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Stabilty of biskyrmions in centrosymmetric magnetic films
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Motivated by the observation of biskyrmions in centrosymmetric magnetic films [X. Z. Yu et al., Nat.
Commun. 5, 3198 (2014), W. Wang et al., Adv. Mater. 28, 6887 (2016)], we investigate analytically and
numerically the stability of biskyrmions in films of finite thickness, taking into account the nearest-neighbor
exchange interaction, perpendicular magnetic anisotropy (PMA), dipole-dipole interaction (DDI), and the
discreteness of the atomic lattice. The biskyrmion is characterized by the topological charge Q = 2, the spatial
scale λ, and another independent length d that can be interpreted as a separation of two Q = 1 skyrmions inside
a Q = 2 topological defect in the background of uniform magnetization. We find that biskyrmions with d of
order λ can be stabilized by the magnetic field within a certain range of the ratio of PMA to DDI in a film
having a sufficient number of atomic layers Nz. The shape of biskyrmions has been obtained by the numerical
minimization of the energy of interacting spins in a 1000 × 1000 × Nz atomic lattice. It is close to the exact
solution of the Belavin-Polyakov model when d is below the width of the ferromagnetic domain wall. We
compute the magnetic moment of a biskyrmion and discuss ways of creating biskyrmions in experiment.
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I. INTRODUCTION

Magnetic skyrmions in 2D films represent a very ac-
tive field of research due to their potential for topologi-
cally protected data storage and information processing at
the nanoscale [1–6]. Skyrmions were initially introduced in
high-energy physics as nonlinear field models of elementary
particles [7–9]. They entered condensed-matter physics after
it was realized that Skyrme theory described topological de-
fects in ferro- and antiferromagnetic films [10–12]. Similar
topology leads to skyrmions in Bose-Einstein condensates
[13], quantum Hall effect [14,15], anomalous Hall effect [16],
and liquid crystals [17].

Skyrmions are characterized by the topological charge
Q = ±1,±2, .... In a 2D exchange model of a continuous
spin field, the conservation of Q is provided by topology:
Different Q arise from different homotopy classes of the
mapping of the three-component fixed-length spin field onto
the 2D plane. Similar topological properties are possessed
by the magnetic bubbles that have been intensively studied
in 1970s [18,19]. They were in effect cylindrical domains
surrounded by domain walls of thickness δ that is small
compared to the radius of the domain R. In typical ferro-
magnets, δ ∼ 10–100 nm, so the bubbles of the 1970s were
at least of a micron size or greater. With the emergence of
nanoscience- and nanoscale-measuring techniques, the exper-
imentalists have been able to observe topological defects in
2D magnetic films of size smaller than δ. This is when the
field of “skyrmionics” took off in condensed-matter physics.
Unlike the bubbles, nanoscale skyrmions are much closer to
the topological defects described by the Skyrme model.

Research on magnetic skyrmions has focused on their
stability, dynamics, and various symmetry properties. Perpen-
dicular magnetic anisotropy (PMA), dipole-dipole interaction

(DDI), magnetic field, and confined geometry can stabi-
lize significantly large magnetic bubbles [20–24]. For small
skyrmions, violation of the scale invariance by the crystal
lattice with a finite atomic spacing a leads to a stronger
violation of the conservation of Q. In a pure exchange model,
ferromagnetic skyrmions of size λ collapse [25] on a timescale
proportional to (λ/a)5. Their stability requires other than
Heisenberg exchange coupling, strong random field, or ran-
dom anisotropy, or, most commonly, a noncentrosymmetric
system with large Dzyaloshinskii-Moriya interaction (DMI)
[4,26–34].

To date, the presence of stable biskyrmions (see the
computer-generated image in Fig. 1) has been independently
reported at least in two centrosymmetric films of finite
thickness: the La2−2xSr1+2xMn2O7 manganite [35] and the
(Mn1−xNix )65Ga35 half Heusler alloy [36]. Given that sta-
bility of Q = 1 skyrmions in films of large lateral dimen-
sions normally require DMI, these findings are quite amaz-
ing and call for a theoretical analysis. Previously, we have
shown [37] that clusters with Q > 1 are naturally generated
due to the presence of Bloch lines in domain walls when
labyrinth domains are destroyed by the magnetic field in a
centrosymmetric magnetic film of finite thickness. We also
observed that Q = 2 biskyrmions were generated by slow
relaxation of the system at T = 0 starting from the disordered
spin state or, equivalently, by slow cooling to T = 0 from
high temperature. A more detailed numerical investigation
of biskyrmions, including the current-induced dynamics, was
performed in Ref. [38] within a 2D frustrated micromagnetic
model. Biskyrmions arising from frustrated Heisenberg ex-
change have also been reported in studies of triangular spin
lattices [31] and in Ginzburg-Landau theory of skyrmions
[34]. Metastable biskyrmion configurations have been ob-
served in Landau-Lifshitz dynamics of a frustrated bilayer
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FIG. 1. Computer-generated spin field in a Bloch-type
byskirmion in a ferromagnetic film.

film [39]. However, the study of the separation of skyrmions in
a biskyrmion, the shape of the biskyrmion, and its stability on
the applied magnetic field, on the strength of the DDI, and on
the film thickness in centrosymmetric systems has been absent
so far. This, together with the above-mentioned experimental
findings, provided motivation for our paper.

In the past, biskyrmions have been intensively studied in
nuclear physics in a hope that they would provide a model of a
deuteron [40,41]. The Belavin-Polyakov (BP) pure exchange
model [10] in 2D contains an exact solution with Q = 2
characterized by an arbitrary spatial dimension λ, and another
arbitrary parameter d that can be visually interpreted as a
separation of two Q = 1 skyrmions in a Q = 2 topological
defect (see Fig. 1), although the nonlinearity of the model
makes such interpretation meaningful only at a large separa-
tion. At d = 0, the defect possesses symmetry with respect to
the rotation in the xy plane, which gets broken by any d �= 0.
We derive analytical formulas for the spin components and the
magnetic moment of a BP biskyrmion for arbitrary λ and d .

In real systems, the magnetic biskyrmions are more com-
plicated, as they are formed by a number of competing
interactions. In this paper, we show that a biskyrmion spin
configuration naturally arises from the energy minimization
in a centrosymmetric film of finite thickness in a lattice model
that contains nearest-neighbor exchange interaction, PMA,
and DDI. In accordance with the experimental findings, we
find that stable biskyrmions exist within a certain range of
parameters in films of sufficient thickness.

One interesting observation that follows from our studies
is that the DDI always favors a biskyrmion with a finite
d over a Q = 2 topological defect that does not split into
Q = 1 skyrmions. Another interesting observation is that,
although biskyrmions are stabilized by interactions other than
ferromagnetic exchange, sufficiently small biskyrmions are
always close to the BP shape. On changing the parameters and
the external magnetic field, one can change the shape of the
Q = 2 topological defect from a BP biskyrmion to a thin-wall
biskyrmion bubble.

This paper is organized as follows. Analytical formulas
for the spin components, the magnetic moment of a Q = 2
skyrmion in a continuous spin-field BP exchange model, as
well as the effect of the discreteness of the lattice are derived
in Sec. II. Numerical results on biskyrmions in a lattice
model of a centrosymmetric film of finite thickness with the
nearest-neighbor exchange interaction, PMA, DDI, and the
external magnetic field are presented in Sec. III. Our results
and suggestions for experiments are discussed in Sec. IV.

II. SKYRMIONS AND BISKYRMIONS
IN THE 2D EXCHANGE MODEL

A. Spin field in a Belavin-Polyakov (BP) biskyrmion

We begin with a 2D exchange model with the energy

Eex = J

2

∫
dxdy(∇sα · ∇sα ), (1)

where summation over spin components α = x, y, z is
assumed. Here J is the exchange constant and s is a three-
component fixed-length spin field, s2 = 1. All spin-field con-
figurations s(x, y) are divided into homotopy classes charac-
terized by the topological charge [10],

Q =
∫

dxdy

4π
s · ∂s

∂x
× ∂s

∂y
, (2)

that takes quantized values Q = 0,±1,±2, .... The extremal
spin-field configurations satisfy

s × ∇2s = 0. (3)

Throughout this paper, we choose uniform magnetization, s =
(0, 0,−1), in the negative z direction at infinity.

The absolute energy minimum inside each homotopy class
is given by

Eex = 4πJ|Q|. (4)

The corresponding solutions with Q > 0 are called skyrmions,
while solutions with Q < 0 are called antiskyrmions. They
have the simplest form [10,11] in terms of a complex variable
ω = ω1 + iω2 with

ω1 = 2sx

1 + sz
, ω2 = 2sy

1 + sz
. (5)

Equation (3) then reduces to ∂ω/∂x = ∓i∂ω/∂y or, equiva-
lently, to

∂ω1

∂x
= ±∂ω2

∂y
,

∂ω1

∂y
= ∓∂ω2

∂x
(6)

that corresponds to the Cauchy-Riemann conditions for the
complex function ω. They are satisfied by any analytical
function ω(z), where z = x + iy.

The minimum-energy solutions for a skyrmion with Q = 1
and an antiskyrmion with Q = −1 are given by ω = z/l and
ω = z∗/l , respectively, with z∗ being the complex conjugate
of z. The minimum-energy biskyrmion with Q = 2 corre-
sponds to

ω(z) = eiγ (z − d/2)(z + d/2)

l2
= eiγ [z2 − (d/2)2]

l2
. (7)
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It is parametrized by the chirality angle γ and two lengths: the
parameter l that roughly describes the size of the biskyrmion,
and another parameter d that can be visually interpreted as
the separation of two Q = 1 skyrmions in a biskyrmion,
see Fig. 1. Notice that the nonlinearity of Eq. (3) does not
support this interpretation per se; rather, Eq. (7) suggests that
a biskyrmion is a product of two Q = 1 skyrmions.

In terms of ω of Eqs. (5), the components of s are given by

sx = Re(ω)

1 + |ω|2/4
, sy = Im(ω)

1 + |ω|2/4
, sz = 1 − |ω|2/4

1 + |ω|2/4
.

(8)

These formulas allow one to obtain the spatial dependence of
the components of the spin field in the BP biskyrmion:

sx = 2λ2(x2 − y2 − d2/4) cos γ − 4λ2xy sin γ

λ4 + (x2 + y2 − d2/4)2 + d2y2
, (9)

sy = 2λ2(x2 − y2 − d2/4) sin γ + 4λ2xy cos γ

λ4 + (x2 + y2 − d2/4)2 + d2y2
, (10)

sz = λ4 − (x2 + y2 − d2/4)2 − d2y2

λ4 + (x2 + y2 − d2/4)2 + d2y2
, (11)

where we have replaced l with λ, satisfying λ4 = 4l4 to have
fewer numerical factors in the formulas.

Figure 1 provides visualization of the spin field given by
the above equations with γ = π/2 (Bloch-type biskyrmion).
At the saddle point x = y = 0, one has

sz = sz,sad = λ4 − (d/2)4

λ4 + (d/2)4
. (12)

For d � λ, the BP biskyrmion becomes a superposition of
two Q = 1 BP skyrmions with the size λ̃ = λ2/d � λ.

For a biantiskyrmion, Eq. (7) with z → z∗ yields the ex-
pression similar to Eqs. (9)–(11) with the sign of the xy terms
changed.

At d = 0, Eqs. (9)–(11) acquire a simple form in the polar
coordinates, r = (r, φ),

s(r) =
{

2λ2r2 cos(γ ± 2φ)

λ4 + r4
,

2λ2r2 sin(γ ± 2φ)

λ4 + r4
,
λ4 − r4

λ4 + r4

}
,

(13)

with a plus sign for the Q = 2 skyrmion and a minus sign for
the Q = −2 antiskyrmion.

In a particular case of a compact single-centered |Q| = 2
topological defect that does not split into Q = ±1 skyrmions
or antiskyrmions and is given by

ω = eiγ (z/l )|Q|, ω = eiγ (z∗/l )|Q|, (14)

respectively, one arrives at a more general expression that is
valid for an arbitrary positive or negative integer Q:

s(r) =
{

2λ|Q|r|Q| cos(γ + Qφ)

λ2|Q| + r2|Q| ,
2λ|Q|r|Q| sin(γ + Qφ)

λ2|Q| + r2|Q| ,

λ2|Q| − r2|Q|

λ2|Q| + r2|Q|

}
. (15)

To determine the size λ of such a skyrmion from the numer-
ically computed spin field, one can use the integrals that can

be obtained with the help of Eqs. (15):

I1 = Sz = 2π

∫
rdr[sz(r) + 1] = 2π2λ2

|Q| sin (π/|Q|) (16)

for |Q| � 2 and

I2 = 2π

∫
rdr[sz(r) + 1]2 = 4π2λ2(|Q| − 1)

Q2 sin (π/|Q|) , (17)

etc. Note that I1 is the total spin, Sz, of the topological defect
(see below). If the values of λn obtained through different In

are close to each other, the shape of the skyrmion is close to
the BP shape. For Q = ±1, the first integral logarithmically
diverges and one has to use In with higher powers of n to
characterize the shape of the bubble (see, e.g., Eq. (8) of
Ref. [42]).

The energy of any spin configuration can be computed with
the help of Eq. (1) or by noticing its equivalent form

E = J
∫

dxdy
|dω/dz|2

(1 + |ω|2/4)2
. (18)

Substitution of Eqs. (7) or (14) into Eq. (18) and integration
with dxdy = rdrdφ and z = x + iy = reiφreproduces Eq. (4).

B. Magnetic moment of the BP biskyrmion

The magnetic moment of the topological defect equals
gμBSz, where g is the gyromagnetic factor, μB is the Bohr
magneton and Sz is the total spin of the defect defined as the
difference between the spin of the 2D plane with and without
the defect. For the boundary condition sz = −1 at infinity
one has

Sz =
∫

dxdy

a2
(sz + 1), (19)

where a is the lattice constant and sz is given by the last of
Eqs. (8), which yields

sz + 1 = 2

1 + |ω|2/4
. (20)

For a biskyrmion given by Eq. (7) with l2 = λ2/2, switch-
ing to polar coordinates, one has

|ω|2/4 = u2 − 2pu cos(2φ) + p2, u ≡ r2

λ2
, p ≡ d2

4λ2

(21)

Substituting this into Eqs. (20) and (19), one obtains

Sz =
(

λ

a

)2

f (p), (22)

where

f (p) =
∫ ∞

0

∫ 2π

0

dudφ

u2 − 2pu cos(2φ) + p2 + 1
. (23)

Integration over the angle yields

f (p) = 2π

∫ ∞

0

du

[(u2 − p2 + 1)2 + 4p2]1/2
(24)

For an arbitrary p, this integral can be expressed via special
functions in a rather cumbersome way that we do not provide
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FIG. 2. The plot of the function f (p) given by Eq. (24).

here. The function f (p) plotted numerically is shown in Fig. 2.
Its asymptotic behavior can be computed analytically:

Sz =
(

λ

a

)2{
π2, d = 0
16π (λ/d )2 ln(d/λ), d � λ.

(25)

Numerical evaluation gives a more accurate but close result,
ln(1.1d/λ), for the logarithmic cutoff in the case of d � λ.

According to Fig. 2 and Eqs. (22) and (25), at a fixed λ

the magnetic moment of the biskyrmion rapidly decreases on
increasing d . One should notice, however, that in this limit the
total spin of the biskyrmion can be written as

Sz = 8π

(
λ̃

a

)2

ln

(
1.05d

λ̃

)
(26)

in terms of the effective size λ̃ = λ2/d � λ of the Q = 1
skyrmion in a biskyrmion. Note that the magnetic moment of
an isolated Q = 1 skyrmion is given by [43]

S{1}
z = 4π

(
λ̃

a

)2

ln

(



λ̃

)
, (27)

where 
 is a long-distance cutoff determined by the lateral
dimension of the film, L, or by δH = √

J/H , whichever
is shorter. Thus, by order of magnitude, Sz remains the
same regardless of the separation of Q = 1 skyrmions in the
biskyrmion and similar to the magnetic moment of an isolated
Q = 1 skyrmion. As we shall see the energy minimum of
a biskyrmion in a real magnetic film is realized at d ∼ λ.
In this case Sz ∝ d2 ∼ λ2, that is, the magnetic moment is
proportional to the area occupied by the biskyrmion.

C. Lattice-discreteness correction to the energy

The scale invariance of the skyrmion energy is broken by
the discreteness of the lattice. The exchange energy of the
atomic spins considered as classical spin vectors with |si| = 1
has the form

Hex = −1

2

∑
i j

Ji jsi · s j, (28)

where Ji j = J for the nearest neighbors and zero otherwise.
We use the simple cubic lattice. The corresponding correction
to the energy can be obtained by calculating this lattice sum
using the BP solution. For λ � a, expanding the dot products
to the lowest second order in spatial derivatives of the spin
field, one obtains the well-known result

Eex = J

2

∫
dxdy[(∂xs)2 + (∂ys)2]

that is equivalent to Eq. (1) and leads to Eq. (4). Expansion to
the fourth order yields the energy correction

δEex = −Ja2

24

∫
dxdy

[(
∂2

x s
)2 + (

∂2
y s

)2]
. (29)

For a singled-centered skyrmion with an arbitrary Q, substi-
tuting Eqs. (15) into Eq. (29), we obtain with the help of
computer algebra

δEex = −π2J

3

Q2 − 1

sin(π/|Q|)
(a

λ

)2
. (30)

The previously obtained result in Ref. [25] for Q = ±1,

δEex = −2πJ

3

(a

λ

)2
, (31)

follows from this formula in the limit of |Q| → 1.

III. BISKYRMIONS IN A MAGNETIC FILM WITH
PERPENDICULAR MAGNETIC ANISOTROPY

A. Lattice model and dipolar field

In the numerical work, we study the lattice model of a
ferromagnetic film of finite thickness with the energy given
by the sum over lattice sites i, j:

H = Hex − H
∑

i

siz − D

2

∑
i

s2
iz − ED

2

∑
i j

�i j,αβsiαs jβ.

(32)

Here Hex is given by Eq. (28), D is the easy-axis PMA
constant, and H ≡ gμBSB, with S being the value of the
atomic spin and B being the induction of the applied magnetic
field. In the DDI part of the energy,

�i j,αβ ≡ a3r−5
i j

(
3ri j,αri j,β − δαβr2

i j

)
, (33)

where ri j ≡ ri − r j is the displacement vector between the
lattice sites and α, β = x, y, z denote Cartesian components.
The parameter ED = μ0M2

0 a3/(4π ) defines the strength of
the DDI, with M0 = gμBS/a3 being the magnetization for
our lattice model and μ0 being the magnetic permeability of
vacuum.

The ratio of the PMI and DDI is given by the dimension-
less parameter β ≡ D/(4πED). For β > 1, the energy of the
uniform state with spins directed along the z axis is lower than
that of the state with spins lying in the film’s plane. For β < 1,
the state with spins in the plane has a lower energy. The most
interesting practical case is β ∼ 1 realized in many materials
in which there is a considerable compensation of the effects
of the PMA and DDI.

In most materials, the exchange interaction is much
stronger than all other interactions of the spins. Consequently,
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in a centrosymmetric system with magnetic anisotropy and
nonsingular defects, such as skyrmions, the magnetization
can only smoothly rotate on a large spatial scale gauged by
two lengths: the domain-wall width, δ = a

√
J/D � a, and

another length, δH = a
√

J/H � a, generated by the field. To
describe such nonuniform spin states, one needs to consider
a system with macroscopically large number of spins. In the
lattice model, this can lead to impractically large computation
times. Besides, the systems with interactions that are weak
compared to the ferromagnetic exchange are magnetically
soft because the energy of the nonuniform structures per
spin is small. This makes the convergence of the energy-
minimization routine very slow. The good news is that in such
a case the atomic-scale spatial resolution is excessive.

To speed up the computation for structures that are much
larger than the atomic spacing a, one can rescale the problem
to another lattice constant b > a by first rewriting the energy
in the continuous approximation and then discretizing it again.
The rescaled model with the parameters

J ′ = b

a
J, H ′ = b3

a3
H, D′ = b3

a3
D, E ′

D = b3

a3
ED (34)

has smaller number of mesh points N ′
α = (a/b)Nα and smaller

mismatch between J and other parameters. This provides
faster convergence. After the computation with the rescaled
model is completed, one obtains the results for the origi-
nal system by rescaling the parameters back. Note that the
domain-wall width and the field-related length are the same in
the original and rescaled models:

δ′ = b

√
J ′

D′ = a

√
J

D
= δ, δ′

H = b

√
J ′

H ′ = a

√
J

H
= δH .

(35)

The same is valid for all spatial structures such as magnetic
bubbles, etc. The above-mentioned rescaling is only impor-
tant for the study of films of large lateral dimensions. In a
confined geometry, such as, e.g., nanotracks, one can perform
computation at the atomic level.

The use of strong anisotropy and strong DDI allows one to
work with a relatively small system and to have a reasonably
fast convergence [37]. In this case, however, the shape of the
topological defects is closer to that of the thin-wall skyrmion
bubbles than to the BP skyrmions. To obtain the latter one
has to work with the skyrmion size λ satisfying a � λ � δ

that requires a smaller anisotropy constant. To investigate
biskyrmions, which is the purpose of this paper, we use
D/J = 0.001. This requires a large system size, Nx × Ny =
1000 × 1000, and results in longer computation times.

An important parameter controlling the DDI is the film
thickness represented by Nz in the units of the atomic spacing
a. For thin films that are studied here, the magnetization inside
the film is nearly constant along the direction perpendicular to
the film. Thus one can make the problem effectively 2D by
introducing the effective DDI between the columns of parallel
spins, considered as effective spins of the 2D model. This
greatly speeds up the computation. To this end, for the simple
cubic lattice, one can write the dipolar coupling, Eq. (33),
as Φi j,αβ = φαβ (nx, ny, nz ), where nx ≡ ix − jx etc., are the

distances on the lattice and

φαβ (nx, ny, nz ) = 3nαnβ − δαβ

(
n2

x + n2
y + n2

z

)
(
n2

x + n2
y + n2

z

)5/2 . (36)

The effective DDI is defined by

φ̄αβ (nx, ny) = 1

Nz

Nz∑
iz, jz=1

φαβ (nx, ny, iz − jz ). (37)

Using the symmetry, one can express this result in the form
with only one summation,

φ̄αβ (nx, ny) = φαβ (nx, ny, 0)

+ 2

Nz

Nz−1∑
nz=1

(Nz − nz )φαβ (nx, ny, nz ), (38)

that is used in the computations.
The effective DDI (that can be precomputed) has different

forms in different ranges of the distance r. At r � aNz, it
scales as the interaction of magnetic dipoles 1/r3, while at
r � aNz it goes as 1/r that corresponds to the interaction of
magnetic charges at the surface of the film. Numerical results
in Fig. 3 show that at large distances the effective DDI is
stronger in films of finite thickness than in pure 2D systems.
This has an important effect on the stability of biskyrmions.

In the computations, the dipolar field from the downward
spins outside the system was added to obtain the results that
are valid for an infinite system. This field was computed as the
field of the plate of a very large size magnetized downward
plus the dipolar field created by the finite system under the
consideration magnetized upward.

B. Energy landscape of rigid-shape biskyrmions

Interactions other than exchange deform BP skyrmions
and biskyrmions. As a result, the exchange energy increases.
In the numerical work, this increase provides the measure
of the shape distortion. Also, one can consider the energy �E
of the state with skyrmions with respect to that of the uniform
state with all spins down. This energy is smaller than 4πJ|Q|
due to the contributions of the PMA and DDI.

We start with exploring the energy landscape, E (λ, d), in
the presence of biskyrmions, assuming the rigid BP shape
given by Eqs. (9)–(11) and numerically calculating the energy
with the help of Eq. (32). This is valid when the exchange
is much greater than all other interactions and when the
biskyrmion size is small compared to the domain wall width:
λ, d � δ. In fact, it is more convenient to parametrize λ as
λ2 = λ̃(λ̃ + d ), where λ̃ is the actual size of an individual
Q = 1 skyrmion in the limit of a large separation d .

Whereas in the pure exchange model the energy of
biskyrmions is independent of λ and d , other interactions
(here PMA, DDI, and Zeeman), with the applied field H as
a control parameter, break this invariance of the skyrmion
energy and select the values of λ and d that provide the energy
minimum. The energy minimum of the topological defect with
Q = 2 always corresponds to a biskyrmion with d �= 0.

To the contrary, we find that for a biantiskymion, the energy
always has a minimum at d = 0, thus, there should be only
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FIG. 3. DDI and effective DDI between columns of spins in a
simple cubic lattice for the film thickness Nz = 100. Upper panel:
Logarithmic scale. Lower panel: Linear scale at short distances.

d = 0 single-centered antiskyrmions with Q = −2. This con-
firms the findings of Ref. [37], see Fig. 9 that shows different
kinds of magnetic bubbles obtained by the relaxation from
a random spin state: All objects with Q = −2 are spatially
symmetric antiskyrmions, whereas all objects with Q = 2
have a finite separation, d �= 0.

Figure 4 (upper panel) shows an example of the biskyrmion
energy landscape for the system of size Nx × Ny × Nz =
1000 × 1000 × 100 for which most of the computations have
been done. We used D/J = 0.001 and β = 1. For H/J =
−0.00015, there is a local energy minimum at λ/a = 27.1
and d/a = 41.5. The difference �E from the energy of
the uniformly magnetized state with spins down is given in the
units of 4πJ . For a weakly distorted BP biskyrmion it is close
to 2. As the parameter λ decreases, the energy goes down due
the lattice-discreteness correction, see Sec. II C. On the other
hand, for the biantiskyrmion shown in Fig. 5 (upper panel), for
the same parameters as above, there is no energy minimum at
all, see lower panel in Fig. 4. Thus the biantiskyrmion evolves
to a Q = −2 antiskyrmion shown in Fig. 5 (lower panel) It
should be noted that the computed energy landscape is the

FIG. 4. The energy landscape of a Belavin-Polyakov biskyrmion
(upper panel) and biantiskyrmion (lower panel). The biskyrmion has
a local energy minimum at a finite separation, d > 0, while the
biantiskyrmion for the same parameters has no energy minimum at
all.

same for φ = 0 and φ = π/2. For smaller |H |, there is an
energy minimum of the biantiskyrmion at d = 0 and λ > 0.

Whereas the rigid biskyrmion approximation provides a
good qualitative description, it is not completely accurate
since the balance of different interactions is very subtle and
small deformations of the shape have a significant effect on
the energy. More accurate results can be obtained by the
numerical energy minimization described in the next section.

C. Numerical energy minimization and results

In this section, we compute minimum-energy configura-
tions of spins. The numerical method [44] combines sequen-
tial rotations of spins si toward the direction of the local
effective field, Heff,i = −∂H/∂si, with the probability α, and
the energy-conserving spin flips (so-called overrelaxation),
si → 2(si · Heff,i )Heff,i/H2

eff,i − si, with the probability 1 − α.
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FIG. 5. Upper panel: Spin field in a Q = −2 BP biantiskyrmion
(d > 0). Lower panel: Spin field in a Q = −2 BP antiskyrmion (d =
0). In the presence of DDI, PMA, and the applied magnetic field,
the initial state with d > 0 in the course of relaxation evolves to the
minimal-energy state with d = 0.

The parameter α plays the role of the effective relaxation
constant. We mainly use the value α = 0.03 that provides the
overall fastest convergence.

The dipolar part of the effective field takes the longest time
to compute. The method uses fast Fourier transform (FFT)
in the whole sample as one program step. Since the dipolar
field is much weaker than the exchange, several cycles of
spin alignment can be performed before the dipolar field is

FIG. 6. Magnetic-field dependence of the effective radius of a
stable skyrmion bubble for the “original” and rescaled models.

updated, which increases the computation speed. The total
charge Q of the topological defect has been computed numer-
ically using the lattice-discretized version of Eq. (2).

Computations were performed with Wolfram Mathematica
using compilation. Most of the numerical work has been done
on the 20-core Dell Precision T7610 Workstation. The FFT
for computing the DDI was performed via Mathematica’s
function ListConvolve that implicitly uses many processor
cores. For this reason, no explicit parallelization was done
in our program. However, we have been able to run several
independent computations at the same time.

To demonstrate how well our rescaling method given by
Eqs. (34) works, we have computed the effective radius Reff

of topological defects with Q = 1, defined as πR2
eff = Sz/2,

where Sz is the total spin of the bubble defined by Sz =∫
dxdy[sz(x, y) + 1]. The “original” system is a grid of 316 ×

316 × 32 spins with D/J = 0.01 and the lattice constant
a. The rescaled system is a grid of 100 × 100 × 10 spins
with D′/J ′ = 0.1 and the lattice constant b = √

10a = 3.16a.
In both cases, β = 1. Figure 6 shows a perfect agreement
between Reff and R′

eff . (Note that δ′ = δ thus practically R′
eff =

Reff ) in the plot.
Subsequently, we performed the energy minimization for

biskyrmions with Q = 2 in a system with Nx × Ny × Nz =
1000 × 1000 × 100, D/J = 0.001, and β = 1 at different
values of the applied field H . The separation d was found
numerically as the distance between the maxima of sz in the
biskyrmion. Then λ was extracted with the help of Eq. (12)
using the numerically found saddle-point value of sz.

In Fig. 7, one can see that there is always a finite separation,
d > 0, in the biskyrmion. For stronger fields, the biskyrmion
is smaller and closer to the BP shape, as the energies Eex

and �E are close to 8πJ . Biskyrmions collapse as the field
reaches the stability threshold. With decreasing the magnitude
of field the biskyrmion is expanding, gradually transforming
into a thin-wall bubble. The ratio d/λ changes from 1.5 on
the left side of Fig. 7 to 1.1 on its right side. The transition
from BP biskyrmions to biskyrmion bubbles can be seen in
a significant deviation of energy from E/(4πJ ) = 2. As the
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FIG. 7. Magnetic field dependencies of the parameters λ and d of
stable biskyrmions in a film of thickness Nz = 100 with D/J = 0.001
and β = 1. Exchange energy Eex and the total energy �E (with
respect to the uniformly magnetized spins with spins down) are
shown on the right y axis. For stronger fields, the biskyrmion is
smaller and close to the BP biskyrmion, as shown by the energies.

field strength further decreases, the bubble loses its circular
shape and transforms into a laminar domain.

Typical spin configurations of biskyrmions are illustrated
(zoomed) in Fig. 8 that provides more details as compared
to Fig. 1. The in-plane spin components in a BP biskyrmion
shown in the upper panel of Fig. 8 decay as 1/r2 in accordance
with Eqs. (9) and (13). On the contrary, in a biskyrmion
bubble shown in the lower panel of Fig. 8 the in-plane
spin components decay exponentially and are hardly visible
away from the bubble. For topological defects with Q = −2
(antiskyrmions) no finite separation d was detected in our
computations.

Next we performed computations for a similar model
with a stronger DDI, β = 0.5. The DDI in excess of the
PMA forces the spins into the film’s plane, which suppresses
skyrmions. To prevent this from happening, a stronger neg-
ative magnetic field has to be applied. The results in Fig. 9
show a larger separation, d/λ � 2, and the shape close to the
BP shape as Eex/(4πJ ) is rather close to 2. On the right side of
the figure, the instability of the uniform state with spins down
occurs on decreasing the field’s strength.

For the model in which PMA is stronger than DDI, β > 1,
no stable skyrmions or biskyrmions were found as they were
collapsing even at H = 0. The topological structures can be
stabilized by the negative magnetic field in the range β∗ <

β < 1 that depends on the film’s thickness Nz. Numerical
studies show that the range of β narrows down for thin films.
In the latter, the effect of the DDI is similar to that of the
easy-plane PMA, so one can introduce the effective anisotropy
that includes both PMA and DDI, D̃ = D(1 − 1/β ). This
effective anisotropy changes its sign at β = 1. This results in
the extremely weak distortion of the BP shape of biskyrmions
and extremely small controlling fields H . However, the model
with a single effective anisotropy cannot support stable topo-
logical defects, including skyrmions and biskyrmions, at any
β �= 1. Since in real materials β cannot be tuned, very thin

FIG. 8. Computer-generated images of the spin field in a stable
BP biskyrmion (upper panel) and a biskyrmion bubble (lower panel)
numerical solutions of the centrosymmetric Heisenberg lattice model
with the ferromagnetic exchange, DDI, PMA, and external field. The
values of parameters are written above the figures. Orange/green
color indicates positive/negative z components of the spin field. The
in-plane spin components are shown as white arrows.

nonchiral films with no DMI are not a good medium for the
skyrmions. To the contrary, for thicker films, competition of
the short-range PMA and long-range (∼1/r) DDI creates a
range of β in which skyrmions and biskyrmions can exist.

In particular, for Nz = 20 with D/J = 0.001, stable
biskyrmions were found only for β = 1. The results in Fig. 10
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FIG. 9. Magnetic field dependencies of the parameters λ and d of
stable biskyrmions in a film of thickness Nz = 100 with D/J = 0.001
and β = 0.5.

show very weakly distorted BP biskyrmions with practically
the same ratio d/λ = 1.62 in the whole range of a very
weak field H . For β = 0.5 and even for β = 0.75, either the
skyrmions collapse if the negative field is too strong or the
background spin-down state becomes unstable if the negative
field is too weak. For the system of 500 × 500 × 10 spins,
biskyrmions were still found at β = 1 but the range of H
was much narrower. One can see that here the exchange
energy is much closer to 2 than for Nz = 20, thus the shape
of the biskyrmion is much closer to the BP shape. For
H/J < −3.8 × 10−5 the biskyrmion collapses. For H/J >

−2 × 10−5, the spin-down background becomes unstable.
Computations on the 500 × 500 monolayer found no

biskyrmions at all even for β = 1. Initial states in the form
of biskyrmions evolve into states with separate skyrmions far
away from each other that exist in an extremely narrow region
of H .

FIG. 10. Magnetic-field dependencies of the parameters λ and d
of stable biskyrmions (left axis) and the exchange energy (right axis)
in films of thickness Nz = 20 and 10 with D/J = 0.001 and β = 1.

The bottom line of this investigation is that biskyrmions
should be searched for in sufficiently thick films, such as
Nz = 100 for D/J = 0.001. For other values of the PMA,
the scaling of Eqs. (34) can be used. For a stronger PMA,
biskyrmions can be supported by thinner films.

IV. DISCUSSION

We have studied biskyrmions in nonchiral ferromagnetic
films of finite thickness with PMA with account of DDI,
and discreteness of the atomic lattice. In agreement with
experimental findings [35,36] we have found that biskyrmions
are stable above a certain threshold in the film thickness. In
films of insufficient thickness, (e.g., with the number of the
atomic layers Nz = 10 for D/J = 0.001, stable biskyrmions
exist only at β = PMA/DDI = 1, when the DDI nearly
compensates the effect of the PMA. Since this condition is
impossible to satisfy in practice, we conclude that stable
biskyrmions do not exist in thin nonchiral magnetic films that
contain just a few atomic layers. For the monolayer, Nz = 1,
no biskyrmions at all were found.

In thicker films (with, e.g., Nz ∼ 100 for D/J = 0.001 and
thus δ/a � Nz), stable biskyrmions exist within a finite range
of β below β = 1. For stronger stabilizing fields, smaller
biskyrmions of sizes λ � d � δ and the shape close to that
provided by the BP 2D exchange model, Eqs. (9)–(11), have
been observed in our numerical studies. Their energy is close
to 8πJ . Such BP biskyrmions collapse at a critical value of the
stabilizing field. In the opposite limit, when the magnitude of
the stabilizing field decreases, the BP biskyrmion transforms
into a bigger thin-wall biskyrmion bubble. Regardless of the
film thickness and other parameters, we did not find any stable
biantiskyrmions with d > 0.

The study presented here has focused on the stability
of individual biskyrmions. Biskyrmions observed in experi-
ments [35,36] formed distorted triangular lattices. They were
obtained from labyrinth domains on increasing the mag-
netic field in a manner similar to how lattices of Q = 1
skyrmions have been observed. While our numerical method
easily generated lattices of Q = 1 skyrmions in the films
with DMI, numerical generation of stable biskyrmion lat-
tices in centrosymmetric 2D systems remains a challenging
problem.

In our computations, stability of a single biskyrmion re-
quired an external field while the biskyrmion lattice has
been observed even in a zero field [35]. This means that a
sufficiently dense biskyrmion lattice minimizes the sum of the
exchange, DDI, and PMA energies at H = 0, similarly to what
happens in the domain state.

For practical applications, one has to be able to generate
and manipulate individual biskyrmions. It has been demon-
strated that skyrmions can be created, annihilated, and moved
by current-induced spin-orbit torques [6,45,46]. Individual
Q = 1 skyrmion bubbles have been generated by pushing
elongated magnetic domains through a constriction using an
in-plane current [5,47]. These methods may not be suited for
creating biskyrmions.

It has been shown that small skyrmions can be written and
deleted in a controlled fashion with local spin-polarized cur-
rents from a scanning tunneling microscope [48]. It has been
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also demonstrated that light-induced heat pulses of different
duration and energy can write skyrmions in a magnetic film
in a broad range of temperatures and magnetic fields [49].
These methods can be better suited for creating biskyrmions
if experimentalists find the way of using a scanning tunneling
microscope with a double tip or heat pulses of the shape
resembling biskyrmions.

Recently, it has been experimentally demonstrated and
confirmed through micromagnetic computations that stripe
domains in a film can be cut into Q = 1 skyrmions by the
magnetic field of the tip of a scanning magnetic force mi-
croscope (MFM) [50]. Writing individual Q = 1 skyrmions
by the MFM tip has been studied theoretically in Ref. [42].
One can also use for that purpose magnetic nanoparti-
cles of the kind used in nanocantilevers for mechanical
magnetometry [51].

A simple modification of the above method, tailored to
biskyrmions, may be developed by using a double MFM tip
consisting of two single tips in close proximity to each other,
or a nanocantilever with two magnetic nanoparticles next
to each other. We have tested this numerically in the same
manner as is described in detail in Ref. [42]. A biskyrmion

created this way in the numerical experiment relaxes to the
equilibrium size and shape determined by the parameters of
the film.

Since biskyrmions carry magnetic moments similar to
those of Q = 1 skyrmions, they can be utilized in a similar
way for data storage and information processing. The lack of
the rotational symmetry in a biskymion makes its orientation
another useful parameter in addition to the magnetic moment.
It can open other functionalities in manipulating such infor-
mation carriers as well. For example, the magnitude of the
force exerted on a biskyrmion by the spin polarized current
would depend on the direction of the current.

Note added. After this paper was submitted, more arti-
cles have appeared that provided further experimental and
numerical evidence of stable biskyrmions in centrosymmetric
magnetic materials [52–54].
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