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Sequential quantum phase transitions in J1-J2 Heisenberg chains with integer spins (S > 1):
Quantized Berry phase and valence-bond solids
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On the basis of a Berry-phase analysis, we study the ground state of the J1-J2 Heisenberg chain for
S = 2, 3, 4. We find that changes in the Berry phase occur S times for spin-S systems, indicating sequential
phase transitions. The sequential phase transitions are associated with the change in valence-bond configurations
of the ground states. To demonstrate this numerically, we connect the J1-J2 Heisenberg Hamiltonian with the
generalized Affleck-Kennedy-Lieb-Tasaki model and show that the different phases are connected to the different
valence-bond solid states.
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I. INTRODUCTION

Over the past few decades, quantum spin chains with
integer spin quantum numbers have provided fertile ground
for seeking topological phenomena in many-body physics.
The S = 1 Heisenberg model with the nearest-neighbor (NN)
interaction is a representative example. Its ground state is
unique, has a short-range spin correlation, and hosts a finite
energy gap on top of it. This state, which is called the
Haldane state [1,2], is nowadays regarded as a representa-
tive example of the symmetry-protected topological phase
[3–6] in many-body quantum systems. Clearly, this phase is
not characterized by the Ginzburg-Landau-type local order
parameters. Indeed, for the S = 1 Heisenberg model, the
ground state is characterized by the hidden valence-bond solid
(VBS) state as inferred from the related model introduced
by Affleck, Kennedy, Lieb, and Tasaki (AKLT), whose exact
ground state is the VBS state [7,8]. To capture such hid-
den structures in symmetry-protected topological phases, one
needs to employ either nonlocal order parameters [8–10] or
so-called topological order parameters [11–18]. Also, in many
cases, characteristic boundary states for the open systems,
e.g., the free end spins with S = 1/2 for the S = 1 Heisen-
berg model [19], are the hallmark of the symmetry-protected
topological phase [20,21].

The richness of the phases becomes even more abundant
when considering models beyond the simple NN Heisenberg
models, such as introducing bond alternation [22–24] and a
biquadratic term [7,8,25,26]. In the present work, we focus on
the J1-J2 Heisenberg model, where the next-nearest-neighbor
(NNN) interaction (J2) is introduced in addition to the NN
interaction (J1), resulting in frustration. In the literature
[27–34], it was found that, upon changing the ratio of J2

to J1, the first-order quantum phase transition occurs near
J2/J1 ∼ 0.75. Indeed, the competition between J1 and J2 plays
an important role in this phase transition, namely, it is thought
to be associated with the change in the corresponding VBS
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states [30]. To be specific, the valence bonds live in the NN
bonds for weak J2, whereas they live in the NNN bonds for
strong J2. Recently, Chepiga et al. found the change in the
Z2 Berry phase [16,35] across the phase transition, which is
compatible with the change in VBS patterns [33].

Motivated by these works, in the present paper, we in-
vestigate the ground state of the J1-J2 Heisenberg chain for
higher-order integer spins, S = 2, 3, 4. The models (up to
S = 2, including XY and XXZ models) were investigated in
Refs. [36–38], and Ref. [36] indicates the existence of the
phase transition for the S = 2 Heisenberg chain, through anal-
yses of the end spins for open systems. Based on these results,
the goal of our study is to characterize the phase transitions
by means of Berry-phase analysis. We have found sequential
changes in the Berry phase, which occur S times for the
spin-S J1-J2 model, indicating sequential topological phase
transitions. We further associate these transitions with the
change in the VBS pictures of the ground states. It was argued
in Ref. [30] that the phases for J2 < Jc

2 and J2 > Jc
2 correspond

to the NN-VBS state and NNN-VBS state [see Figs. 5(a)
and 5(b)], respectively, for S = 1. To verify this scenario and
further generalize it to higher spins, we consider models in
which the Heisenberg model is continuously connected to
the generalized AKLT models with various connectivity of
singlets and see whether the ground states are adiabatically
connected upon changing the parameter. We find that the
different phases in the J1-J2 Heisenberg chain are connected
to the different VBS states and that the number of phases for
higher S values coincides with the number of possible VBS
patterns.

The rest of this paper is organized as follows. In Sec. II, we
first introduce the J1-J2 antiferromagnetic Heisenberg chain,
which is the main focus of this paper. We also describe our
method, namely, the detection of topological phase transitions
by using the Z2 Berry phase. The details of the numerics are
also elucidated. The main results of this paper are reported in
Sec. III. First, we present the results of the Z2 Berry phase
for S = 2, 3, 4. We show that there appear sequential changes
in the Z2 Berry phase as a function of J2/J1. We then move
on to the analysis of the Heisenberg chain and generalized
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FIG. 1. The J1-J2 Heisenberg chain. Red and green lines repre-
sent bonds where the twist of the interaction is introduced for the
results in Secs. III A and III B, respectively.

ALKT models with various connectivity of singlets. Finally,
we present a summary of this paper in Sec. IV.

II. MODEL AND METHOD

A. J1-J2 Heisenberg chain

We consider the J1-J2 antiferromagnetic Heisenberg chain
for S = 1, 2, 3, and 4. The Hamiltonian reads

H (S)
H =

N∑
i=1

J1Si · Si+1 + J2Si · Si+2, (1)

where Si is a spin operator at site i, and N is the number
of sites. The exchange parameters, J1 and J2, are set to be
nonnegative. Hereafter, unless otherwise noted, we set J1 = 1,
as a unit of energy. We impose a periodic boundary condition,
Si+N = Si. See Fig. 1 for a schematic of the model. We note
that, throughout this paper, we consider finite chains whose
ground states are accessible by exact diagonalization (see
Sec. II C for details).

B. Z2 Berry phase

For gapped quantum systems, the Berry phase [35] with
respect to the twist angles of boundary conditions is enforced
to be quantized when the Hamiltonian has some discrete
symmetries. Indeed, it has served as a powerful tool to capture
the topological phases in various systems of finite system
size [16,33,39–53].

For quantum spin systems having time-reversal symmetry,
the Z2 Berry phase serves as a topological order parame-
ter [16]. The Berry phase is defined with respect to the twist
angle, θ , which modulates the Hamiltonian in the following
manner. The twist at the bond 〈i, j〉 with the angle θ ∈ [0, 2π ]
is introduced by replacing Si · S j in the Hamiltonian with
1
2 (eiθ S+

i S−
j + e−iθ S−

i S+
j ) + Sz

i Sz
j . We label the Hamiltonian

with the twist H (θ ). Suppose that the ground state of H (θ ),
|�0(θ )〉, remains unique upon varying θ . Then one can define
the Berry connection,

A(θ ) = 〈�0(θ )| ∂θ |�0(θ )〉 , (2)

and the corresponding Berry phase,

iγ =
∫ 2π

0
dθ A(θ ). (3)

Note that γ is quantized as γ = 0, π (mod 2π ) due to
the time-reversal symmetry. Namely, the twisted Hamilto-
nian satisfies T H (θ )T −1 = H (−θ ), which leads to γ = −γ

(mod 2π ). Roughly speaking, γ = π (0) indicates that there

exists an odd (even) number of hidden spin singles in the
twisted bond(s) [16,33,41]. Therefore, it is useful for seeking
the corresponding VBS picture of the ground state.

C. Numerical calculation of the Z2 Berry phase

We numerically calculate the ground state |�0(θ )〉 by exact
diagonalization. To obtain γ , the integration in Eq. (3) is
approximated by the summation as

iγ ∼
Nm−1∑
n=0

�θ〈�0(θn) |∂θ�0(θn)〉 , (4)

where �θ = 2π
Nm

and θn = n�θ ; Nm is the number of
meshes in a space of θ . To avoid the gauge-fixing
problem, the summation can be further approximated
as follows [16,54]. First, we define a quantity Un =
〈�0(θn)|�0(θn+1)〉, which can be approximated up to
O(�θ ) as Un = 1 + �θ〈�0(θn)|∂θ�0(θn)〉 + O(�θ2). Next,
we introduce a gauge-invariant quantity log [

∏Nm−1
n=0 Un],

which can be approximated as log [
∏Nm−1

n=0 Un] =∑Nm−1
n=0 �θ〈�0(θn)|∂θ�0(θn)〉 + O(�θ2), and thus we obtain

iγ ∼ log [
∏Nm−1

n=0 Un]. We have confirmed that the numerical
error due to this approximation is at most O(10−6) in units
of 2π .

As for the choice of the twisted bonds, we use a three-bond
twist, represented by red arrows in Fig. 1, for the results in
Sec. III A. This choice is the same as that in the previous
work [33], which turned out to reduce the finite-size effect
(see Fig. 4). On the other hand, for the results in Sec. III B,
we employ the single-bond twist, represented by the green
arrow in Fig. 1, for simplicity of calculations. It should be
noted that both of the choices of the twisted bonds contain an
odd number of NN bonds and an even number of NNN bonds,
so the corresponding Berry phases should be the same, except
for deviations due to the finite-size effect.

III. RESULTS

A. Sequential change of the Z2 Berry phase for S > 1

In this subsection, we discuss the J2 dependence of the
Z2 Berry phase for various values of S. The result for S = 1
was already uncovered [33], so we focus on the case with a
higher S.

In Fig. 2, we show the Z2 Berry phase as a function of
J2 for S = 2, 3, 4. The system sizes used are presented in
the caption. We clearly see the changes in γ from 0 to π

or from π to 0 when changing J2, which indicate quantum
phase transitions. Note that the changes occur S times for the
spin-S model. For instance, for S = 2, the Berry phase varies
as 0 → π → 0 upon increasing J2. Henceforth, we label the
nth transition point for the spin-S model as Jc

2 (S, n) (see red
arrows in Fig. 2).

We further find another sign of the phase transition,
namely, the “hidden gap closing,” when the twist is intro-
duced. For the untwisted J1-J2 model, the energy gap between
the ground state and the first excited state does not close
across the change in the Berry phase. This behavior was also
observed for S = 1 in a density matrix renormalization-group
study [28]. Our finding is that, at the critical values of J2, the
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(a) (b) (c)

FIG. 2. Z2 Berry phase as a function of J2 for (a) S = 2, N = 10; (b) S = 3, N = 10; and (c) S = 4, N = 8. The critical points, Jc
2 (S, n),

are Jc
2 (2, 1) = 0.6723 and Jc

2 (2, 2) = 0.7939 for S = 2; Jc
2 (3, 1) = 0.6112, Jc

2 (3, 2) = 0.7130, and Jc
2 (3, 3) = 0.8257 for S = 3; and Jc

2 (4, 1) =
0.5316, Jc

2 (4, 2) = 0.6552, Jc
2 (4, 3) = 0.7483, and Jc

2 (4, 4) = 0.8667 for S = 4.

energy gap closes for the twisted model with θ = π ; see Fig. 3
for the energy gap as a function of θ at Jc

2 (2, 1). Note that
similar behavior is argued in Refs. [55] and [56] in the context
of the field-theoretical analysis.

As we have emphasized, the results shown in Fig. 2 are for
a finite-size system, and determination of the critical points in
the thermodynamic limit is hampered by the finite-size effect,
as pointed out for S = 1 [33]. As an example, we show the
size dependence of Jc

2 for S = 2 in Fig. 4. For comparison,
we also plot Jc

2 obtained from the single-bond twist, which we
employ in the next subsection. Clearly, the convergence of Jc

2
is not obtained up to N = 12. We also see that the choice of
twisted bonds quantitatively affects Jc

2 . Therefore, one needs
to employ an alternative method to obtain the precise critical
points in the thermodynamic limit.

Although the existence of phase transitions is captured
in the Z2 Berry phase, the physical pictures of the phases
cannot be identified directly, which we elucidate in the next
subsection.

B. Connection to generalized AKLT models

To understand the origin of the quantum phase transitions,
we continuously connect the J1-J2 Heisenberg model with
the generalized AKLT models whose ground states are the
VBS states, up to S = 2. The possible VBS states for the
J1-J2 model are listed in Fig. 5. For S = 1, there are only two
possible VBS states. One has spin singlets in the NN bonds

FIG. 3. Energy gap as a function of θ at (J1, J2) =
(0.8299, 0.5579), i.e., J2/J1 = 0.6723, for S = 2.

[NN-VBS state; see Fig. 5(a)]; the other, in the NNN bonds
[NNN-VBS state; see Fig. 5(b)]. For S = 2, on the other hand,
there is another state, in addition to the NN-VBS and NNN-
VBS states, in which singlets live in both NN bonds and NNN
bonds [Fig. 5(d)]. We refer to this state as the intermediate
(I)-VBS state. To obtain the desirable AKLT models, one can
follow the recipe to write down the Hamiltonian with respect
to the projection operators that favor the corresponding VBS
states [57,58]. In what follows, we employ

H (1),(i)
AKLT = 2

N∑
i=1

P1
2 (i, i + 1)

=
N∑

i=1

[
Si · Si+1 + 1

3
(Si · Si+1)2 + 2

3

]
(5)

and

H (1),(ii)
AKLT = 2

N∑
i=1

P1
2 (i, i + 2)

=
N∑

i=1

[
Si · Si+2 + 1

3
(Si · Si+2)2 + 2

3

]
(6)

1/12 1/10 1/8
 0

 0.5

 1

 1.5

 2

(Three-bond twist)

(Three-bond twist)

(Single-bond twist)

(Single-bond twist)

FIG. 4. Size dependence of the critical points for S = 2.
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(a) (b)

(c) (d) (e)

FIG. 5. Schematics of the VBS ground states of (a) H (1),(i)
AKLT ,

(b) H (1),(ii)
AKLT , (c) H (2),(i)

AKLT , (d) H (2),(ii)
AKLT , and (e) H (2),(iii)

AKLT . Small black
squares, lines, and open circles represent the spin-1/2, the spin
singlets, and the symmetrization, respectively.

for S = 1; similarly,

H (2),(i)
AKLT = 10

N∑
i=1

(
1

7
P2

3 (i, i + 1) + P2
4 (i, i + 1)

)

=
N∑

i=1

Si · Si+1 + 2

9
(Si · Si+1)2

+ 1

63
(Si · Si+1)3 + 10

7
, (7)

H (2),(ii)
AKLT = 28

N∑
i=1

∑
δ=1,2

P2
4 (i, i + δ)

=
N∑

i=1

∑
δ=1,2

Si · Si+δ + 7

10
(Si · Si+δ )2

+ 7

45
(Si · Si+δ )3 + 1

90
(Si · Si+δ )4, (8)

and

H (2),(iii)
AKLT = 10

N∑
i=1

(
1

7
P2

3 (i, i + 2) + P2
4 (i, i + 2)

)

=
N∑

i=1

Si · Si+2 + 2

9
(Si · Si+2)2

+ 1

63
(Si · Si+2)3 + 10

7
(9)

for S = 2 [59], where PS
J (i, j) is a projection operator for the

total spin J of the bond 〈i, j〉. The VBS state is a zero-energy
state of the Hamiltonian since it does not have any projection
for the subspace J > 2S − M, where M is the number of
valence bonds [57,58].

(e)

(a) (b)

(c) (d)

FIG. 6. (a–d) λ dependence of the energy gap at θ = π and the Berry phase of the Hamiltonian, Eq. (10), for S = 1. Parameters and choices
of η are (a) J1 = 1, J2 = 0, and η = (i); (b) J1 = 0, J2 = 1, and η = (i); (c) J1 = 1, J2 = 0, and η = (ii); and (d) J1 = 0, J2 = 1, and η = (ii).
The system size is N = 12. The gap closing occurs at λ = 0.4565 in (b) and 0.5185 in (c). (e) Schematic phase diagram of the J1-J2 model for
S = 1 with respect to the VBS picture. Shaded area represents γ = π .
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(j)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. (a–i) λ dependence of the energy gap at θ = π and the Berry phase of the Hamiltonian, Eq. (10), for S = 2. Parameters and choices
of η are (a) J1 = 1, J2 = 0, and η = (i); (b) J1 = 1, J2 = 0.942, and η = (i); (c) J1 = 0, J2 = 1, and η = (i); (d) J1 = 1, J2 = 0, and η = (ii);
(e) J1 = 1, J2 = 0.942, and η = (ii); (f) J1 = 0, J2 = 1, and η = (ii); (g) J1 = 1, J2 = 0, and η = (iii); (h) J1 = 1, J2 = 0.942, and η = (iii);
and (i) J1 = 0, J2 = 1, and η = (iii). The gap closing occurs at λ = 0.855 in (b), 0.279 and 0.679 in (c), 0.881 in (d), 0.865 in (f), 0.257 and
0.715 in (g), and 0.731 in (h). The system size is N = 9. (j) Schematic phase diagram of the J1-J2 model for S = 2 with respect to the VBS
picture. Shaded area represents γ = π .

Then consider the Hamiltonian with the additional param-
eter λ ∈ [0, 1]:

H (S)(λ, θ ) = λH (S)
H (θ ) + (1 − λ)H (S),η

AKLT(θ ). (10)

Here η = (i), (ii) for S = 1 and η = (i), (ii), (iii) for S = 2.
Note that the twist of the Hamiltonian is introduced in both
H (S)

H and H (S),η
AKLT. The higher-order terms of Si · S j are twisted

as (Si · S j )α → [ 1
2 (eiθ S+

i S−
j + e−iθ S−

i S+
j ) + Sz

i Sz
j]

α
, with α

being a positive integer.
We aim to see whether the ground states of H (S)

H and H (S),η
AKLT

are connected by introducing the Hamiltonian, Eq. (10). To

this end, we monitor the energy gap upon varying (λ, θ ). We
also compute the λ dependence of the Z2 Berry phase.

Let us first look at the results for S = 1, shown in Fig. 6.
Clearly, the Heisenberg model with J2 < Jc

2 (1, 1) is connected
to H (1),(i)

AKLT without gap closing or a change in the Berry phase
[Fig. 6(a)], whereas that with J2 > Jc

2 (1, 1) is connected to
H (1),(ii)

AKLT [Fig. 6(d)]. This indicates that the ground state of the
Heisenberg model with J2 < Jc

2 (1, 1) [J2 > Jc
2 (1, 1)] is in the

same phase as the NN-VBS [NNN-VBS] state, which is con-
sistent with the previous study [30]. Also, the corresponding
VBS states are consistent with the Berry phase [33], because
there is an odd (even) number of singlets in the NN-VBS
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(NNN-VBS) state on NN bonds. In contrast, if the Heisenberg
model is connected with the incompatible AKLT model, e.g.,
the Heisenberg model with J2 < Jc

2 (1, 1) and H (1),(ii)
AKLT , a gap

closing at θ = π occurs, associated with the change in the
Berry phase [Fig. 6(b)]. These results clearly illustrate that
the change in the Berry phase in the J1-J2 Heisenberg model
upon varying J2/J1 originates from the phase transition from
the NN-VBS state to the NNN-VBS state. It is also found that
the ground states of H (1)

H with J2 < Jc
2 (1, 1) [J2 > Jc

2 (1, 1)]
is stable against inclusion of H (1),(ii)

AKLT [H (1),(i)
AKLT ] as long as the

energy gap at θ = π remains open, reflecting the topological
stability of these phases. This holds even for S = 2, as we
show later. We remark that the energy gap shows kinklike
structures at some points away from the transition point in
Figs. 6(b) and 6(c). These originate from the fact that the level
crossing between the first and the second excited states occurs
at these points; the same is true in Fig. 7.

Next, we move on to the results for S = 2, shown in Fig. 7.
Again, the different phases for the Heisenberg model are
connected to different VBS states: the NN-VBS state for J2 <

Jc
2 (2, 1), the I-VBS state for Jc

2 (2, 1) < J2 < Jc
2 (2, 2), and the

NNN-VBS state J2 > Jc
2 (2, 2). The number of singlets on the

NN bonds varies as 2 → 1 → 0 upon increasing J2, which is
consistent with the profile of the Berry phase, 0 → π → 0,
as shown in Fig. 2(a). This result indicates that the sequential
phase transitions for S = 2 also originate from the change in
the corresponding VBS states.

Considering the results for S = 1 and S = 2, it is inferred
that, for general integer S, the S-time phase transitions for
spin-S models coincide with the S patterns of possible VBS
states. Namely, for J2 = 0, S singlets live in the NN bonds,
and upon increasing J2, the number of singlets in NN bonds

decreases as S → S − 1, . . . → 0, and consequently the num-
ber of singlets in NNN bonds increases as 0 → 1 → . . . → S.

IV. SUMMARY

To summarize, we have investigated the ground state
of J1-J2 Heisenberg models with higher integer spins, by
calculating the Z2 Berry phase. We reveal that the spin-S
model undergoes S-time phase transitions. We attribute the
sequential phase transitions to the change in VBS patterns and
demonstrate this by analyzing the models in which the J1-J2

Heisenberg model is continuously connected to the general-
ized AKLT models. The resulting VBS pictures are indeed
consistent with the Z2 Berry phase with respect to the parity
of the number of singlets living in twisted bonds.

All the results presented in this paper are for finite-size
systems with a small number of sites accessible with exact
diagonalization. The precise determination of the critical val-
ues in the thermodynamic limit or larger-size cases, which
may be different from those for the system size used in this
paper, is outside the scope of the present paper and will be
an important future problem. The Berry-phase analysis using
quantum Monte Carlo simulations, developed in Refs. [46]
and [50], will be useful to access larger systems.
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