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Continuous ground-state degeneracy of classical dipoles on regular lattices
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Dipolar interactions are crucial in the modeling of many complex magnetic systems, such as the pyrochlores
and artificial spin systems. Remarkably, many classical dipolar-coupled spin systems exhibit a continuous
ground-state degeneracy, which is unexpected as the Hamiltonian does not possess a continuous symmetry.
In this paper, we explain how such a finite point symmetry leads to a continuous ground-state degeneracy of
specific classical dipolar-coupled systems. This work therefore provides new insight into the theory of classical
dipolar-coupled spin systems and opens the way to understand more complex dipolar-coupled systems.
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I. INTRODUCTION

In the early 20th century, adiabatic demagnetization associ-
ated with the magnetocaloric effect [1] was exploited to reach
temperatures below 1 K, in particular in the paramagnetic
salts [2,3]. The magnetic order limits the coldest temperatures
achievable with this method [4–7], which called for a better
understanding of the ordered states in such systems. The
difficult problem of the ground state determination in dipolar-
coupled spin systems was, however, not successfully tackled
until the pioneering work of Luttinger and Tisza [8] (LT), who
introduced a theory to determine the ground state of trans-
lationally invariant systems. While the construction scheme
provided by LT can be extended beyond dipolar-coupled
systems [9], its original purpose was to find the ground-state
configuration of arrangements of classical dipoles on lattices
such as those in the paramagnetic salts. The ground-state
configuration was found to be strongly dependent on the
geometry of the lattice, and it is even sample-shape dependent
for ferromagnetic alignment of the spins [8,10,11]. While
the LT construction scheme does not apply to all lattices, it
enables the determination of the ground-state configuration of
common systems such as dipolar-coupled spins placed on the
square lattice [12].

Remarkably, dipolar-coupled spin systems exhibit a con-
tinuous ground-state degeneracy in many different geometries
[12–16]. The origin of this degeneracy is still not fully under-
stood, although it has become clear that the degeneracy is not
protected by symmetry so that even small perturbations, such
as temperature or disorder, lift the degeneracy entirely through
an order-by-disorder transition [13,17].

In recent years, the interest in dipolar systems has increased
due to experimental work on the pyrochlore spin ices [18,19],
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leading to theoretical studies on systems with similar spin
arrangements [15,20,21]. Furthermore, the desire to better
understand the physics governing the spin ices provided the
motivation to explore correlated magnetic behavior in artifi-
cial spin systems with nanomagnetic moments taking on the
role of the spins [22–24]. Such artificial spin systems are, in
contrast to the pyrochlores, neither restricted in lattice geom-
etry nor the single particle magnetic anisotropy. Therefore,
even though for initial investigations the focus was on Ising
degrees of freedom [25–28], there has since been an increased
interest in nanomagnets with continuous degrees of freedom
[29–31].

The theory for the artificial spin systems with contin-
uous degrees of freedom, experimentally addressed in in
Refs. [30,31], has been discussed in previous works [12,13].
However, the field lacks a generalization that is free from
assuming a specific lattice. In this paper, we provide a more
general approach via a detailed symmetry discussion, which
gives a framework to determine the ground-state degeneracy
for some generic lattices. This leads to a guide for the de-
termination of whether a particular classical dipolar system
has a continuous ground-state degeneracy. We provide the
essence of this discussion in the flow diagram shown in
Fig. 1.

The remainder of this paper is structured as follows. In
Sec. II, the model of classical dipolar spins is introduced
through the Hamiltonian with an emphasis on symmetries.
After a brief review of the LT method in Sec. III A, we
extend this method in Sec. III B using the representation
theory for the point symmetry group of the lattice to determine
the ground-state degeneracy. We then illustrate this method
for several examples in Sec. IV. Finally, we summarize our
results in Sec. V, where we give an outlook on how the
method presented here can be generalized to include the order-
by-disorder transitions commonly found in dipolar-coupled
systems.
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FIG. 1. This flow diagram summarizes the findings of this paper.
Applying this scheme to a generic classical dipolar-coupled spin
system, the LT method is extended with an additional classification
based on reduction of the vector representation V in the point-
symmetry group P , which determines the nature of the ground-state
degeneracy.

II. MODEL AND SYMMETRIES

Here, we introduce the classical model of dipolar-coupled
spins with the Hamiltonian

H = D

2

∑
i �= j

1

|�ri j |3 [�Si · �S j − 3(�Si · r̂i j )(�S j · r̂i j )], (1)

where D is the dipolar interaction strength, defined for
|�Si| = 1. The vector �ri j is the difference vector between the
positions of the sites i and j on a regular lattice, and r̂i j is the
normalization of �ri j to unit length.

A classical spin �Si is typically described by a vector on
the unit sphere, i.e., a Heisenberg spin. However, additional
anisotropies can lower the effective degree of freedom of the
spins. For example, in artificial spin ice, shape anisotropy
can give rise to Ising-like behavior [25] or XY-like behavior
[30,31], and the presence of magnetocrystalline anisotropy
can result in clock-model-like behavior [32]. For the remain-
der of the paper, we will focus on spins with XY or Heisenberg
behavior, in order to determine when continuous ground-state
degeneracies arise.

Regardless of whether the spin is Heisenberg or XY, the
dipolar Hamiltonian (1) is geometrically frustrated. Namely,
the first term �Si · �S j is minimized for antiparallel spin align-
ment, whereas the second term −3(�Si · r̂i j )(�S j · r̂i j ) is mini-
mized for parallel alignment if the spins can align along their
bond. As a consequence, in a system with dipolar interactions
given by Eq. (1), the alignment of spins follows the “head-to-
tail” rule, i.e., spins align parallel if they can align along their
bond, and antiparallel if the spins are orthogonal to the bond.

In dimension d = 3, the r−3 dipolar interaction is long-
range and, if the local magnetic configuration has a net
magnetic moment, as in a ferromagnet, the energy density will
grow with system size. As a result, sample-shape dependent
corrections are expected [33] and Weiss domains are formed
through the minimization of the stray field energy. This sen-
sitivity to the sample shape of “ferromagnetic” configurations
of dipolar systems is a result of Griffiths’ theorem. This the-
orem implies that “ferromagnetic” configurations cannot be
single domain in the thermodynamic limit since sample-shape
dependent corrections in the form of the demagnetization
factor arise. However, if the local magnetic configuration does
not have a net magnetic moment, no demagnetization factor
arises and the magnetic stray fields typically self-screen such
as in an antiferromagnet or in the dipolar spin ice model
[18]. For the remainder of this paper, we neglect the influ-
ence of sample-shape dependent corrections and boundary
terms as in previous studies [12,13]. Thus, for d = 3, the
generality of our work is restricted to “nonferromagnetic”
systems. However, it is noted that even low-dimensional
d < 3 dipolar-coupled systems with a ferromagnetic ground
state, such as XY spins on the triangular lattice [34], are
known to be sensitive to the sample shape or the truncation
of the Hamiltonian [11].

In addition to the long-range nature of the dipolar Hamil-
tonian in Eq. (1), the Hamiltonian also possesses the sym-
metry group Z2 × T × P , which is rather unusual for spin
Hamiltonians. In this group, the time-reversal symmetry is
reflected by Z2, the translational invariance by T , and P
corresponds to the point symmetry group of the lattice. The
time-reversal symmetry follows directly from the invariance
of Eq. (1) under �Si �→ −�Si. The translational invariance T is
explicitly given by the mapping

(�ri, �Si )
T�→ (�ri′ , �Si′ ) = (�ri − �t, �Si′ ). (2)

Since only relative coordinates appear in the dipolar Hamilto-
nian in Eq. (1), a shift of the system by a vector �t is irrelevant
whenever �t is a lattice vector. Finally, the point symmetry
group P is inherited by the underlying lattice. If we denote
the vector representation of P in the d-dimensional vector
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space with V , where d is the dimension of a spin, then a
vector �v ∈ Rd transforms under the action of g ∈ P according
to V (g)�v, such that the Hamiltonian (1) stays invariant under

(�ri, �Si )
P�→ (V (g)�ri,V (g)�Si ). (3)

Here, V acts on both the lattice and the spin simultaneously.
This simultaneous action of P on both vectors �ri and �Si is re-
quired by the second term in the Hamiltonian given in Eq. (1),
which tightly connects real space and spin space. We discuss
specific examples of complete symmetry groups in Sec. IV.

Formally, the model incorporates two different dimensions,
the real-space lattice dimension dlattice and the spin-space
dimension dspin. The two spaces are coupled as a result of
the dipolar interaction described by the Hamiltonian given by
Eq. (1). Hence, it is useful to introduce a working dimension
d , which is the dimension of the space in which both the spins
and the lattice can be embedded. For some simple situations, it
can be sufficient to work in the smaller of the two spaces. This
can be seen, for example, for in-plane XY spins on the cubic
lattice. Here, the XY anisotropy reduces the point symmetry
group of the system to the point symmetry group of the
square lattice. Therefore the problem of XY spins on a cubic
lattice reduces to the problem of XY spins on square-lattice
layers [12].

III. GROUND STATES

In this section, we use the symmetries of the dipolar Hamil-
tonian to explain the origin of the ground-state degeneracy.
For this purpose, we first summarize the LT method [8] and
subsequently extend the LT method by using the represen-
tation theory for the point symmetry group to determine the
nature of the ground-state degeneracy.

A. Luttinger-Tisza construction

The LT method is based on an ansatz for the magnetic
unit cell that stays invariant under lattice symmetry operations
(T and P) and subsequently minimizes the dipolar energy
associated with the magnetic unit cell. The generalized LT
method builds on the original method and is based on a
Fourier transformation of the interaction, and finding the
ordering vector of the ground state in the Fourier space
rather than in real space [8,9]. In general, commensurate and
incommensurate order can be found using the generalized
method, although the original LT method is only applicable to
systems with commensurate order, irrespective of the unit cell
size. Indeed, the generalized LT method finds commensurate
order for many dipolar systems such as those listed in Table I.
For these systems, the magnetic unit cell is at most double the
structural unit cell.

If the LT method can successfully be applied to a dipolar-
coupled spin system, then minimization of the dipolar energy
for a suitable magnetic unit cell leads to the exact ground-state
of the system. When unphysical solutions appear, then the LT
method fails. We will discuss the issue of unphysical solutions
towards the end of this section after introducing the use of
the LT method for finding the ground-state of dipolar-coupled
spin systems.

For a general dipolar-coupled spin system, one starts by
making an ansatz for the magnetic unit cell that respects the

TABLE I. Overview of previous theoretical treatments of
dipolar-coupled coupled spins placed at the sites of various lattices
and whether the ground state can be determined by the LT method.

Lattice LT?

chain lattice [12] Yes
rectangular lattice [12] Yes
square lattice [12,13] Yes
honeycomb lattice [13] Yes
kagome lattice [20,21] No
cubic lattice [8,12] Yes
“fcc-kagome” lattice [15] No

point symmetry group of the lattice. Subsequently, the N spins
in the magnetic unit cell are collected into one vector �S =
(�S1, �S2, . . . , �SN ) as illustrated in Fig. 2. Since the Hamiltonian
in Eq. (1) is quadratic, the effective Hamiltonian for the mag-

netic unit cell can be written in terms of �S as H = −�S†H�S,
where H�S is the induced dipolar field of the configuration
�S. This finite-dimensional diagonalization problem is further
simplified by taking into account the translational invariance
T of the Hamiltonian: Using the representation theory for
the translational invariance in the magnetic unit cell, one can
obtain a symmetry-guided basis for �S, the so-called basic
arrays. This basis is constructed using the irreducible repre-
sentations of T in the magnetic unit cell, which correspond
to the discrete Fourier states. Therefore typical basic arrays
are, for example, the ferromagnetic configuration [�Sferro,x =
(êx, êx, . . . )] or the antiferromagnetic configuration [�Safm,x =
(êx,−êx, . . . )] [35]. These symmetry-guided configurations
are mutually orthogonal by construction and, because of
the translational invariance, the different sectors such as the
ferromagnetic sector (ferro) or the antiferromagnetic sector

�S1

�S2

�S3�S4

�S

FIG. 2. Schematic illustrating the LT method, which is based on
an ansatz for the magnetic unit cell (shaded in blue). The magnetic
unit cell contains the spins �S1, . . . , �SN (here N = 4), which form the
effective spin configuration �S. The aim of the LT method is to provide
the so-called basic arrays, namely, a symmetry-guided basis for �S.
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(afm) are not mixed. This leads to a further simplification of
the ground state, since H = ⊕iHi, i.e., H is block-diagonal.
Each of the blocks Hi describes the coupling between the
basic arrays with one type of ordering. For example, one block
describes the coupling between the ferromagnetic configura-
tions �Sferro,x, �Sferro,y, . . . and another describes the coupling
between antiferromagnetic configurations �Safm,x, �Safm,y, . . . .
Hence, each of the blocks is d-dimensional. Therefore, with
the LT method, we find

H =

⎛
⎜⎜⎝

Hferro 0 . . .

0 Hafm . . .

...
...

. . .

⎞
⎟⎟⎠, (4)

which significantly simplifies the problem since only a small
number of explicit lattice summations have to be carried out.
Here, it should be noted that, if the magnetic unit cell size is
increased, then H becomes larger, but this method can still be
applied.

Finally, the LT method only guarantees the “weak con-

dition” �S2 = ∑N
i

�S2
i = N , and can therefore give unphysical

solutions where the “strong condition” |�Si| = 1 is violated.
If an unphysical lowest-energy configuration �S is identified
by this method, then the method fails to provide the ground
state. For such systems, one can either introduce Lagrange-
multipliers [9,36] or resort to numerical methods [15,20,21].
While Lagrange-multipliers render the problem nonlinear,
using numerical methods one typically finds nonorthogonal
states as ground-state configurations. When the method fails,
it is not clear if the system possesses a continuous degeneracy
[15] or a discrete degeneracy [20,21]. Nevertheless, as seen
from Table I, the LT method works for many important sys-
tems, and we show in the next section that, for these systems,
P uniquely defines the type and dimension of the degeneracy.

B. Continuous ground-state degeneracy

The point symmetry group P determines the type of
degeneracy in the following way: Since P is a symmetry
of the Hamiltonian, as described by Eq. (3), it is there-
fore also a symmetry of the effective interaction matrix H.
Hence, symmetry-group operations have to commute with
H, formally expressed as [R(g),H] = R(g)H − HR(g) = 0
for all point symmetry group elements g ∈ P , where R is
a representation of P . The representation R can be found
considering that each block matrix Hi ∈ {Hferro,Hafm, . . . }
has dimension d . Indeed, given one spin, for example �S1, all
other spins in the magnetic unit cell are defined by the index
i ∈ {ferro, afm, . . . }. Therefore the representation of P acting
on the subspace for Hi is V , the vector representation of P .
Hence, the representation for the entire matrix H is given by
R = ⊕NV .

The symmetry condition implies that, for one block ma-
trix, the reduced symmetry condition is [V (g),Hi] = 0 for
all g ∈ P . For the case where V is irreducible, the first
lemma of Schur implies that Hi = hi1 so that there are d
mutually orthogonal configurations �S1, . . . , �Sd , all having the
same energy. Hence, any superposition �S�α = ∑d

i=1 αi �Si, with
the normalization constraint

∑d
i=1 |αi|2 = 1, yields the same

energy as the basis states since the Hamiltonian from Eq. (1)
is quadratic in �Si. The normalization constraint itself is the
equation of a (d − 1)-dimensional sphere. Hence, the ground-
state manifold is described by a (d − 1)-dimensional sphere.

For the case where V is reducible, the block matrices Hi

decompose into smaller block matrices. The explicit summa-
tion over the lattice identifies the smaller block matrix with
dimension db that is lowest in energy. Then the ground-state
manifold is described by the reduced (db − 1)-dimensional
sphere. If db = 1, the degeneracy is described by the 0-sphere,
which is equivalent to Z2 and therefore only a discrete de-
generacy is recovered and not a continuous degeneracy that is
found for systems where db > 1.

To conclude, the use of the representation theory, not
only for the translational invariance but also for the point
symmetry group, leads to a more generic treatment than that
implemented by Luttinger and Tisza. Even though Luttinger
and Tisza used the point symmetry group to simplify their
problem, their approach did not exploit the representation
theory for the point symmetry group. In contrast, the extension
presented here uses the representation theory for both the
translational invariance and the point symmetry group, so
that continuous ground-state degeneracies appear naturally.
Furthermore, the continuous degeneracy is not accidental, as
it does not require a fine-tuning of parameters, but instead
follows from symmetry. Thus the degeneracy is not guaran-
teed by a continuous symmetry of the Hamiltonian, but rather
follows from the finite point symmetry group.

IV. EXAMPLES

We now illustrate the concepts presented in Sec. III with
some examples. Specifically, we consider the dipolar-coupled
XY spins on the square lattice in Sec. IV A, Heisenberg spins
on the (tetragonally distorted) cubic lattice in Sec. IV B, and
XY spins on the triangular lattice in Sec. IV C.

A. XY spins on the square lattice

Here we determine the ground-state of dipolar-coupled XY
spins on the square lattice, as this example has already been
well studied [12,13,30,31,37–43]. Here, it is expected that the
ground state exhibits a continuous degeneracy equivalent to
the 1-sphere, independent of whether a truncation is applied
to the Hamiltonian [13] or not [12]. The symmetry group
of this system is given by Z2 × Tsq × C4v , where Z2 is the
time-reversal symmetry and C4v is the point symmetry group
of the square lattice. The translational invariance Tsq can be
parameterized via vectors �t = xêx + yêy, with x, y ∈ Z and
êx, êy being the unit vectors along the x axis and the y axis,
respectively. Therefore Tsq is isomorphic to Z × Z.

In the next step, the LT method is applied to a two-by-two
magnetic unit cell, so that �S = (�S1, �S2, �S3, �S4). Since C4 is a
symmetry of the system, it is sufficient to only consider basic
arrays with spins parallel or antiparallel to êy. The LT method
then suggests a suitable basis based on the translational in-
variance Tsq, which is, however, broken by the two-by-two
magnetic unit cell. Hence, the basic arrays correspond to
(discrete) Fourier components that arise due to the reduced
translational invariance. Since the translational invariance is
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(a) (0, 0) (b) (0, π)

(c) (π, 0) (d) (π, π)

FIG. 3. The four basic arrays for the two-by-two magnetic unit
cell on the square lattice with moments aligned along the y-axis.
The Fourier vector that generates the basic array is indicated below
each figure. The lattice summations associated with the dipolar
Hamiltonian reveal that the configuration shown in (c) has the lowest
energy.

reduced by a factor of two in every direction, the basic arrays
are formed by the square root of unity in every direction.
The resulting basic arrays are depicted in Fig. 3, with the
Fourier vector that characterizes the elements given below
each figure. From explicit calculation, it can be observed that
the configuration depicted in Fig. 3(c) is the basic array with
the lowest energy [12].

Finally, we need to validate if V is irreducible (for details
of how this is done, see for example Ref. [44]). The reduction
is shown in Table II, and we indeed observe that V ≡ E
is irreducible in C4v . Hence, we know that the basic arrays
corresponding to Fig. 3(c), with spins either aligned along
êx or aligned along êy, have the same energy. Hence, we
have found a continuous ground-state degeneracy described
by the 1-sphere, which is depicted in Fig. 4, in agreement with
previous studies [12,13].

B. Heisenberg spins on the (distorted) cubic lattice

To provide a higher-dimensional example, we consider
dipolar-coupled Heisenberg spins on the cubic lattice with
lattice constants a = b = c. Here, a continuous ground-state
degeneracy described by the 2-sphere is expected indepen-
dent of whether a truncation is applied to the Hamiltonian

TABLE II. Character table for the point symmetry group of the
square lattice C4v and the reduction of V in this group.

C4v 1 2C4 C2 2σh 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

V 2 0 −2 0 0 ≡ E

FIG. 4. The magnetic unit cell for the ground state of dipolar-
coupled XY spins on the square lattice for a general θ .

[45,46] or not [12,47]. The symmetry of this system is given
by Z2 × Tcu × Oh where Z2 is time reversal, Oh is the point
symmetry group of the cubic lattice and Tcu

∼= Z × Z × Z
parametrizes the translational invariance with vectors �t =
xêx + yêy + zêz. Subsequently, the LT method requires the
evaluation of 23 = 8 lattice summations analogous to the ones
for the square lattice [8]. From this calculation, Luttinger and
Tisza found that the striped configuration depicted in Fig. 5
has the lowest energy of all of the basic arrays. Finally, we
reduce the vector representation V in the group Oh in Table III,
which results in V ≡ T1u, so that the vector representation is
once more irreducible. This yields a continuous ground-state
degeneracy corresponding to the 2-sphere in accordance with
previous studies [12]. In Ref. [12], a graphical representation
of this ground-state manifold is provided in their Fig. 1.

If the cubic lattice has a tetragonal distortion, where one
lattice constant (e.g., c) is different from the other two (a =
b), then the three-dimensional block matrix describing the
ground state of the undistorted cubic lattice Hstriped reduces

FIG. 5. Ground-state configuration for dipolar-coupled Heisen-
berg spins on the cubic lattice according to Ref. [8]. The shaded area
indicates the magnetic unit cell.
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TABLE III. Character table for point group Oh and the reduction
of V in this group.

Oh 1 8C3 6C2 6C4 3C2
4 i 6S4 8S6 3σh 6σd

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 −1 0 0 2 2 0 −1 2 0
T1g 3 0 −1 1 −1 3 1 0 −1 −1
T2g 3 0 1 −1 −1 3 −1 0 −1 1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 −1 1 −1 1 −1 −1 1
Eu 2 −1 0 0 2 −2 0 1 −2 0
T1u 3 0 −1 1 −1 −3 −1 0 1 1
T2u 3 0 1 −1 −1 −3 1 0 1 −1

V 3 0 −1 1 −1 −3 −1 0 1 1 ≡ T1u

to two block matrices of dimensions 1 and 2, respectively.
To determine which block matrix is lower in energy, one can
consider the two cases c < a = b and c > a = b. If c > a,
the system behaves as weakly interacting layers, that follow
the symmetry constraints given by a square lattice. As a
consequence, the two-dimensional representation is lower in
energy, which yields a continuously degenerate ground state
whose manifold resembles the unit circle. This is analogous to
the manifold found for XY spins on a square lattice. If c < a,
the system consists of chains of spins with weak interaction
between the chains, whose low-energy sector is described by
the one-dimensional block. Therefore no continuous degen-
eracy emerges. Both of these cases are in agreement with
previous literature [12].

C. XY spins on the triangular lattice

As a third example, dipolar-coupled XY spins on the
triangular lattice are considered. If no truncation is applied
to the Hamiltonian, the system orders ferromagnetically [34].
Therefore the configuration depicted in Fig. 6 is one of the
ground states of the system. As the local ground state is
ferromagnetic, a finite sample will break up into domains in
the ground state. As in previous literature [14,34,48], however,
the effect of the sample shape is neglected here, and we only
consider the local configuration consisting of a single domain.
Furthermore, in contrast to the previous examples given in
this section, only the nontruncated Hamiltonian can be consid-
ered, since otherwise the ground-state configuration is altered
[11,48]. Indeed, when a truncation is applied to the Hamilto-

FIG. 6. Ground-state configuration for dipolar-coupled XY spins
on the triangular lattice according to Ref. [34]. The shaded area
indicates the magnetic unit cell, which is also the structural unit cell
due to the ferromagnetic ground-state configuration.

TABLE IV. Character table for point group C6v and the reduction
of V in this group.

C6v 1 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0
E2 2 −1 −1 2 0 0

V 2 1 −1 −2 0 0 ≡ E1

nian, the ground state contains a magnetic structural length
scale that depends on the truncation, and it can no longer
be derived by the LT method [11]. Therefore the discussion
in this section is restricted to the case where no truncation
is applied to the Hamiltonian. In this case, the ground-state
configuration of dipolar-coupled XY spins on the triangular
lattice is ferromagnetic [34]. This means that the structural
and the magnetic unit cell are the same so that the strong and
the weak condition of the LT method are equivalent. Since the
LT method works in this case and a commensurate ordering
is obtained, the next step according to Fig. 1 is to determine
if V is irreducible. Using the character table for the point
symmetry group of the triangular lattice, C6v (see Table IV),
one finds that V ≡ E1 is irreducible. Hence, a continuous
ground-state degeneracy described by a 1-sphere is found, in
agreement with previous studies [14].

V. CONCLUDING REMARKS

In this work, the origin of the continuous ground-state
degeneracy in classical dipolar-coupled systems was traced
back to general properties of the underlying lattice. Using
the representation theory for the point symmetry group, a
generic rule for the degeneracy of Luttinger-Tisza ground
states was determined. In doing so, previously known results
[12–14,46,47] could be recovered. In particular, we showed
that the ground-state degeneracy of dipolar-coupled LT sys-
tems crucially depends on the vector representation V of the
point symmetry group. If the representation V is irreducible,
as for the examples given in Sec. IV, then a continuous
ground-state manifold is found. In contrast, if V is reducible, a
reduced dimension of the degenerate manifold or the absence
of a continuous degeneracy altogether is expected.

As the degeneracy only arises in the ground state and is
not protected by a symmetry in the Hamiltonian, it is not
expected to persist after introducing excitations. We instead
expect, in analogy to Ref. [13], that the inclusion of positional
disorder or thermal fluctuations restores the finite symmetry
of the Hamiltonian through an order-by-disorder transition
[12,13,15,37–43]. Similarly, higher-order multipoles, espe-
cially relevant for artificial spin ice systems, have been found
to affect the ground-state degeneracy [49,50]. However, to
answer the question of how excitations and disorder affect
the ground-state degeneracy, fluctuations on top of a generic
system would need to be considered. While this is beyond the
scope of the present work, a symmetry-guided discussion of
the fluctuations seems feasible.
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Finally, we have only considered systems where the LT
method is applicable. While this method is valid for many
systems [8,12,13], there exist a number of interesting systems
where the LT method does not apply. One example is the sys-
tem of dipolar-coupled Heisenberg spins on the “fcc-kagome”
lattice, where a continuous ground-state degeneracy is found
[15]. The ground-state manifold found in Ref. [15] is not
equivalent to a sphere and the basis states are not orthogonal,
which is why the LT method does not apply. While such
phenomena lie outside the work presented here, it seems

feasible to perform a symmetry-guided discussion of non-LT
systems, and we hope that this work serves as an inspiration
to extend the symmetry discussion to all such systems.
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