
PHYSICAL REVIEW B 100, 014422 (2019)

Tunable magnetism of a hexagonal Anderson droplet on the triangular lattice
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Motivated by recent progress on quantum engineered Kondo lattices, we numerically investigated the local
magnetic properties of a hexagonal Anderson droplet consisting of multiple rings of magnetic atoms periodically
arrayed on a triangular lattice. We demonstrated the tunability of the magnetic properties via their evolution with
the droplet geometry for two types of systems with distinct local orbital occupancy profiles. We found that the
local susceptibility of the droplet center of some types of droplets can be remarkably enhanced, in contrast to
the conventionally rapid decrease due to spin correlations of surrounding droplet rings. The tunability of the
magnetic properties is attributed to the charge redistribution with varying the droplet geometry enforced by
the confined lattice with an open boundary. Our simulations complement the exploration of the novel artificial
tunability of engineered lattice systems.
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I. INTRODUCTION

There has been a recent paradigm shift in the investigation
of strongly correlated electronic systems from real materials
to the atomic-scale manipulation of artificial lattices and/or
superlattices [1–8]. For example, in the context of the Kondo
physics in heavy-fermion materials [9], the realization of
artificial lattices has provided a radically new platform to both
explore and manipulate the emergence of strong correlation
effects. The resulting many-body phenomena at the nanoscale
permit the diverse opportunities for studying the interplay be-
tween different degrees of freedom in a controllable manner.
In particular, the quantum engineering of nanoscopic Kondo
droplets has been demonstrated to be capable of coherently
controlling the droplet’s properties such as its Kondo temper-
ature [1]. Theoretically, they employed large-N expansion for
the treatment of the triangular Cu(111) surface lattice, which
allows for two types of hexagonal magnetic atom droplets.
This study demonstrated the possibility of not only creating
coherently coupled Kondo droplets but also modifying the
droplet’s Kondo temperature via changing a droplet’s real-
space geometry. As a closely related aspect of the Kondo
droplets, the requisite conditions of the coherent Kondo lattice
behavior for periodically arranged magnetic moments on a
square lattice within the particle-hole symmetric Kondo lattice
model (KLM) was investigated as well recently [10].

It is well known that another type of model that is believed
to qualitatively describe the essential features of the rich
physics of heavy-fermion systems is the Anderson model,
e.g., the single-impurity or periodic Anderson model, whose
relation to the Kondo models has been extensively explored
in recent decades [11,12]. As effective models in the strong-
coupling limit, Kondo models describe the f electrons as
localized quantum-mechanical spins so that the charge de-
grees of freedom can be discarded. Hence, given the recent
experimental progress on realizing atomic-scale manipulation
of artificial lattices and the theoretical exploration of Kondo
droplets [1], it is a good moment to thoroughly investigate

the properties of the hexagonal Anderson droplet with the
additional involvement of the charge degrees of freedom.

Here we numerically explore the local magnetic properties
of a hexagonal Anderson droplet consisting of multiple rings
of magnetic atoms on a triangular lattice in the framework
of the Anderson model, which has richer physics than its
counterpart Kondo model because of the intrinsic charge
fluctuations of f electrons. Our focus is the evolution of the
local properties within the droplet and, more importantly, their
dependence on the spatial structure of the droplet.

This paper is organized as follows. In Sec. II, we define our
Anderson droplet model and the determinant quantum Monte
Carlo method employed. Section III discusses the local mag-
netic susceptibilities and closely related density modulations
in various droplets. Section IV illustrates more evidence of
the dependence of magnetic properties on various parameters.
The summary and future issues to be addressed are presented
in Sec. V.

II. MODELS AND METHODS

We employ the two-dimensional Anderson droplet model
(ADM) in the half-filled form on a triangular lattice
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where c†
iσ (ciσ ) and f †

iσ ( fiσ ) are creation (annihilation) op-
erators for the conduction and local f electrons on site i
with spin σ , respectively. nc, f

iσ are the associated number
operators. t = 1, set to be the energy unit, is the hopping
amplitude between conduction electrons on nearest-neighbor
sites 〈i j〉 of a triangular lattice. U denotes the local repulsive
interaction for f electrons, and V is the hybridization between
the conduction and f electrons. The chemical potential μ
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FIG. 1. Lattice structure of two types of Anderson droplets con-
sisting of multiplet rings of Anderson impurities with distance (a) na0

and (b)
√

3na0, with a0 ≡ 1 being the lattice constant. n is an integer,
and only the n = 1 case is shown here. The red line denotes the
direction adopted to examine the evolution of local properties.

controls the average density of the system. The set D defines
the set of sites where the impurity droplet resides. Figure 1
illustrates the geometrical structure of our hexagonal lattice
with an open boundary and two types of droplets, where the
distance between the consecutive impurity rings can be na0

and
√

3na0 separately, with a0 ≡ 1 being the lattice constant
and n being an integer. This geometry has direct relevance
to a recent study on the artificially engineered Kondo droplet
system [1]. From now on, we denote the spatial structure of
the droplet by A/B{n : Nr}, with n being the distance between
consecutive rings and Nr being the number of rings such that
Fig. 1 shows A{1 : 5} and B{1 : 4} droplets. With this notation,
for example, the first ring of the A{3 : 2} droplet has the same
location as the third ring of the A{1 : 4} droplet.

Although the ADM model breaks the translational sym-
metry of the lattice, it has a close relation to the well-known
periodic Anderson model (PAM), which is conventionally
believed to capture the essential physics of heavy-fermion
materials [9]. Accordingly, the PAM has been extensively
explored numerically in various contexts, for example, the
phase diagram [13,14], the universal Knight shift anomaly
[15], d-wave superconductivity [16], the Mott metal-insulator
transition [17–19], etc. The ADM can also be viewed as a
special form of the depleted PAM [20] and is relevant to the
PAM with impurities [21,22].

The phase diagram of the PAM on a triangular lattice,
which hosts richer phases than its counterpart on a square lat-
tice, has been explored extensively in recent decades [23,24].
Following the phase diagram reported in [23], we focus on the
characteristic intermediate-coupling strength U/t = 4.0 and
c − f hybridization strength V/t = 1.0 such that they are the
same order of magnitude. More detailed dependence on the
parameters such as U and V will be addressed in Sec. IV.
To treat with these energy scales on equal footing, we solve
the ADM by means of the conventional finite-temperature
determinant Quantum Monte Carlo (DQMC) [25]. Note that
our hexagonal-shaped triangular lattice with an open bound-
ary is highly inhomogeneous and nonperiodic, so that both
the conduction and f electron density distributions will af-
fect the local properties throughout the lattice. As discussed
below, this inhomogeneity of density fluctuations is believed
to be decisive in the determination of the local magnetic
properties. In this work, we have treated two characteris-
tic types of systems: (i) the whole system is half filled,

ρ = [
∑

iσ 〈nc
iσ 〉 + ∑

i∈D,σ 〈n f
iσ 〉]/N = 1, with N being the total

number of lattice sites (including the droplet), by tuning the
chemical potential μ and (ii) the droplet impurities are almost
half filled by setting fixed μ = 0 for all droplet geometries.
We emphasize that these two cases, which are equivalent
in the conventional PAM on a square lattice, differ in our
lattice geometry. In the former system, both the conduction
and f electron densities are away from and can exceed half
filling. In contrast, the latter system partially removes the
charge fluctuations of the f electron, whose density is almost
half filled while the conduction electron below half filling
presents mostly the spatial density modulation. Because of
the geometric frustration, the infamous Fermionic minus sign
problem prevents us from the arbitrary choice of parameters
for various droplet geometries. Therefore, to study a large
enough lattice at low enough temperature with a manageable
sign problem and computational cost, most results presented
are for lattices with boundary length L = 10 sites such that
the total number of sites is 3L2 + 3L + 1 = 331, which places
constraints on the maximal possible number of impurity rings
for a particular droplet ring distance n.

III. MAIN RESULTS

A. Local susceptibility

The key quantity throughout this paper is the local mag-
netic susceptibility, defined as

χab(r) =
∫ β

0
dτ
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][
nb

r↑(0) − nb
r↓(0)

]〉
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where a and b denote the conduction and f electrons, respec-
tively, and r is the location of the characteristic impurity along
the red examination line in Fig. 1 on the rth impurity ring so
that the central impurity is at r = 0. Note that this red ex-
amination line passes the lattice corner and the middle of the
lattice boundary for A and B types of droplets, respectively.
We remark that the reduced number of nearest impurities leads
to differing spin correlations via Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction and also different neighboring
conduction electron seas so that the Kondo screening will
largely affect the properties near the lattice boundary [10]. In
some cases, the following results will cover the data near or at
the boundary, although that is not our focus.

Figure 2 illustrates the evolution of the local f -electron
susceptibility χ f f (r) versus r for various A and B droplet
geometries in systems with both ρ = 1 and μ = 0, where we
have simplified the label as A/Bn ≡ A/B{n : Nr} for various
cases of Nr . To access large enough droplets (especially for the
A1 droplet), the temperature is chosen to be T = t/10, which
is low enough to identify the essential properties presented
here. The major features persist at a lower temperature T =
t/20 with a smaller largest droplet size (Nr = 5 is practically
the largest accessible A1 droplet due to the sign problem).

First, χ f f (r) in systems with both ρ = 1 and μ = 0 os-
cillates with increasing r for A/B{n : Nr > 2} droplets (most
clearly for the A1 droplet) before reaching the outermost ring,
where this “regular” oscillation breaks down due to the lattice
boundary effect mentioned before or a similar effect occurring
at the droplet boundary [10]. Neglecting the droplets, e.g.,
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FIG. 2. Local f -electron susceptibility χ f f (r) for various A and B droplet geometries in systems with both ρ = 1 and μ = 0, where we
have simplified the label as A/Bn ≡ A/B{n : Nr} for various cases of Nr . T = t/10 is chosen to access large enough droplets (especially for
A1 droplets).

A{1 : 9} and A{1 : 10}, whose outermost ring approaches or
locates at the lattice boundary, we note that A1’s outermost
ring has an upturn of χ f f while other droplets, e.g., A{2 : 3}
(the ρ = 1 system) and A{3 : 2} (the μ = 0 system), can have
opposite trends. This complication stems from the density
fluctuation (dominantly at the spatial region of the droplet
boundary) of the system, which intertwines with the lattice
and/or droplet boundary effects. In fact, as discussed in detail
in Sec. III B, the local density fluctuation, which mostly comes
from the conduction electrons especially in μ = 0 systems,
anticorrelates with the oscillations of χ f f (r), which signifies
the important role played by the charge degrees of freedom
imposed by the inhomogeneous lattice.

Second, the oscillation of χ f f (r) gradually diminishes with
increasing Nr , namely, the droplet size, as most clearly shown
for the A1 droplet of the ρ = 1 system. In other words,
the droplet’s central region becomes more and more homo-
geneous and coherent [26]. For other droplets with larger
distance n between consecutive rings, we are limited by the
lattice size to identify the diminishment of χ f f (r).

Third, the weaker dependence of χ f f (r) on Nr for B-type
droplets compared with their A-type counterparts signifies the
impact of the differing geometric arrangements of impurities,
in particular, the distance between consecutive rings and the
absence of nearest-neighbor impurities in B droplets. In the
sense of the minimal hopping distance between the consecu-
tive rings, the B1 (B2) droplet is more similar to the A2 (A4)
droplet.

The major difference between systems with ρ = 1 and μ =
0 is that χ f f (r) in the latter system gradually saturates with
Nr , while in the former system it continues to grow even for
large Nr . This originates from the stronger charge effect in the
globally half filled system ρ = 1. Taking the A1 droplet, for

example, the site-dependent density keeps decreasing and ap-
proaches half filling upon increasing Nr , so that χ f f (r) keeps
growing in the former system, while the density saturates for a
large enough Nr droplet in μ = 0 systems (See Sec. III B). The
strong charge effects can be suppressed to some extent by low-
ering the temperature, which has been verified at T = t/20
despite the limitation of accessing a smaller droplet size. At
this point, we emphasize that the “full” suppression of charge
effects requires pushing to a much lower temperature, which
is difficult, if not impossible, in our DQMC simulations. The
Kondo lattice model is more appropriate in this regard. All in
all, the rich behavior of χ f f (r) that is dependent on the droplet
geometry indicates the possibility of artificial manipulation of
the magnetic properties in a controllable manner.

One fascinating feature of χ f f (r) is the strong dependence
of χ f f (r = 0) at the central impurity on the droplet geometry.
Figure 3 illustrates its evolution upon increasing Nr for various
types of droplets. χ f f (r = 0) reflects the competition between
interimpurity antiferromagnetic spin correlation and the sur-
rounding impurity rings mediated via RKKY interaction and
Kondo screening of the conduction electrons. Moreover, the
charge fluctuations in our systems interplay with these two
factors to complicate the whole picture. Figures 3(a) and 3(b)
compare the behavior of χ f f (r = 0) between two types of
systems at T = t/10, and Figs. 3(c) and 3(d) present the
comparison at lower temperature T = t/20. For an A-type
droplet with the smallest distance between rings, e.g., n = 1,
χ f f (r = 0) decreases rapidly from its single-impurity value,
and then Fig. 3(a) keeps growing in ρ = 1 systems, while
Fig. 3(b) gradually saturates after an oscillating behavior
in μ = 0 systems with increasing Nr . As discussed before,
this difference stems from the stronger charge effects in
ρ = 1 systems, which can be partially suppressed at the lower
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FIG. 3. Comparison of χ f f (r = 0) at the central impurity as a
function of the number of impurity rings Nr for various A and B
droplets.

temperature T = t/20 shown in Fig. 3(c). This saturation
similar to that reported for the KLM on a square lattice [10]
can be attributed to the buildup of spin correlations induced
from the neighboring droplet rings, which gives rise to the
collectivelike screening of the central impurity. As pointed out
in Fig. 2, χ f f (r = 0) in B-type droplets has more moderate
dependence on Nr . The moderate deviation from the single-
impurity case implies the compensation between local Kondo,
interimpurity spin correlation, and charge fluctuation effects.
Unfortunately, it is impossible to access a much larger lattice
and/or lower temperature to identify the saturation of all
droplet geometries, especially the B type with a larger distance
between the rings.

The most unusual feature in Fig. 3 due to the interplay
between various intertwined effects manifests when increas-
ing the distance n between impurity rings, where the fate of
the decrease of χ f f (r = 0) upon Nr is significantly modified.
In fact, χ f f (r = 0) can even be enhanced in A3, A4, and B3
droplets in ρ = 1 and A2 and B1 droplets in μ = 0 systems
[Figs. 3(a) and 3(b)], which persists at lower temperature T =
t/20 [Figs. 3(c) and 3(d)]. As verified via the density profile in
Sec. III B, this remarkable enhancement implies a significant
charge redistribution due to the lattice inhomogeneity, which
in turn results in the tunable magnetic susceptibility for a
particular impurity embedded in a system.

To further understand the nontrivial dependence of the
local magnetism upon the droplet geometry, we also explored
χ f f (r = 0) for droplets with a single impurity ring Nr = 1
but varying distance n to the central impurity. As can be
seen in Figs. 4(a) and 4(b), it oscillates periodically with
n in both ρ = 1 and μ = 0 systems, although the lattice
size forbids accessing more oscillations for B-type droplets,
which vividly depicts the tunability of the magnetic properties
via modulation of the droplet geometry. The strong charge
effect is illustrated in Figs. 4(c) and 4(d), which display the
anticorrelation between the local density profile at the lattice
center and χ f f (r = 0). Although the charge fluctuation for
the f electron can be partially suppressed by enforcing its
nearly half filled occupancy via μ = 0, the density profile
of the conduction electrons also plays an important role in
determining the magnetic properties of the droplet.

FIG. 4. (a) and (b) Comparison of χ f f (r = 0) for droplets with
a single impurity ring Nr = 1 but varying distance n to the central
impurity at T = t/20. (c) and (d) The local orbital-dependent occu-
pancy at the central impurity anticorrelates with χ f f (r = 0).

B. Density fluctuation

Previously, we briefly mentioned that the local-density
fluctuation anticorrelates with the oscillations of χ f f (r). To
provide more insights into the origin of the evolution of
the magnetic properties with the droplet geometry, Fig. 5
illustrates the local occupancy of the droplet site ρ f (r) (solid
lines) and conduction electrons ρc(r) (dashed lines) in various
systems, which shows this general anticorrelation vividly
compared with Fig. 2. Specifically, taking the A1 droplet
of the ρ = 1 system, for example, the peak of ρ f (r = 0)
versus Nr occurs at Nr = 2, which coincides with the oc-
currence of the valley of χ f f (r = 0) at the same Nr in
Fig. 3(a).

The most important feature is the coincidence between
χ f f (r) and the closeness of ρ f (r) to unity. As ρ f (r) ap-
proaches unity with r and/or Nr , χ f f (r) increases accord-
ingly, which is a well-known consequence of the local mag-
netic moment associated with the forbidden double occu-
pancy. This is clearly evidenced by the generally larger χ f f (r)
in μ = 0 systems because of the almost half filled droplet
sites ρ f (r) ∼ 1. In other words, the evolution of χ f f (r),
especially the unusual enhancement of χ f f (r = 0) with Nr

(Fig. 3), presented in Sec. III A is strongly tied to the density
redistribution via varying the droplet geometry. Apparently,
this density fluctuation is closely related to the nonperiodicity
of the lattice due to both the droplet geometry and the open
boundary employed. Therefore, in essence, the possibility
of artificial manipulation of the magnetic properties of the
Anderson droplet in our current confined lattice system is real-
ized via the potentially controllable density variation enforced
by a finite boundary.

The flatness of the density profile for systems with large
Nr implies that the inner region of the droplet becomes more
and more homogeneous and coherent upon increasing Nr .
For other droplets with larger distance n between consecutive
rings, we are limited by the lattice size to identify the ultimate
flatness of ρ(r). The anomalous oscillations at the outermost
ring are due to the lattice and/or droplet boundary effects
similar to χ f f (r). In addition, the general weaker dependence
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FIG. 5. Local orbital-resolved occupancy of droplet site ρ f (r) (solid lines) and conduction electrons ρc(r) (dashed lines) in various systems
at T = t/10. The general anticorrelation to χ f f (r) shown in Fig. 2 is visible.

of ρ(r) for B-type droplets on the droplet geometry matches
the trend of χ f f (r). In μ = 0 systems, the density fluctuation
mostly comes from the conduction electrons because the
droplet sites are enforced to be nearly half filled. The major
difference between systems with ρ = 1 and μ = 0 lies in
the saturation or not of ρ(r) with increasing Nr . Apparently,
the local-density saturation of the latter system mirrors the
saturation of χ f f (r).

C. Interorbital local susceptibility

It is not straightforward to compare our results to the latest
exploration of Co adatoms on the Cu(111) surface [1] due
to the intrinsic difficulty of extracting the local hybridization
strength via the analytical continuation of the local interor-
bital Green’s function. Instead, we illustrate the interorbital
magnetic susceptibility |χc f (r)| that is found to largely anti-
correlate with χ f f (r), which naturally reflects the local com-
petition between the Kondo screening and interimpurity spin
correlation. Figure 6 displays the evolution of |χc f (r)| versus
the location r for various droplets. Clearly, when |χc f (r)|
increases (decreases) with r or Nr , the opposite trend occurs
for χ f f (r). The dominant feature is the generally weaker
dependence of |χc f (r)| on Nr compared with χ f f (r), which
reflects the locality of c − f hybridization, in contrast to the
spatial character of interimpurity spin correlation manifested
in χ f f (r).

IV. PARAMETER DEPENDENCE OF
MAGNETIC PROPERTIES

To provide more evidence of the robustness of our main
results illustrated in Sec. III, in the following we discuss

the effects of various parameters in more general settings.
In addition, we will elaborate more upon the close relation
between the local charge density and magnetic properties.

A. Finite-size effects

Finite-size effects are ubiquitous in lattice quantum Monte
Carlo calculations. Typically, they are most serious when a
question concerning long-range order is considered since, by
definition, one is examining the asymptotic behavior at a
large spatial separation. Our adoption of an open boundary
condition for the lattice without the translational symmetry
implies the potentially significant impact of the lattice size.
Because the manifestation of the essential features, especially
the enhancement of χ f f (r = 0) upon Nr , requires a large
enough lattice, e.g., L � 8, while the computational cost
limits us from simulating a much larger lattice, finite-size
scaling is, by and large, meaningless in this context.

Therefore, here we provide only evidence that there are
no qualitative changes for a larger lattice system with L = 12
compared with L = 10 adopted in Sec. III. Since, after all, the
relevant physics is more or less local, e.g., the local repulsion
for the f -conduction electron is strong coupling U/t = 4.0,
we do not expect any significant modification of the local
magnetic properties. Figure 7 confirms this expectation via
the local susceptibility χ f f (r = 0) at the central impurity for
L = 12 lattices at T = t/10.

Figures 7(a) and 7(b) compare the behavior of χ f f (r = 0)
as a function of the number of impurity rings Nr between
two types of systems. All the essential features presented in
Fig. 3 remain in this larger lattice. In particular, the unusual
feature of enhanced χ f f (r = 0) with Nr for some droplets per-
sists. Furthermore, Figs. 7(c) and 7(d) display χ f f (r = 0) for
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FIG. 6. Local interorbital susceptibility |χc f (r)| for various systems at T = t/10. The general weaker dependence on Nr and its
anticorrelation to χ f f (r) shown in Fig. 2 are visible.

droplets with a single impurity ring Nr = 1 as a function of its
distance n to the central impurity. The oscillating behavior is
reminiscent of that presented in Fig. 4. The robustness against
the lattice size confirms our major conclusion of the tunability
of the magnetic properties by the artificial arrangement of the
droplet geometry.

B. Effects of hybridization strength V

In Sec. III, we fixed the c − f hybridization strength as the
characteristic V/t = 1.0. Because the Anderson lattice models
describe the competition between interimpurity antiferromag-

FIG. 7. Comparison of χ f f (r = 0) at the central impurity (a) and
(b) as a function of the number of droplet rings Nr for various droplets
and (c) and (d) as a function of ring distance n for droplets with a
single droplet ring Nr = 1 in L = 12 lattices at T = t/10.

netic spin correlation mediated via RKKY interaction and the
Kondo screening from conduction electrons, it is natural to ask
about the impact of the c − f hybridization strength. Similar
to Fig. 7, Fig. 8 demonstrates the behavior of χ f f (r = 0)
as a function of Nr for various droplets [Fig. 8(a)] and of n
for droplets with a single impurity ring Nr = 1 [Fig. 8(b)]
with varying distance n to the central impurity. Obviously,
there is no qualitative modification of the tunable features
of χ f f (r = 0) compared to those for smaller hybridization
(Figs. 3 and 4) and for larger lattices (Fig. 7).

C. Effects of the chemical potential μ

In Sec. III, we focused on two special cases (ρ = 1 and
μ = 0) of orbital occupancies by tuning the chemical poten-
tial μ. Because the major difference of the Anderson-type
models from the Kondo-type models is the involvement of
the additional charge fluctuations in the determination of their
physical properties, the role played by the chemical potential,

FIG. 8. χ f f (r = 0) at the central impurity (a) as a function of
Nr for various droplets and (b) as a function of n for droplets with a
single droplet ring Nr = 1 for c − f hybridization strength V/t = 2.0
at T = t/10.
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FIG. 9. (a) χ f f (r = 0) and (b) the local orbital occupancy ρ(r =
0) at the central impurity (solid lines for the droplet f orbital and
dashed lines for conduction electrons) vs the chemical potential μ

for V/t = 1.0 in L = 10 lattices at T = t/10.

namely, more general cases of orbital occupancies, is worth
elaborating upon.

Figure 9(a) illustrates the evolution of χ f f (r = 0) with
μ for some characteristic droplets. Obviously, the dominant
feature is the commonly broad peak at μ ∼ −0.5, which can
be naturally accounted for by the local orbital occupancy
ρ(r = 0) (solid lines for the droplet f orbital and dashed lines
for conduction electrons) shown in Fig. 9(b). Specifically,
at μ ∼ −0.5, the features of both (i) the almost half filled
occupancy of the droplet f orbital (solid lines) and (ii) the
plateaulike evolutions with μ imply for the strongest magnetic
local moment to induce the peak of local magnetic suscep-
tibility. This further indicates the close relation between the
local magnetic properties and charge density, as discussed in
Sec. III.

D. Effects of Coulomb repulsion U

Our current work concentrates on the Anderson droplet
model with the additional involvement of the charge degrees
of freedom instead of the effective Kondo droplet model in the
strong-coupling limit U/t → ∞; it is worthwhile to discuss
more about the role played by the Coulomb repulsion U .

Figure 10(a) displays the local magnetic moment of the
droplet center 〈m2

f (r = 0)〉 versus U for some characteristic
droplets, and Fig. 10(b) shows the local orbital occupancy
ρ(r = 0) (solid lines for the droplet f orbital and dashed lines
for conduction electrons). Here we adopt μ = 0 to facilitate

FIG. 10. (a) The local magnetic moment 〈m2
f (r = 0)〉 of the

droplet center and (b) the local orbital occupancy ρ(r = 0) at the
central impurity (solid lines for the droplet f orbital and dashed lines
for conduction electrons) vs U for V/t = 1.0 in L = 10 lattices of
μ = 0 systems at T = t/10.

the half-filled occupancy of the droplet center. Clearly, strong
Coulomb repulsion saturates the local charge occupancy. As
a result, the forbidden charge fluctuations and double occu-
pancy at the half-filled droplet center lead to the enhanced and
saturated local magnetic moment.

V. CONCLUSION

In conclusion, we have employed the numerically exact
DQMC simulations in the framework of the Anderson droplet
model to investigate the local magnetic properties associated
with the hexagonal droplet embedded in a triangular lattice.
We demonstrated the tunability of the magnetic properties by
the evolution of local susceptibility with the droplet geometry
for two types of systems with differing local orbital occupancy
profiles. Our ADM has the intrinsic intertwined spin and
charge degrees of freedom, whose fluctuations largely affect
the local magnetic properties, although the charge fluctuation
of the droplets can be partially suppressed by enforcing its
nearly half filled occupancy.

The coincidence between the magnetic properties and
the local charge occupancy is manifested by the unusual
enhancement of χ f f (r = 0) with Nr (Fig. 3) presented in
Sec. III A, which is strongly tied to the density redistribution
via varying the droplet geometry. This density fluctuation is,
in turn, closely related to the nonperiodicity of the lattice
due to both the droplet geometry and the open boundary
employed. In essence, the possibility of artificial manipulation
of the magnetic properties of the Anderson droplet in our
current confined lattice system is realized via the potentially
controllable density variation enforced by a finite boundary.

It is not straightforward to compare our results to the latest
exploration of Co adatoms on the Cu(111) surface [1] due to
(i) the intrinsic difficulty of extracting the local hybridization
strength via the analytical continuation of the local interorbital
Green’s function, (ii) the strong charge effects in our ADM,
and (III) the finite-size effect in contrast to the essentially in-
finitely large Cu(111) surface [1]. Further design of the lattice
and/or droplet settings is required to perform an insightful
direct comparison.

The natural extension of the present work is to investigate
the Kondo droplet model [10] in the absence of the droplets’
f -electron charge fluctuation and/or with more appropriate
lattice band fillings. In addition, the Anderson version of
Kondo holes in a droplet reported in the latest investigation
deserves further exploration [1,27,28]. Although direct com-
parison with the recent progress on a quantum engineered
Kondo lattice is not straightforward, our simulations com-
plement the exploration of the novel artificial tunability of
engineered confined lattice systems.
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