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Weak localization in systems with chiral spin textures and skyrmion crystals
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A theory of interference-induced quantum corrections to conductivity is developed for two-dimensional
systems with chiral spin textures including skyrmions. The effect of exchange interaction between electrons
and spin textures on weak localization of electronic waves is studied. The spin dephasing rates are calculated as
functions of the spin texture size. The anomalous magnetoresistance is shown to be governed by the size and
magnetization spatial distribution of the spin textures. The effect of average magnetization-induced spin splitting
on weak localization is analyzed. The sign-alternating weak-antilocalization magnetoresistance is demonstrated
for skyrmion crystals. We argue that analysis of the low-field magnetoresistance might assist the experimental
detection of chiral spin textures and, in particular, skyrmions.
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I. INTRODUCTION

The past decade has featured an impressive rise in chi-
ral magnetism. Various chiral spin textures, such as mag-
netic skyrmions [1–5] and antiskyrmions [6,7], skyrmion
lattices [8,9], and merons and bimerons [10–12] are being
extensively studied both experimentally and theoretically. The
interest is especially sparked by the fact that the chiral na-
ture of such textures opens up a novel area of physics with
a number of intriguing phenomena, such as the topologi-
cal Hall effect [13–17], its reciprocal analog—the skyrmion
Hall effect [18,19], the anomalous Nernst effect [20], or
nontrivial magnon-skyrmion interaction [21]. Moreover, it
is believed that a chiral spin order would manifest itself
in a whole variety of solid-state phenomena related to spin
interactions.

The electric transport in media with spin skyrmions or
other chiral spin textures is modified due to an exchange inter-
action between itinerant carriers and localized spins forming
such textures. A carrier propagating in space and interacting
with spin textures experiences rotations of its spin. For in-
stance, when a texture size is comparable with the electron
de Broglie wavelength, the interaction with textures results
in spin-dependent electron scattering [22,23] leading to spin
relaxation. In particular, the interference between single and
double electron scattering events inside one chiral spin texture
generates the transverse electron flux leading to the Hall re-
sponse [13,22–24]. On the other hand, in systems with strong
exchange interaction, such as skyrmion crystals, an electron
spin is coaligned everywhere with local magnetization, which
results in the formation of a purely geometrical effective
magnetic field acting on its orbital motion and also leading
to the Hall effect.

Spin-dependent phenomena are known to affect electron
transport in metallic systems due to the weak localization
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effect (WL) [25,26]. Anomalous magnetoresistance in clas-
sically low magnetic fields is caused by magnetoinduced
breaking of interference of electron waves passing scatter-
ing paths related by time inversion. The spin dependence
of the scattering amplitude results in dramatic changes of
the quantum conductivity correction up to the change of its
sign, a phenomenon also known as weak antilocalization. The
anomalous magnetoresistance is enhanced in systems with a
not extremely large product kF�, where kF is the Fermi wave
vector and � is the mean free path. In systems with chiral
spin textures, � typically does not exceed tens of nanome-
ters [27,28], which suggests the importance of the interference
corrections.

In two-dimensional (2D) systems, the weak localization
to antilocalization transitions are studied mainly in semicon-
ductor heterostructures with spin-orbit splitting of the energy
spectrum; for a review, see Ref. [29]. Investigations of the
spin-flip scattering effect on WL are performed for structure-
asymmetric n-type nonmagnetic and magnetic heterostruc-
tures [30–32] and for systems with spin-orbit scattering
[33–37]. In this work, we demonstrate that the low-field
magnetoresistance in systems with spin textures is featured
by a specific behavior that cannot be attributed to either spin-
orbit or magnetic-impurity scattering, thus its experimental
observation would unambiguously indicate the presence of
chiral spin order in a system.

In this paper, we theoretically investigate the WL effect
in 2D systems with chiral spin textures. We start with a
description of WL for the disordered array of spin textures,
when each texture causes an additional carrier scattering;
see the inset to Fig. 1. Then we investigate the case of a
skyrmion crystal, assuming that skyrmions form a regular lat-
tice. We demonstrate that the chiral spin pattern in real space
affects the magnetoresistivity differently, depending upon its
spatial size and the inner structure. Our results suggest that
the presence of chiral spin textures can affect the low-field
magnetoresistance.
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FIG. 1. The dependence of the scattering rates for singlet (τ−1
s )

and triplet (τ−1
t0,t1) channels on a spin texture radius for the spin

spatial distribution Eq. (11) with α = π/2. The inset shows two
time-inverted electron trajectories with scattering by both impurities
and a spin texture.

II. DISORDERED ARRAY OF CHIRAL SPIN TEXTURES

We consider a 2D layer containing randomly distributed
chiral spin textures with the spin profile S(r) of the following
shape:

S(r) = (S‖(r, φ), Sz(r)), Sx ± iSy = S‖(r)e±i(χφ+γ ), (1)

where Sz, S‖ are the spin texture out-of-plane and in-plane
components, respectively, and the characteristic radius of each
textures is a. The textures are featured by the in-plane rotation
of spin, and the parameters describing this rotation (χ and
phase γ ) are determined by a microscopic mechanism behind
its formation [38]. For instance, when a chiral spin pattern
appears due to a spin-orbit interaction, its rotation is given
by |χ | = 1 for linear and |χ | = 3 for cubic in momentum
spin-orbit splitting of a carrier spectrum [39].

We assume that the magnetization contains a homogeneous
part S0ez normal to the 2D plane and the deviation of magne-
tization δS(r) = S(r) − S0ez. The Hamiltonian of the electron
exchange interaction with the spin texture is given by

Ĥ = −hexS0σ̂z −
∑

i

hexσ̂ · δS(r − Ri ), (2)

where hex is the exchange interaction constant, σ̂ is the vector
of Pauli matrices, and the sum runs over spin textures located
in random points Ri.

In our model, the 2D electron band structure consists
of two parabolas shifted by � ≡ 2|hexS0|, so the spin-up
and spin-down electrons at the Fermi level have different
Fermi wave vectors kF1,2 = √

2M(EF ± �/2)/h̄, with EF and
M being the Fermi energy and electron effective mass, re-
spectively. In what follows, we assume that the mean free
path �1,2 within each spin subband is determined by electron
scattering by nonmagnetic impurities. There are two distinct
regimes of weak localization depending on the relation be-
tween � and �1,2. If the difference |kF1 − kF2| is much smaller
than the inverse scattering lengths 1/�1,2, then the coherence
between the spin-split subbands is important, and one can
neglect the presence of spin splitting �. In the opposite
case |kF1 − kF2| � �−1

1,2 the coherence is preserved only inside
the subbands, and the spin-flip scattering acts as additional
dephasing. In this paper, we consider both of these regimes.

A. Subband coherent WL

We start with the WL effect for the coherent subbands
regime |kF1 − kF2| � �−1

1,2. The conductivity correction for 2D
systems in a weak perpendicular magnetic field B is given
by [26]

�σ (B) = e2

2πh

[
2 f2

(
B

Bt1

)
+ f2

(
B

Bt0

)
− f2

(
B

Bs

)]
, (3)

where f2(x) = ψ (1/2 + 1/x) + ln x, with ψ being the
digamma function. The characteristic magnetic fields for
singlet (Bs) and triplet states with the angular momentum
projection equal to 0 and 1 (Bt0,t1) are as follows:

Bi = Bφ

(
1 + τφ

τi

)
, i = t1, t0, s, (4)

where τφ is the dephasing time, and the characteristic mag-
netic field Bφ = h̄τ/(2|e|�2τφ ), where � and τ are the mean
free path and transport scattering time in the subbands. Ad-
ditional dephasing described by the three times τt1,t0,s arises
due to spin-dependent scattering by spin textures. Note that
when there is no spin relaxation (1/τi = 0), the correction to
the conductivity coincides with a standard curve:

�σ0(B) = e2

πh
f2(B/Bφ ). (5)

The amplitude of electron elastic scattering in a system
with the textures and ordinary impurities has the form

V̂kk′ = V0 Î
∑

j

eiq·ρ j − hexk−2
F σ̂ · m(q)

∑
i

eiq·Ri , (6)

where q = k − k′, Î is the 2 × 2 unit matrix, and V0 is the am-
plitude of spin-independent scattering by impurities located in
the points ρ j . The function m(q) is the Fourier transform of a
spin texture δS(r):

mx(q) ± imy(q) = −ie∓i(χϕq+γ )m‖(q),

mz,‖(q) = 2πk2
F

∫ ∞

0
dr rJ0,χ (qr)δSz,‖(r), (7)

where Jl is the Bessel functions of the lth order.
The presence of in-plane components of a spin texture

mx,y leads to a finite electron spin relaxation rate unless
an electron spin becomes adiabatically coupled with a local
magnetization, which occurs at 4hexa/vF h̄ � 1. In the latter
case, the spin-flip scattering is adiabatically suppressed, and
the WL correction is described by the standard curve �σ0(B),
Eq. (5). In our model, by contrast, we treat the electron scatter-
ing by spin textures perturbatively, assuming 4hexa/vF h̄ � 1.
As a result, the spin-relaxation rate for the electron spin z-
component is finite, which modifies the WL corrections.

The correlator of the spin-dependent scattering potential
relevant for the WL problem has the form [26,31][

ni|V0|2 + N
(
hexk−2

F

)2|m(q)|2]Î − 〈V̂kk′ ⊗ V̂−k,−k′ 〉, (8)

where angular brackets denote averaging over the impurity
and texture positions, which are assumed to be not correlated;
here ni and N are the sheet densities of ordinary impurities
and spin textures, respectively. We also assume that � � a not
addressing the case of multiple scattering events inside one
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spin texture, as the latter can restore the adiabatic regime and
suppress a spin relaxation [40].

It follows from Eqs. (7) that mz is invariant while mx,y

change their signs under the operation k, k′ → −k,−k′. This
differs the scattering by spin textures from both magnetic-
impurity and spin-orbit scattering where V̂−k,−k′ = V̂kk′ . In-
troducing the operator of unit angular momentum Ĵ, we
obtain that the spin-dephasing rates are the eigenvalues of the
following operator:

2
(
m2

z + m2
‖
)
Î − 2m2

z Ĵ2
z − m2

‖
(
Ĵ2

x + Ĵ2
y

)
. (9)

Here mz,‖ depend on q = 2kF sin |(ϕk − ϕk′ )/2|, and the lines
mean averaging over both the initial and final angles ϕk and
ϕk′ . We have taken into account that mx,y are pure imaginary
and mz is real, see Eqs. (7), and we use the following relations:

mimj = m2
i δi j, m2

x,y = −|mx,y|2 = − 1
2 m2

‖.

For the singlet (Ĵi = 0) and triplet states, we obtain [41]

1

τt0
= 2

τ0
m2

z ,
1

τt1
= 1

τ0
m2

‖,
1

τs
= 1

τt0
+ 2

τt1
, (10)

where we introduced the characteristic spin-flip rate 1/τ0 =
2πN νh2

ex/(h̄k4
F ) (ν = M/2π h̄2 is the 2D density of states).

We also assume that the transport scattering rate τ−1 =
(2π/h̄)niν|V0|2 is determined by ordinary impurities. The
dephasing times τs,t0,t1 can be related with the single-particle
spin relaxation times for spin orientation out of (τz) and in (τ‖)
the 2D plane by 1/τz = 2/τt1 and 1/τ‖ = 1/τt0 + 1/τt1.

The obtained expressions demonstrate that, since 1/τs >

1/τt0,t1, the singlet contribution [last term in Eq. (3)] is smaller
than that from the triplet channel. Therefore, the sign of the
magnetoconductivity correction is positive at any size of a
spin texture, �σ (B) > 0. However, the form of the magne-
toresistance curves strongly depends both on the texture size
and the Fermi energy, revealing a number of distinct features
induced by the chiral character of spin arrangement [42].

We proceed by considering the shape of �σ (B) curves for
different chiral spin textures S(r). Let us mention that for
a spin texture with S‖ = 0 (a magnetic impurity with spin
directed perpendicular to the 2D plane) we have 1/τt1 = 0 and
τs = τt0, the relaxation of the z spin component is absent, and
the WL correction is given by �σ0(B); see Eq. (5). To analyze
the effect of the chiral spin texture in-plane spin rotation on
�σ (B) curves, we provide the numerical calculations for the
following texture shape:(

δSz(r)
δS‖(r)

)
= (1 − x)2�(1 − x)

(
cos αx
sin αx

)
, (11)

where x = r/a, with a being the texture radius, α controls
the in-plane spin inclination, and � is the Heaviside function
(we assume that δSz,‖ = 0 outside a texture core). The texture
shape Eq. (11) is convenient for quantifying the considered
phenomenon allowing us to demonstrate the effect of the
texture magnetization inclination on WL. In Fig. 1 we plot
the dependence of τ−1

s,t0,t1 on kF a for δSz,‖ profiles [Eq. (11)]
at α = π/2. The increase of a texture radius leads to a more
efficient spin-flip scattering and larger τ−1

t1 rate. When all
three times τs,t0,t1 become different, the magnetoconductivity
correction changes strongly.
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FIG. 2. The magnetic field dependence of the weak-localization
conductivity correction at τφ/τ0 = 30 for (a) a different spin texture
radius kF a (at α = π/2) and (b) a different spin inclination angle α

(at kF a = 3).

Figure 2(a) demonstrates �σ (B) for a different texture ra-
dius, suggesting that an increase of the texture size suppresses
effectively the conductivity correction. The inner structure of
a spin texture also affects the magnetoresistance. The larger
the spin inclination angle is, and correspondingly the more
intense the spin-flip scattering rates are, the more pronounced
is the suppression of �σ (B). In Fig. 2(b) we plot �σ (B) for
four different spin configurations described by α = 0, π/4,
π/2, and π . This plot demonstrates the suppression of �σ (B)
as the spin texture is tilted into the plane.

B. Subband incoherent WL

Now we consider the case of large spin splitting assuming
that |kF1 − kF2| � �−1

1,2. We characterize the spin-flip scatter-
ing by the scattering time τ12, which is equal for scattering
processes 1 → 2 and 2 → 1. The spin-flip scattering rate by a
skyrmion coincides with the spin relaxation time of the triplet
state with projection 1: τ12 = τt1; see Eq. (10). In contrast
to the coherent subband regime considered previously, for
|kF1 − kF2| � �−1

1,2 the spin texture in-plane components affect
WL only by means of intersubband scattering processes τ12,
i.e., without phase factor couplings. Nevertheless, the change
of skyrmion parameters affecting τ12 can still lead to a change
of the magnetoresistivity curves.

Generally, the dephasing times τφ1, τφ2 and the elastic
scattering times in the subbands τ1,2 are different due to their
dependence on the Fermi wave vectors. However, for the
parabolic subbands the density of states at the Fermi level does
not depend on spin index, thus we have τ1 = τ2 = τ . On the
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FIG. 3. The magnetic-field dependence of the conductivity cor-
rection for different spin-flip rates 1/τ12. The 2D electron spin
polarization δ = 0.3.

contrary, in each 2D subband the dephasing time is linear in
the electron density. Therefore, we have τφ1, τφ2 = τφ (1 ± δ),
where τφ is an average dephasing time, and δ = �/2EF is the
2D electron gas spin polarization.

As a result, we deal with the two-subband system with
intersubband scattering. The weak-localization conductivity
correction for this case is given by [34,35,43]

�σ (B) = e2

2πh

[
f2

(
B

B+

)
+ f2

(
B

B−

)]
,

B± = Bφ

1 − δ2

⎡
⎣ τφ

τ12
+ p + 1 ±

√(
τφ

τ12
+ p

)2

+ 2p

⎤
⎦,

(12)

where p = 2δ2/(1 − δ2), and Bφ = h̄/(2|e|v2
Fττφ ) is deter-

mined by the average dephasing time τφ and Fermi velocity
vF = √

2EF/M.
In Fig. 3 we demonstrate the evolution of the �σ (B) curves

driven by the increase of τφ/τ12 for δ = 0.3. If the intersub-
band scattering is slow in comparison with the dephasing
rates in the subbands (τ12 � τφ), then we obtain that spin
subbands contribute independently with B± = Bφ/(1 ∓ δ)2

corresponding to the second and first subbands, respectively.
It is the 2D electron spin polarization δ that makes B± dif-
ferent in this case. Increasing the skyrmion size, we reduce
the intersubband scattering time τ12, thus approaching the
opposite limit of fast spin-flips τ12 � τφ when we have two
distinct characteristic fields given by an average dephasing
rate and spin-flip rates, respectively: B− = Bφ/(1 − δ2) and
B+ = (2τφ/τ12)B− � B−. As a result, the conductivity cor-
rection �σ is almost twice as small as that in the absence of
spin-flip scattering. This is clearly seen from a comparison
of the curves in Fig. 3 corresponding to τφ/τ12 = 0 and to
τφ/τ12 → ∞.

III. SKYRMION CRYSTALS

We proceed by considering an important case when
skyrmions are spatially arranged in a regular lattice. In con-
trast to the above-considered diluted arrays of spin textures,
the skyrmion crystal is characterized by a higher density of
magnetic vortices so that Na2 � 1. We assume the adiabatic

BT = 0

BT /Bφ
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FIG. 4. The dependence of �σ (B) for skyrmion crystals with
different values of the topological magnetic field BT .

electron interaction with skyrmions, i.e., that an electron spin
state is coaligned everywhere with a local magnetization
and the skyrmions do not lead to the spin-flip scattering
(τ12 = ∞). This assumption is typical when considering the
electron transport in real skyrmion crystals [9,44,45]. The
chiral spatial structure of the magnetization manifests itself
as a gauge contribution [15] to the operator of momentum:
p → p ∓ (e/c)A(r), where the sign corresponds to two elec-
tron spin subbands, and A(r) is determined by a particular spin
profile. The vector potential A(r) leads to the “topological”
magnetic field acting on electron orbital motion. Its averaged
component perpendicular to the 2D plane is given by

BT = φ0

4π
〈S · [∂xS × ∂yS]〉 ≡ Q

φ0

A , (13)

where φ0 = hc/|e| is a magnetic flux quantum, Q is an integer
number, and A is an area of the crystal unit cell. Let us note
that the sign of the emerging magnetic field ±BT is opposite
for two electron subbands, which modifies the anomalous
magnetoresistance in a nontrivial way.

It is worth noting that the assumption of spin adiabaticity
(τ12 = ∞) is typical for a strong exchange interaction when
the condition |kF1 − kF2| � �−1

1,2 is additionally fulfilled. As
a result, the electrons from different subbands contribute to
the conductivity independently, with the corresponding total
magnetic field being a superposition of the external field B
and the topological one BT :

�σ (B) = e2

2πh

[
f2

(
B + BT

Bφ

)
+ f2

(
B − BT

Bφ

)]
. (14)

Here we assume equal dephasing times in the spin subbands,
and that � � 2a, so each electron indeed experiences an
average magnetic field.

Figure 4 shows the dependence of �σ (B) on the external
magnetic field B for a different ratio BT /Bφ . This dependence
is hallmarked by the emergence of a noticeable dip starting
from BT /Bφ ≈ 4. The position of this minimum is unam-
biguously associated with the magnitude of the topological
field BT .

IV. DISCUSSION AND SUMMARY

The considered theory of WL corrections in a dilute array
of chiral spin textures is valid when � � a. With a typical
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mean free path limited by tens of nanometers, we conclude
that the described features of WL are important for systems
with compact spin textures and, in particular, skyrmions. For
instance, this is the case of nanoscale skyrmions observed
in atomically thin magnetic layers, such as PdFe/Ir(111) [1].
Another example is diluted magnetic semiconductors (DMS)
with the size of spin textures being of the order of the impurity
Bohr radius [39]. It is also worth estimating the spin-flip
times given by Eq. (10) and comparing them with the de-
phasing time τφ for those systems. For DMS, the subband-
coherent regime is typically realized. Taking hex = 2 meV,
the electron sheet density N2D = k2

F/(2π ) = 4 × 1012 cm−2,
the spin texture density N = 1012 cm−2, and M = 0.1m0,
we obtain the characteristic spin-flip time τ0 ≈ 0.5 ns.
For the dephasing time τφ = 10 ns and the texture radius
a = 5 nm we get τφ/τ0 ≈ 20 and kFa ≈ 2.5, which suggests
the importance of WL corrections. Other relevant systems
are atomically thin ferromagnetic films, featured by a large
exchange splitting of electron spin subbands. Taking hex =
0.5 eV, N2D = 1014 cm−2, and the transport scattering time
τ = 1 ps, we get for the ratio hexτ/h̄ ≈ 103, which suggests
that the WL corrections are described by the theory of the
subband-incoherent regime Eq. (12). For N = 1010 cm−2 and
M = 0.6m0 we get the spin-flip time τ0 ≈ 0.1 ns, and for
τφ = 1 ns and a = 2 nm we obtain τφ/τ0 ≈ 10 and kFa ≈ 4.

Therefore, according to Eq. (12), the WL correction is ex-
pected to be twice as small as the standard result Eq. (5).

Let us estimate the effective topological field for skyrmion
crystals. Taking a = 20 nm, we get BT ≈ 3 T, which is one to
two orders of magnitude larger than typical values of Bφ . As
a result, a very narrow dip is expected in the �σ (B) depen-
dence (Fig. 4). We note that the other transport phenomenon
takes place in skyrmion crystals, namely the topological Hall
effect. Therefore, we argue that when the topological Hall ef-
fect is experimentally observed, the longitudinal conductivity
would also experience a modification due to WL according to
Eq. (14).

In summary, we developed the WL theory for 2D electron
systems with chiral spin textures. We demonstrated that, in
disordered arrays of spin textures, the WL is featured by
a specific behavior that cannot be attributed to any other
mechanism. For skyrmion crystals, the sign-alternating mag-
netoresistance is predicted.
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