

τα
N−1

dτα
N

∫ β

0 dτα′
1 · · · ∫ β

τα′
N−1

dτα′
N . {τα}n denotes the

set of imaginary time of all the operators of a given type α in
the expansion: {τα}n = {τα

1 , τ α
2 . . . , τ α

n }. α ∈ {s, s′, dσ, dσ ′}
represents S+, S−, d†

σ , or dσ . n = m or nσ denotes the
number of pairs of S+, S− or d†

σ , dσ , also labeling the
expansion order. {τ tot}ntot refers to all the {τα}n combined,
with ntot = 2(

∑
σ nσ + m). The integrand, or so-called

weight, factorizes into multiple components. In the following
we will present the form of each part explicitly.

wd ({τ tot}ntot ) is the contribution from the local d electron
part. It describes valence and spin fluctuations of the local
orbitals,

wd = Tr
[
e−βH̃d Tτ S−

(
τ s′

m

)
S+

(
τ s

m

) · · · S−
(
τ s′

1

)
S+

(
τ s

1

)
×

∏
σ

dσ

(
τ d ′σ

nσ

)
d†

σ

(
τ dσ

nσ

) · · · dσ

(
τ d ′σ

1

)
d†

σ

(
τ dσ

1

)]
. (8)

Here for a given operator O, O(τ ) denotes the corresponding
operator in the interaction representation O(τ ) = eτH0 Oe−τH0 .

wσ
c ({τ dσ }nσ

, {τ d ′σ }nσ
) is the contribution from the conduc-

tion electron with spin index σ ,

wσ
c = V 2nσ

⎛
⎝ nσ∏

i=1

∑
ki,k′

i

⎞
⎠Tr

[
Tτ e−βHc c†

knσ ,σ

(
τ d ′σ

nσ

)

× ck′
nσ

,σ

(
τ dσ

nσ

) · · · c†
k1,σ

(
τ d ′σ

1

)
ck′

1,σ

(
τ dσ

1

)]
/Tr[e−βHc ]

= det(F σ ). (9)

It can be expressed as a determinant of matrix F σ , whose
matrix element is given by

F σ
i j = −∑

k V 2Tr
[
e−βHc Tτ ck,σ

(
τ dσ

j

)
c†

k,σ

(
τ d ′σ

i

)]
Tr[e−βHc ]

. (10)

wz({τ tot}ntot ) comes from the z component bosonic bath part
[19,20],

wz = Tr
[
e−βHz

B
∏ntot

i=1 esi
∑

p(gz/ωp)(φz
p

†(τ tot
i )−φz

p(τ tot
i ))

]
Tr

[
e−βHz

B

]

= exp

⎛
⎝−g2

∑
1<i< j<ntot

sis j (B(τi − τ j ) − B(0))

⎞
⎠,
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where si = ±sσ or ±1 when the operator O(τ tot
i ) at τ tot

i
corresponds to d†

σ /dσ or S±, and

B(τ j − τi ) =
∑

p

Tr
[
Tτ e−βHz

Bφz
p(τi )φz

p
†(τ j )

]
ω2

pTr
[
e−βHz

B

]
+ (τi ↔ τ j ). (11)

Finally, wp({τ s}m, {τ s′ }m) involves the bosonic bath in the
transverse direction [21], forming a permanent,

wp = (g/
√

2)2m

⎛
⎝ m∏

i=1

∑
pi,p′

i

⎞
⎠Tr

[
e−β(Hx

B+Hy
B )Tτ φ

+
pm

(
τ s′

m

)

×φ−
p′

m

(
τ s

m

) · · ·φ+
p1

(
τ s′

1

)
φ−

p′
1

(
τ s

1

)]
/Tr

[
e−β(Hx

B+Hy
B )

]
=

∑
p∈Sm

m∏
i=1

Pi,p(i). (12)

The summation extends over Sm, representing all permutations
of 1, 2, · · · , m. The matrix element of P is the following,

Pi j = (g2/2)
∑

p Tr
[
e−β(Hx

B+Hy
B )Tτ φ

−
p

(
τ s

j

)
φ+

p

(
τ s′

i

)]
Tr

[
e−β(Hx

B+Hy
B )

]
≡ (g2/2)J

(
τ s

j − τ s′
i

)
. (13)

Now the partition function can be interpreted as integrating
a probability distribution function over some configuration
space. Here, each configuration is specified by all sets of
different {τα}n and a particular permutation p ∈ Sm, which is
then sampled through a Metropolis algorithm with a probabil-
ity proportional to wd × wz × w↑

c × w↓
c × ∏m

i=1 Pi,p(i).
We now describe the Monte Carlo updates. We inherit the

updates from the Ising BFAM [19,20], namely the insertion,
removal, and shift of the d†

σ ck,σ /c†
k,σ

dσ pair, and also adopt
the insertion/removal of S+φ−/S−φ+ and the sampling of the
permutation Sm introduced in Ref. [21] (named updates (a)–
(c) there). In addition we introduce a swap update that swaps
S+(S−) with a pair of d†

↑ and d↓(d†
↓ and d↑). For example

consider the S+ case. We first randomly pick a pair of S+(τ s
i ),

S−(τ s′
j ) from the m pairs of S+ and S− that is connected by

one of J (τ ). Then we choose a d†
↑(τ d↑

k ) with a probability

Pk = J (τ d↑
k − τ s′

j )/(
∑

n=1,n↑ J (τ d↑
n − τ s′

j )) from the n↑ of d†
↑

operators. We then swap the position of S+(τ s
i ) and d†

↑(τ d↑
k ).

Finally, we find the d↓(τ d ′↓
l ) that is closest to d†

↑(τ d↑
k ) before

the swap and move it to d↓(τ d ′↓
new). τ d ′↓

new is randomly selected
within an interval of length lmax, which is the distance between
two creation operators in the σ =↓ orbital next to S+ before
the swap. The corresponding proposal probability is given by

Pprop = 1

lmaxm
× J

(
τ

d↑
k − τ s′

j

)
∑n↑

n=1 J
(
τ d

n − τ s′
j

) . (14)

Likewise we can find the proposal probability for the inverse
update,

Pinv
prop = 1

l ′
maxm

× J
(
τ s

i − τ s′
j

)
∑n↑

n = 1,

n �= k

J
(
τ d

n − τ s′
j

) + J
(
τ s

i − τ s′
j

) . (15)

The weight ratio between the proposed configuration and the
current configuration is given by

wnew

wold
=

w↑
c

({τ d↑}new
n↑ , {τ d ′↑}n↑

)
w↓

c

({τ d↓}n↓ , {τ d ′↓}new
n↓

)
w

↑
c ({τ d↑}n↑ , {τ d ′↑}n↑ )w↓

c ({τ d↓}n↓ , {τ d ′↓}n↓ )

× wd
({τ tot}new

ntot

)
wz

({τ tot}new
ntot

)
J
(
τ

d↑
k − τ s′

j

)
wd ({τ tot}ntot )wz({τ tot}ntot )J

(
τ s

i − τ s′
j

) , (16)

where {τ d↑}new
n↑ is {τ d↑}n↑ with τ

d↑
k replaced by τ s

i , {τ d↓}new
n↓

is {τ d↓}n↓ with τ
d ′↓
l replaced by τ

d ′↓
lnew, and {τ tot}new

ntot
is {τ tot}ntot

with the above two substitutions, plus τ s
i replaced by τ

d↑
k .

The detailed balance condition is satisfied by adopting the
acceptance ratio max[R, 1], with R given by

R = wnew

wold
× Pinv

prop

Pprop
. (17)

The reason that we choose the proposal probability to be
the form in Eqs. (14) and (15) is to cancel out the J (τ d↑

k −
τ s′

j )/J (τ s
i − τ s′

j ) factor in the weight ratio in Eq. (16), such
that the acceptance ratio R is of order 1. Otherwise if we
select d†

↑(τ d↑
k ) using a uniform distribution from 0 to β, since

J (τ ) ∼ 1/τ 1+s, on average J (τ d↑
k − τ s′

j ) ∼ 1/βs, while the

average value of J (τ s
i − τ s′

j ) is β independent, as a result R
will be suppressed by a factor of 1/βs. Similar ideas have been
introduced in Ref. [29].

In practice we have tested that the swap update introduced
here can replace the role of update (d) in Ref. [21], which
breaks up one S+ (S−) into a pair of d†

↑ and d↓(d†
↓ and d↑) at

two different times. Both of these updates introduce shortcuts
between configurations that are connected by a large number
of other updates. But unlike update (d) whose acceptance ratio
decreases with β as a power law, the swap update has an
acceptance ratio that does not depend on β. This facilitates the
task of reaching low enough temperatures and accessing the
scaling regime. We have verified that our procedure preserves
the SU(2) symmetry.

We now make a few remarks on how to evaluate J (τ ) and
B(τ ) in the numerical calculation. This is important because
in the current expansion scheme the weight contribution from
the bosonic bath in the transverse direction φ± and in the z
direction φz enters differently. Thereby the SU(2) symmetry
of the model has to be recovered dynamically in the sampling
process. In actual calculation we find that in order to maintain
the SU(2) symmetry, it is crucial to evaluate B(τ ) and J (τ ) to
sufficiently high accuracy.

Starting with the Fourier components of J (τ ) in the Mat-
subara frequency domain,

J (iνn) =
∑

p

2ωp

ωp
2 − ν2

n

, (18)

where νn = 2πn/β, n ∈ Z is the Matsubara frequencies.
There are two ways to calculate J (τ ). We can either perform
the integration over the density of states first,

J (iνn) =
∫ ∞

0

2ω

ω2 − ν2
n

ρb(ω)dω, (19)
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followed by the Matsubara summation,

J (τ ) = 1

β
J (iνn = 0) + 2

β

∑
νn>0

J (iνn) cos(νnτ ). (20)

Or we can first do the Matsubara summation, then integrate
over the density of states,

J (τ ) =
∫ ∞

0

e(β−τ )ω + eτω

eβω − 1
ρb(ω)dω. (21)

In practice we find the summation in Eq. (20) converges too
slow when β is large. So using Eq. (21) is recommended.

On the other hand, J (τ ) is related to B(τ ) by being its
second derivative: J (τ ) = d2B(τ )/dτ 2. B(τ ) is most easily
evaluated using the following formula,

B(τ ) − B(0)

= J (iνn = 0)
τ (τ − β )

2β
+

∑
n �=0

J (iνn)
1 − cos(νnτ )

βν2
n

.

(22)

Because of the extra 1/ν2
n factor here, the summation actually

converges very quickly.

B. Observables

In this subsection we introduce all the quantities we will
calculate using CT-QMC. We start with the local magnetiza-
tion,

〈mα〉 =
〈

1

β

∫ β

0
Sα (τ )dτ

〉
, α = x, y, z, (23)

which is related to most of the quantities we discussed below.
Because the sampling will preserve spin rotation symme-

try, the actual measured 〈mα〉 is always 0. Instead we measure
its root mean square,

σα =
√〈

m2
α

〉
, (24)

which is also related to the static spin susceptibility
χ

spin
α (T ) = ∫ β

0 χ s
α (τ )dτ = ∫ β

0 〈Tτ Sα (τ )Sα〉dτ by

χ spin
α = βσ 2

α , (25)

where we have also defined the dynamical spin correlation
function χ s

α (τ ). From χ s
α (τ ) we can also extract the spin

correlation length ξα along the imaginary-time axis,

ξα = 1

ν1

√
χ s

α (ν0)

χ s
α (ν1)

− 1. (26)

Here χ s
α (νn) is the Fourier transform of χ s

α (τ ), ν0 is the
zero Matsubara frequency, and ν1 the first nonzero Matsubara
frequency. This is in close analogy with extracting the spatial
correlation length from the momentum dependence of the
structure factor [30], where ν1 is replaced by the first nonzero
q value allowed, q1 = 2π/L, with L being the size of the
system. The analogous equation in that case follows from
the generic form of the static structure factor, where q2 is
accompanied by ξ−2

d in the small-q limit [30]. As L goes
to infinity, in a disordered state ξd approaches constant, so
ξd/L goes to zero, while in an ordered state ξd/L diverges

because the condensate makes S(q = 0) diverge. Finally, at
the critical point, the system is scale invariant, thus ξd/L
will assume a universal value, independent of L. The ratio
ξd/L has been used extensively in numerical calculation of
lattice spin systems to detect magnetic ordering [31–33]. For
quantum impurity model, we can define ξα in terms of the
temporal Fourier transform of the imaginary time correlation
function χ s

α (τ ) defined over τ ∈ (0, β ) in exactly the same
fashion and treat the inverse temperature β as the system
size. Thus ξα will represent the correlation length of the spin
correlation along the imaginary time axis. By analogy with the
spacial-dependent case described above, we expect ξα/β to be
independent of β at a critical point. Note, however, whether
this leads to a crossing point in a plot of ξα/β vs the control
parameter depends on the nature of the involved phases; see
the next section for further discussion.

As we will always preserve spin SU(2) symmetry, in the
following we will drop the subscript α labeling different spin
components in any vector quantity. We will also look at the
Binder cumulant [34], generalized to an n-component order
parameter [30],

U2 = n + 2

2

(
1 − n

n + 2

〈(m · m)2〉
〈m · m〉2

)
, (27)

In essence, U2 probes the probability distribution function
P(m) of the order parameter m, by forming the ratio between
the forth moment and square of the second moment of P(m).
The precise form of U2 is constructed such that U2 approaches
1 in the ordered state and 0 in the disordered state. This can be
understood as follows. In the disordered state, P(m) follows
a n-dimensional Gaussian distribution. It can be shown that
〈(m · m)2〉/〈m · m〉2 = (n + 2)/n so that U2 = 0. Deep in
the ordered state, P(m) ∝ δ(m2 − 〈m2〉), so 〈(m · m)2〉/〈m ·
m〉2 = 1 and U2 = 1. At the critical point, 〈(m · m)2〉 and
〈m · m〉2 has the same scaling dimension by construction thus
U2 take a universal value irrespective of system size β. So one
can look for crossing in U2 to detect a phase transition.

Quantities like 〈(m · m)2〉 will involve four-point corre-
lation functions of different components of Sα which would
require implementing worm type algorithm [35,36]. In the
presence of spin SU(2) symmetry, we can utilize the relation
〈(m · m)2〉 = 5〈m4

z 〉 and 〈m · m〉 = 3〈m2
z 〉 to simplify the ex-

pression (here n = 3 since m has three components),

U2 = 5

2

(
1 − 1

3

〈
m4

z

〉
〈
m2

z

〉2
)

. (28)

Another interesting quantity that can be used to study quan-
tum phase transition is the fidelity susceptibility χλ

f . Suppose
the Hamiltonian is composed of two parts H = Hλ=0 + λHλ,
with λ being some tuning parameter. The fidelity is defined as
the modulus of the overlap between the ground state |ψ0〉 at λ

and λ + δλ: F (λ, δλ) = |〈ψ0(λ)|ψ0(λ + δλ)〉| [37]. Since the
two phases separated by a QCP are described by two types
of ground states, the fidelity will be minimized as λ passes
through the QCP with δλ → 0+. The fidelity susceptibility,
which is defined as the second derivative of F with re-
spect to δλ [38], χλ

f = −∂2F/∂δλ2, picks up this singularity.
To calculate the fidelity susceptibility using CT-QMC, we
need to generalize the zero temperature definition to finite
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FIG. 2. Illustration of a swap update in a m = 2, n↑ = 2, n↓ = 1
configuration. Filled/empty circles denote creation/annihilation op-
erators of d electrons as a result of the expansion in H̃V . Filled and
empty diamonds connected by vertical dashes lines represent the
composite S+ and S− operators coming from the expansion in H̃g.
Blue and red color denote the affected S+ and d†

↑ and d↓ operator for
the proposed update. Yellow lines specify the particular permutation
in the permanent expansion. Gray shaded lines represent the range
over which the orbital is occupied along the imaginary time axis.

temperature. One can express χλ
f under perturbation theory

and relate it to the imaginary time correlation function of Hλ.
Then it can be straightforwardly generalized to finite temper-
ate with the following expression (for details, see Ref. [39]),

χλ
f (T ) =

∫ β/2

0
(〈Tτ Hλ(τ )Hλ〉 − 〈Hλ〉2)τdτ. (29)

In general, χλ
f is a smooth function of λ. But it is sin-

gular and even diverges at a QCP [40]. At a second order
quantum phase transition, 〈: Hλ(τ ) :: Hλ :〉 ∼ (1/τ )2 Dim[Hλ].
Here : Hλ : denotes normal ordering : Hλ := Hλ − 〈Hλ〉 and
Dim[Hλ] denotes scaling dimension of Hλ. As we require∫ β

0 dτλHλ to be scale invariant, we have Dim[Hλ] = 1 −
Dim[λ], so 〈: Hλ(τ ) :: Hλ :〉τ ∼ (1/τ )1−2 Dim[λ]. We see that
if λ is relevant at the critical point, in which case it is usually
identified as the correlation length exponent ν−1, Dim[λ] =
ν−1 > 0, then χλ

f (T ) will diverge as,

χλ
f (T ) ∝ β2/ν . (30)

Therefore χλ
f can be used to detect the location of a QCP,

without knowing the actual order parameter. It turns out that
for hybridization expansion CT-QMC, if we choose λ to be
the hybridization strength V , then the corresponding fidelity
susceptibility, which we denoted by χV

f , can be calculated by
a very simple formula [41,42],

χV
f = 〈kLkR〉M.C. − 〈kL〉M.C.〈kR〉M.C.

2V 2
. (31)

Here, kL and kR refer to the number of hybridization vertices
H̃V (the filled and empty circles in Fig. 2) residing in the
range [0, β/2) and [β/2, β ) of the imaginary time axis, in
a particular configuration during the Monte Carlo sampling.
〈. . . 〉M.C. denotes the expectation value under Monte Carlo

sampling. Intuitively this formula measures the covariance of
kL and kR. At the QCP, fluctuation is the most violent, which
means the covariance is the greatest, and χV

f is maximized.

III. QUANTUM PHASE TRANSITIONS
AND PHASE DIAGRAM

We now present the CT-QMC results. We describe the
details of our analysis in the representative cases of s = 0.6
in Sec. III A and s = 0.2 in Sec. III B. We then consider
the dependence on s in the range 0 < s < 1 appropriate for
sub-Ohmic bosonic bath in Sec. III C.

A. s = 0.6

We start by presenting our analysis at s = 0.6, which
belongs to the case of RG flow specified in Fig. 1(a). The RG
fixed point C′ controls the transition from the local moment
phase to the Kondo phase; a stable fixed point L represents the
critical phase; and, correspondingly, we have two additional
unstable fixed points C and LC, respectively, describing the
transition to the Kondo phase and the local moment phase
from the critical phase. In the following, we will present
numerical evidence for each of the three QCPs.

1. Critical phase-Kondo transition

First we stay at g = 0.5 and gradually increase 	0. In
Fig. 3(a) we plot ξ/β versus 	0 from β = 200 all the way to
β = 6400. For 	0 � 0.08, we find ξ/β is almost independent
of β (system size), suggesting the system being scale invariant
for a range of 	0. This is the signature of the critical phase.
At larger 	0, ξ grows slower than the system size β, signi-
fying short time correlation between the impurity spin as the
impurity is Kondo screened. At some critical value of 	0 we
expect a quantum phase transition separating the two phases.
But the exact location is hard to pinpoint, as we do not see
any crossing in ξ/β. (The fact that ξ/β is universal at the
QCP does not necessarily guarantee a crossing. In order to
have a crossing, ξ/β need to be increasing/decreasing with β

to the left/right of the critical point, or vice versa. But here
ξ/β stays at a constant value for 	0 � 0.08 due to the nature
of the critical phase.) In Sec. III A 3 we will show that ξ/β

does have a crossing at the local moment to Kondo QCP.
One observable we can utilize is the root mean square

magnetization σ defined in Eq. (24). We expect that a scaling
form as follows should hold,

σ (	0, β ) = β−(1−x)/2σ̃ (β1/ν (	0 − 	c)/	c + A/βφ/ν ), (32)

where σ̃ is the universal function, 	c the critical coupling, ν

the correlation length exponent, and A/βφ/ν is the subleading
terms.

In the universal function σ̃ , the dependence of the tun-
ing parameter only comes in through the combination of
β1/ν (	0 − 	c) (ignoring subleading corrections). This can be
justified from RG or understood phenomenologically based
on the consideration that at a QCP the system only depends on
the ratio β/ξ and ξ diverges, ξ ∝ |	0 − 	c|−ν . One subtlety
here is that the correlation length diverges in the entire critical
phase. So one could question whether such a scaling form
still applies in the region of 	0 < 	c. The prefactor β−(1−x)/2
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FIG. 3. (a) Reduced correlation length ξ/β vs 	0 from β = 200
to β = 6400 at g = 0.5, s = 0.6. ξ/β remains constant in the critical
phase while it decreases with increasing β in the Kondo phase. The
relative error of ξ is on the order of 10−4, much smaller than the
symbol size. (b) Rescaled magnetization using Eq. (32), with x =
0.63(2), 	c = 0.08(1), and ν−1 = 0.26(4). Inset: blow up view near
	0 = 	c.

comes from Eq. (25) and that at the QCP we expect χ spin ∝ βx

with the exact relation x = s based on the ε-expansion RG
result. Here instead of imposing this relation we allow x to
adjust freely. As shown in Fig. 3(b), the quality of the scaling
collapse suggests that Eq. (32) is the correct scaling hypothe-
sis. In addition the correspondingly determined 	c = 0.08(1)
and ν−1 = 0.26(3) are consistent with what we obtained from
χV

f . We also find x = 0.63(4), consistent with the prediction
x = s.

Based on the ε expansion to the second order [15,16],
we obtain ν−1 = ε/2 + ε2/6 � 0.23, in reasonably good
agreement with the numerical value. Unlike the χ spin(T ) ∼
1/T local moment behavior in the s = 0.2 case previously
found in Ref. [21], here the temperature dependence of
the spin susceptibility obeys a nontrivial power law, as
shown in Fig. 4. We find x = 0.66, 0.67, 0.66, 0.65 for 	0 =
0.04, 0.05, 0.06, 0.07, respectively. We interpret this as im-
plying that, for 	0 < 	c, the system will flow under RG to-
wards the critical phase fixed point L with χ spin(T ) ∼ A1/T s.
Notice that according to ε expansion the leading irrelevant
operator has a very small scaling dimension yi = −ε/2 +
O(ε2), so the deviation from the exact relation x = s is most
likely due to corrections to scaling. At 	0 = 	c, we have
x = 0.61. This is also consistent with the predicted critical
behavior χ spin(T ) ∼ A2/T s at fixed point C from ε-expansion
RG [15,16] .

FIG. 4. Temperature dependence of the spin susceptibility across
the critical phase to Kondo QCP at g = 0.5, s = 0.6. Dashed line
shows the T −s behavior expected in the critical phase (	0 � 0.08) as
well as at the QCP (	0 � 0.08). The error bar is less than 1% of the
value of χspin(T ).

2. Critical phase-local moment transition

So far we have considered the regime accessible by
the ε expansion of the SU(2) model, namely when both
the fermionic and bosonic couplings are small. Unlike the
Coulomb-gas expansion of the Ising case [12,13,15,16], the ε

expansion here does not reach the regime of large g. In order
to simplify the calculation we set 	0 = 0 in this section. We
have also performed calculations at small but nonzero 	0 and
the conclusion remains the same.

First let us look at the behavior of the correlation length as a
function of g, plotted in Fig. 5. The low temperature behavior
of ξ/β for g � 0.5 resembles the critical phase behavior in

FIG. 5. (a) Reduced correlation length as a function of g. The
distinct behavior at small and large g each corresponds to critical
phase and local moment phase. (b) Effective Curie constant extracted
using Eq. (33) as a function of g. Dashed lines are power law fits
according to M0 ∝ (g − gc )β1 up to g � gmin with three different
choice of gmin.
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FIG. 6. Temperature dependence of mean square magnetization
across the critical phase-local moment transition. Red (blue) lines are
fits according to Eq. (34) with zero (finite) Curie constant M0, which
is expected in the critical (local moment) phase.

Fig. 3(a), both converging to a value around 0.3. For g � 0.8,
on the other hand, ξ/β rises as temperature decreases, which
suggests local moment phase behavior.

A more quantitative way of studying the transition between
these two phases is by looking at the temperature dependence
of the mean square magnetization σ 2. Following Ref. [21], the
low temperature behavior of χ spin(T ) can be described by the
following ansatz,

χ spin(T ) = M0/T + 1/T xT 1−x
B . (33)

Here M0 is the Curie constant, TB the crossover temperature
scale above which the critical fluctuation part T −x will domi-
nate. This together with Eq. (25) leads to

σ 2(T ) = M0 + (T/TB)1−x. (34)

Our result for σ 2(T ) is plotted in Fig. 6. For g � 0.5,
the data can be described by Eq. (34) with M0 = 0 and
x = 0.68, 0.67, 0.66 for g = 0.3, 0.4, 0.5. This is the critical
phase and the exponent is very close to what we obtained
at Sec. III A 1. For g � 0.8, fitting σ 2(T ) using the same
equation gives a finite M0. This indicates we are entering
the local moment phase. While we have obtained x = 0.60
for g > 1, we have x = 0.67, 0.65, 0.64 for g = 0.8, 0.9, 1.0,
reflecting corrections to scaling not captured by Eq. (34).

The extracted M0 is plotted in Fig. 5(b). Close to the
transition point at g = gc, we expect M0 to vanish as M0 ∝
(g − gc)β1 . We attempt to use this relation to find the value
of gc by fitting over the M0 versus g data. Bearing in mind
that for 0.8 � g � 1 the value of x obtained from Eq. (34) is
larger than s, it is likely that we will be overestimating M0

in this region, so we only use M0 down to g � gmin and vary
gmin from 0.8 to 1. Depending on the cutoff gmin, the obtained
gc lands within the range gc ∈ [0.74, 0.88]. Notice that the
fitting with different gmin all describe the g � 1 part of the
data quite well. We thus take our final estimate of gc to be
gc = 0.8 ± 0.1.

3. Local moment-Kondo transition

Now that we have established that the system resides in the
local moment phase for g > gc � 0.8 at 	0 = 0, we consider a
path to the Kondo screened phase by turning on the hybridiza-
tion while fixing g = 1. As expected, we observe a crossing

FIG. 7. Reduced correlation length ξ/β (a) and fidelity suscepti-
bility χV

f (b) vs 	0 across the local moment-Kondo transition from
β = 200 to β = 6400 at g = 1, s = 0.6. Near the QCP ξ/β exhibits
crossing and χV

f shows up a peak. The error bar of ξ/β is much
smaller than symbol size.

in ξ/β, and a divergence in χV
f , both around 	0 = 0.4 (cf.

Fig. 7).
Similar to what we have done for σ (	0, β ) in Eq. (32), we

consider the following finite size scaling hypothesis for ξ and
χV

f ,

ξ (	0, β ) = βξ̃ (β1/ν (	0 − 	c)/	c + A/βφ/ν ), (35)

χV
f (	0, β ) = β2/νχ̃ (β1/ν (	0 − 	c)/	c + A/βφ/ν ). (36)

As seen in Fig. 8, close to the critical point the data
fall nicely under a single universal curve. We obtain 	c =
0.35(2), ν−1 = 0.39(6) from ξ and 	c = 0.34(2), ν−1 =
0.37(5) from χV

f . Our final estimated values are 	c = 0.35(2)
and ν−1 = 0.38(5). The value of ν−1 obtained here for the
critical point C′ is in sharp contrast with that for the critical
point C with ν = 0.25(4). This further establishes that C and
C′ are two distinct critical points.

We now turn to the critical behavior of spin susceptibility.
In Fig. 9, we plot χ spin vs T at different 	0. At the critical
coupling 	0 = 	c � 0.35, χ spin(T ) can be fitted with a power
law χ spin(T ) ∝ T −x with x = 0.65. Inside the local moment
phase at 	0 = 0.1, it can be described by Eq. (33) with a finite
M0 = 0.10 for the M0/T term and a subleading 1/T xT 1−x

B
term with x = 0.62. These are consistent with the critical spin
fluctuations being dominated by a T −s behavior. Thus we infer
that the local spin susceptibility at C′ should also diverge as
χ spin ∼ 1/T s.
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FIG. 8. Finite size scaling of correlation length (a) and fidelity
susceptibility (b) for the local moment to Kondo transition. Inset
shows blow up view of the data obtained near 	0 = 	c. Note that
due to incorporating the subleading term in the scaling ansatz, it is
no longer centered around 0. The error bar of ξ/β is much smaller
than symbol size.

B. s = 0.2

We now turn to the model at s = 0.2. This is also the case
investigated in Ref. [21] at the U = ∞ limit. We will fix g =
0.5 and gradually increase 	0 to find the QCP from the local
moment phase to the Kondo screened phase.

We first plot the dependence on 	0 of the Binder cumulant
U2 and the reduced correlation length ξ/β in Fig. 10(a) and
Fig. 10(b), where we have identified crossing points for both
quantities. This suggests a transition from a local moment
phase at small 	0 to a Kondo screened phase at large 	0.
The crossing points have a sizable drift as we lower the

FIG. 9. Temperature dependence of the spin susceptibility across
the local moment to Kondo transition at g = 1, s = 0.6. Black dotted
line is fit from data at 	0 = 0.1 in the local moment phase using Eq.
(33) with a finite Curie part M0 = 0.1. Blue dashed line is fit from
data at 	0 = 	c with power-law behavior χ spin(T ) ∼ T −0.65.

FIG. 10. Various quantities vs hybridization strength 	0 across
the local moment to Kondo QCP, including (a) binder cumulant,
(b) reduced correlation length, and (c) fidelity susceptibility, from
β = 200 to β = 3200 at s = 0.2, g = 0.5. Near the QCP U2 and ξ/β

exhibits crossing while χV
f shows up a peak.

temperature, which can be seen more clearly by plotting the
crossing points between curves at β and 2β in Fig. 11. We
see that the crossing points obtained from U2 and ξ/β are
approaching to the same critical value 	c in the T = 0 limit

FIG. 11. Evolution of the crossing points in U2 and ξ/β as
temperature is lowered. Data are extracted from Figs. 10(a) and
10(b). Curves are fits to 	cross = 	c + aT b, showing that crossing
points are converging to a common value.
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FIG. 12. Finite size scaling analysis for critical point C′ at s =
0.2 based on data in Fig. 12. Upper panel: scaling collapse of Binder
cumulant with 	c = 0.49(1), ν−1 = 0.42(3) and correlation length
with 	c = 0.48(1), ν−1 = 0.43(3). Lower panel: scaling collapse of
fidelity susceptibility with 	c = 0.46(2), ν−1 = 0.48(3).

from the opposite directions. By extrapolating the crossing
points 	cross to T = 0 using a simple power-law relation
	cross = 	c + aT b, we find 	c = 0.48(1).

We can then repeat the analysis done in Sec. III A 1 for
the same type of transition at s = 0.2 by considering scaling
collapse of the form in Eq. (35) for the correlation length ξ

and similarly for the Binder cumulant U2,

U2(	0, β ) = Ũ2(β1/ν (	0 − 	c)/	c + A/βφ/ν ) (37)

where the presence of the subleading term A/βφ/ν can take
into account the finite temperature shift of the crossing
point. It turns out these ansatzes describe the data very well.
The collapsed data using Eqs. (35) and (37) are plotted in
Fig. 12(a), and they give consistent estimates for the value
of the critical coupling 	c and correlation length exponent
ν. We obtain 	c = 0.49(1), ν−1 = 0.42(3) from U2 and 	c =
0.48(1), ν−1 = 0.43(3) from ξ .

We further test the applicability of the fidelity susceptibility
in this case, which serves as another independent tool to detect
the QCP. As shown in Fig. 10(c) the measured χV

f appears to
diverge near our estimated 	c. A finite size scaling analysis
can be performed as well. For consistency we consider the
same type of scaling form of χV

f as appeared in Eq. (36),
The result, plotted in Fig. 12(b), gives 	c = 0.46(2) and
ν−1 = 0.48(3), in fairly good agreement with what we have
obtained from U2 and ξ . Our final estimates are 	c = 0.48(1)
and ν−1 = 0.44(5).

Having identified the location of the QCP, we now look
at the temperature dependence of the spin susceptibility χ spin

across the QCP, shown in Fig. 13(a). It turns out that the
critical behavior of χ spin is much harder to study for the
s = 0.2 case compared to the s = 0.6 case. For 	0 < 	c,

FIG. 13. (a) Temperature dependence of spin susceptibility at
various 	0. Dotted and dashed lines are visual guides for the T −1 and
T −s behavior expected in the local moment phase and critical point
C′, respectively. (b) Effective power law exponent α (defined in text)
as a function of T . Dashed line separates the two distinct behavior in
the temperature dependence of the transient exponent α: In the local
moment regime (	0 < 	c) α will approach 1. In the Kondo regime
(	0 > 	c) α will approach 0. At the QCP (	0 = 	c) α is expected to
approach 0.2.

the dominant behavior of χ spin(T ) is Curie-Weiss-like, re-
flecting the localized nature of the impurity spin. For 	0 >

	c, χ spin(T ) will saturate at low T, corresponding to Kondo
singlet formation. In between, we can see some indication
of quantum critical behavior χ spin(T ) ∝ T −s at 	0 = 0.50,
slightly away from our estimated 	c. We suggest that this
is due to the fact that χ spin(T ) at 	0 = 	c is still in the
initial crossover regime. To see this, we may define a transient
power law exponent by α(T ) = −d log(χ spin(T ))/d log(T ).
In practice α(T ) is calculated based on the log(χ spin(T )) vs
log(T ) data using finite difference. For 	0 � 0.46 we find
α(T ) is increasing as T is lowered while for 	0 � 0.48 it is
decreasing.

We note that the calculation in Ref. [21] has assumed the
relation χ spin(T ) ∝ T −s and use it as a tool to locate the QCP
by looking for the crossing point of T sχ spin(T ) at different
T . But there the crossing point has significant drift versus
temperature, which is consistent with an evolving α(T ) in our
calculation. Here we determine the critical coupling 	c via
a variety of independent methods and obtained unambiguous
results for the presence and the location of the QCP. Then
we attempt to verify the critical behavior of χ spin(T ) directly.
Unfortunately from Fig. 13(b) it seems that, in contrast to
the case of s = 0.6, accessing the asymptotic critical regime
requires even lower temperatures for s = 0.2. We have seen
earlier that in the s = 0.6 case it is much easier to access the
asymptotic critical behavior of χ spin(T ).
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C. Phase diagram upon varying the power of the
sub-Ohmic spectrum

The phase diagram, as specified by the two types of
RG flows given in Fig. 1, can be determined for any given
0 < s < 1 once we have estimated s∗. For this purpose, we
can turn to the pure bosonic problem by setting 	0 = 0 and
vary both the bosonic coupling g as well as the bosonic bath
exponent s. As s → 0+, the procedure to obtain J (τ ) defined
in Eqs. (19) and (21) will encounter convergence issue. As the
critical property only depends on the long time asymptotic
behavior of J (τ ), we directly adopt a J (τ ) that has the correct
1/τ 1+s dependence as our input without specifying the actual
form of ρb(ω). To be specific, we choose J (τ ) to be the
following,

J (τ ) =
[

π/β

sin(πτ/β )
(1 + e−β − e−τ − e−(β−τ ) )

]1+s

. (38)

The exponential factor will make J (τ ) finite at the end points:
limτ→0 J (τ ) = limτ→β J (τ ) = 1. Also J (τ ) is even under
reflection about τ = β/2.

We can then integrate J (τ ) twice to get B(τ ),

B(τ ) − B(0) =
∫ τ

0

∫ τ ′

0
J (τ ′′)dτ ′dτ ′′ + aτ, (39)

with a = − ∫ β/2
0 J (τ ′′)dτ ′′ determined from the condition

dB(τ )/dτ |τ=β/2 = 0. Using Eqs. (38) and (39) as input we
have obtained the dynamical spin correlation function χ s(τ )
for different values of g and s. In Fig. 14(a) we present the
result of χ s(τ ) vs τ at several different values of β for the
specific case of g = 0.4, s = 0.2. At each β, χ s(τ ) drops from
1/4 at τ = 0 and reaches its minimum at τ = β/2. As β is
increased, χ s(τ = β/2) converge to a finite value.

We then plot the evolution of χ s(τ = β/2) obtained at
low temperature, as a function of s for four different choices
of g in Fig. 14(b), up to the smallest value of χ s(τ = β/2)
that we can reach convergence. We can identify χ s(τ = β/2)
obtained here as an effective Curie constant and use it as
the order parameter for the local moment phase. We see that
for fixed g, χ s(τ = β/2) decreases smoothly as a function
of s. Furthermore, we can extrapolate each curve to a larger
value of s until χ s(τ = β/2) vanishes at some critical value
s = sc(g). This gives the value of s where the corresponding g
is the critical value between the local moment phase and the
critical phase.

The dependence of sc(g) on g maps out the phase boundary
between the local moment phase and the critical phase, which
is shown in Fig. 15. Note that the shape of the phase boundary
will depend on the specific form of J (τ ) that is employed. As
we can see the dependence of sc(g) on the value of s is fairly
weak and it reaches the g2 = 0 axis at around s = s∗ � 0.47.
We note that the simple extrapolation scheme performed in
Fig. 15 could introduce some error in this estimate.

IV. DISCUSSION

Our result is best summarized in Fig. 1. We have shown
that the ε-expansion RG result remains valid when s > s∗
(ε < 1 − s∗) and provide numerical evidence for the existence
of the intermediate coupling local moment fixed point L

FIG. 14. (a) Dynamical spin correlation function χ s(τ ) from τ =
0 up to τ = β/2 at different β. For large β, χ s(β/2) converges to a
finite value around 0.05. Arrow marks the value of χ s(β/2) at β =
4500. (b) Effective Curie constant χ s(β/2) vs s at different value of
g. Increasing s reduces the size of χ s(β/2). Dashed lines are a linear
extrapolation of χ s(β/2) to χ s(β/2) = 0, the intersections with the
horizontal axis give the critical values sc(g) for each g. Arrow marks
the value of sc obtained at g = 0.5.

and the associated Kondo destruction critical point C in this
model. In addition, we find a second local moment fixed
point L′ at strong coupling, associated with a second Kondo
destruction critical point C′, neither of which is accessible
by the ε-expansion approach. For s < s∗, only L′ and C′
survive and our result is fully compatible with the result

FIG. 15. Phase diagram of the pure bosonic problem. For s >

s∗ � 0.47, increasing g will induce a transition from the critical
phase to the local moment phase. For s < s∗, the critical phase
disappears.
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of Ref. [21] for s = 0.2. In terms of the quantum critical
properties of C and C′, we find that while they have different
correlation length exponents, the anomalous dimension of
the local spin correlation function follows the same relation
η = 1 − s.

Our findings have important implications for the quan-
tum criticality in Kondo lattice model within the EDMFT
framework. In the EDMFT solution of the Kondo lattice
model, the Kondo destruction QCP of the lattice problem is
embedded in the impurity QCP of an effective BFKM. For
two-dimensional magnetic fluctuations, the self-consistency
condition is satisfied at s → 0+, or ε → 1−, provided the
relation η = ε holds, which initially is a statement made at
critical point C from ε-expansion perspective. Our calculation
implies that C should disappear before ε reaches 1 and that the
actual impurity QCP encountered in the EDMFT calculation
should be C′ instead. Nonetheless, the relation η = ε is still
true at C′ and, thus, a solution of the Kondo destruction
QCP is still expected, even though C and C′ have different
correlation length exponents and belong to different univer-
sality classes. This is quite surprising until we realize that
the argument that leads to η = ε only relies on the condition
η = ε + 2β(g)/g|g=g∗,J=J∗ , which is shown to be valid to all
orders in ε in Ref. [15]. The relation η = ε then follows at
any intermediate coupling fixed point g = g∗, J = J∗, where
β(g)/g|g=g∗,J=J∗ = 0, regardless of whether g∗ and J = J∗ is
of the order ε. Thereby this argument can be extended to C′ as
well.

V. CONCLUSIONS

We have studied the SU(2) Bose-Fermi Anderson model
using CT-QMC, focusing on the Kondo destruction type QCP.
We find two types of such QCPs: one from Kondo screened
phase to a local moment phase, the other to a critical phase.
The second type QCP only exists when s > s∗, in which case
the critical properties we have calculated agree with those
from an ε-expansion RG. At both types of QCP, our results
suggest the spin correlation function obeys the power law
χ spin(τ ) ∼ (1/τ )η with η = 1 − s.
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