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We investigate the spin S = 1/2 Heisenberg model on the body centered cubic lattice in the presence of
ferromagnetic and antiferromagnetic nearest-neighbor J1, second-neighbor J2, and third-neighbor J3 exchange
interactions. The classical ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to
host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Néel, stripe, and planar
antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method
for quantum spins (S = 1/2) we find an extended nonmagnetic region, and significant shifts to the classical
phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations, while no new long-range
dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for S = 1. We calculate
the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to
available data.
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I. INTRODUCTION

The long-range ferromagnetic (FM) or antiferromagnetic
(AF) order of spins pinned to the sites of a bipartite crystal
lattice becomes frustrated in the presence of further-neighbor
AF interactions, a scenario called parametric frustration. For
Heisenberg spins in the classical limit, i.e., spin S → ∞, these
competing interactions provide a promising route towards
realizing (noncollinear) helimagnetic orders, i.e., spiral spin
structures [1–4]. On the square lattice, the FM or AF ordering
of spins when frustrated via AF second- and third-neighbor
Heisenberg interactions is known to stabilize one- and two-
dimensional helimagnetic orders [4]. When the reciprocal spin
1/S becomes nonzero, quantum fluctuations enter the picture,
and their amplitude increases with increasing reciprocal spin
1/S. In fact, the quantity 1/S plays the same role for quantum
fluctuations as the temperature does for classical fluctuations
[5], although they may act differently as has been suggested
in the kagome Heisenberg AF [6–12]. In the semiclassical
(1/S � 1) regime, it is known that for collinear phases the
quantum corrections to the ground state and the spin-wave
spectrum are modest [5]. On the other hand, in helimagnets,
owing to the delicate interplay of competing interactions the
impact of quantum fluctuations is likely to be of significance.
It was shown by Chubukov [13] that quantum fluctuations
lead to a shift of the spiral pitch vector q, but keep the two
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Goldstone modes (q = 0 and q = ±Q) intact, thus preserving
the general structure of the magnon spectrum. However, in
the small spin-S limit where strong quantum fluctuations are
at play, the fate of the helimagnetic ground states remains
largely not studied. In particular, it is of interest to investigate
whether in the extreme quantum limit of S = 1/2, quantum
fluctuations could melt the helimagnetic structures [14–16]
and potentially realize a quantum paramagnetic ground state
[17–19]. In this context, low-dimensional quantum spin sys-
tems have traditionally attracted much attention due to the
significant increase in the role played by quantum fluctuation
effects. On the square lattice, for S = 1/2, the helimagnetic
orders give way to a quantum paramagnet over an appreciable
region in parameter space [20–22]; however, similar scenarios
in three-dimensional lattices remain largely unexplored.

In this paper, employing the pseudofermion functional
renormalization group (PFFRG) method [23], we address the
question as to what degree the impact of quantum fluctuations
is mellowed down with an increase in dimensionality of the
lattice to three spatial dimensions (3D). In order to accommo-
date, without frustration, both the two-sublattice Néel [q =
(π, π )] and the stripe [q = (π, 0)] (henceforth, the magnetic
ordering vectors are denoted by q, while a generic vector in
reciprocal space is labeled as k) orders of the square lattice
in a 3D lattice, we require a bipartite lattice that itself is
composed of two interpenetrating bipartite lattices; i.e., it is
a bi-bipartite lattice. The body centered cubic (bcc) lattice
(Fig. 1) has precisely this property; it is a Bravais lattice
that is composed of two interpenetrating, identical simple
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FIG. 1. Cubic unit cell of the bcc lattice together with its lattice
vectors a1 = ( 1

2 , 1
2 , 1

2 ), a2 = (− 1
2 , − 1

2 , 1
2 ), and a3 = ( 1

2 , − 1
2 , − 1

2 ),
assuming the lattice constant a = 1. The Heisenberg couplings at
nearest neighbor J1, second neighbor J2, and third neighbor J3

defining the Hamiltonian [Eq. (1)] are also shown. The bcc lattice is
a bi-bipartite lattice; i.e., it is a bipartite lattice that itself consists of
two interpenetrating bipartite simple cubic lattices (labeled by black
and yellow spheres) displaced by a1. The coordination numbers for
different neighbors are nearest neighbor, z1 = 8; second neighbor,
z2 = 6; and third neighbor, z3 = 12.

cubic sublattices, and thus serves as a natural analog of the
square lattice in 3D [24]. We investigate the classical and S =
1/2 Heisenberg model on the bcc lattice in the presence of
nearest-neighbor J1, second-neighbor J2, and third-neighbor
J3 exchange couplings,

Ĥ = J1

∑
〈i, j〉1

Ŝi · Ŝ j + J2

∑
〈i, j〉2

Ŝi · Ŝ j + J3

∑
〈i, j〉3

Ŝi · Ŝ j, (1)

where the Ŝi are the S = 1/2 Heisenberg spin operators
on site i. In the classical limit (S → ∞), the Ŝi reduce to
three-component vectors. The symbols 〈i, j〉1, 〈i, j〉2, and
〈i, j〉3 denote sums over nearest-neighbor, second-neighbor,
and third-neighbor pairs of sites, respectively. The J1, J2,
and J3 are allowed to be both FM and AF, and thus we
will consider all possible combinations of the signs of the
couplings in Eq. (1). Early interest and investigations into the
model (with additional four-spin interaction terms) stemmed
from its relevance to the description of the bcc phase of solid
3He at low temperatures [25–27].

The classical ground states of the bcc J1-J2 model are
[25,28] (i) for J2/|J1| < 2/3, a FM state [Fig. 2(a)] with q =
(0, 0, 0) for FM J1 or a two-sublattice Néel state [Fig. 2(b)]
with q = (2π, 0, 0) for AF J1; (ii) for J2/|J1| > 2/3, a stripe
antiferromagnet [Fig. 2(c)] with q = (π, π, π ) is stabilized in
both cases, a FM or AF J1. This is because the transition point
depends only on the coordination number at nearest-neighbor
z1 (= 8) and second-neighbor z2 (= 6) distances, with the
critical (J2/|J1|)c = z1/2z2, hence (J2/|J1|)c = 2/3 [24,25].
For the corresponding S = 1/2 bcc J1-J2 model, all previous
studies suggest a single direct phase transition from the FM
or Néel state to the stripe ordered state [24,29–34]. Thus, in

contrast to the square lattice S = 1/2 J1-J2 Heisenberg model
[22,35–37], there is an absence of an intermediate quantum
paramagnetic phase, a manifestation of the weakening of
quantum fluctuations in 3D. Note, however, that for the square
lattice model with FM J1, the very existence of a quantum
paramagnetic phase is not very clear yet [22,38,39]. On the
bcc lattice, the role of a further neighbor frustrating AF J3

coupling in Eq. (1) has not yet been investigated, neither at
the classical or semiclassical level nor in the limit of small
spin S. At the classical level, our Luttinger-Tisza analysis
shows that the inclusion of an AF J3 coupling stabilizes a
plethora of helimagnetic structures and a planar AF order
[25]. In particular, for a model with FM J1 we find three
incommensurate spiral orders, namely, a 1D spiral with q =
(q, 0, 0) [Fig. 2(e)], a 2D spiral with q = (q, q, 0) [Fig. 2(f)],
and a 3D spiral with q = (q, q, q) [Fig. 2(g)]. Similarly, in the
case of AF J1 we find three corresponding incommensurate
spiral orders, namely, a 1D spiral with q = (2π − q, 0, 0)
[Fig. 2(h)], a 2D spiral with q = (2π − q, q, 0) [Fig. 2(i)], and
a 3D spiral with q = (2π − q, q, q) [Fig. 2(j)]. In addition,
for both FM and AF J1, a planar AF order with q = (π, π, 0)
[Fig. 2(d)] is stabilized at large J2 and J3. The global classical
phase diagram is presented in Fig. 4(a) and Fig. 4(c) together
with the pitch vectors of these incommensurate spirals given
in Table I.

For the quantum S = 1/2 J1-J2-J3 model for both FM
and AF J1, our PFFRG analysis reveals that the most salient
manifestation of quantum fluctuations is the realization of a
quantum paramagnetic (PM) phase centered at the tricritical
point of the 2D spiral, 3D spiral, and planar AF orders
[Fig. 4(b) and Fig. 4(d)]. This PM phase has an extended
span in parameter space and is stabilized principally at the
expense of the 2D and 3D spiral orders, and less so at the
cost of the stripe and planar AF orders. The phase boundaries
and the pitch vectors of the helimagnetic orders are found to
be strongly renormalized compared to their classical values;
however, no new magnetic orders are found to be stabilized
by quantum fluctuations. We estimate the critical magnetic
ordering temperature Tc of the Néel and FM orders in the
J1-J2 Heisenberg model and compare our findings against
quantum Monte Carlo estimates for the nonfrustrated case of
nearest-neighbor FM and AF couplings only, and previously
obtained high-temperature series expansion estimates in the
frustrated regime.

The paper is organized as follows: In Sec. II, we briefly
introduce the main methods that are employed in this paper.
These are the Luttinger-Tisza approach (Sec. II A), which is
used to determine the classical phase diagram, and the PFFRG
method (Sec. II B), which is employed to map out the quantum
phase diagram for S = 1/2. The following Sec. III presents
the results of this study, wherein Sec. III A (Sec. III B) dis-
cusses the classical (quantum) phase diagrams. Section III C
is devoted to an analysis of critical magnetic ordering tem-
peratures. Finally, we summarize our findings and present an
outlook for future studies in Sec. IV. In Appendix A we pro-
vide a brief illustration of the coupled-cluster method (CCM)
that we use to complement our calculations. In Appendix B
we report some details on the quantum Monte Carlo simu-
lations of the finite-temperature behavior in the unfrustrated
regime.
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FIG. 2. Illustration of the classical spin configurations found in the J1-J2-J3 Heisenberg model on the bcc lattice. The global orientation
of the spins and, where applicable, the chirality of the spin spirals are not determined by the model [Eq. (1)]. The simplest ground states
of this model are the (a) ferromagnet, and (b) Néel antiferromagnet. For the latter, the bcc lattice can be divided into two simple cubic
lattices, one being the body centers of the other, which are ordered antiferromagnetically. (c) The (π, π, π ) state can be decomposed into two
interpenetrating Néel-ordered simple cubic lattices, and in this illustration we choose to show them rotated by an angle π/2 relative to each
other. (d) The (π, π, 0) antiferromagnet consists of ferromagnetic 110-type planes of spins aligned antiparallel to neighboring planes. The
remaining six spin configurations come in pairs of corresponding spirals for ferromagnetic and antiferromagnetic nearest-neighbor coupling
J1. (e) In the (q, 0, 0) state, spins are spiraling when moving along one spatial direction and are ordered ferromagnetically in the 100 planes
perpendicular to this direction. The corresponding (2π − q, 0, 0) state (h) for antiferromagnetic J1 is the same state, but with flipped spins
at the body center positions. (f) The (q, q, 0) state similarly features spins spiraling in two spatial directions with the same pitch, leading
to ferromagnetically ordered 110 planes parallel to the third direction. The corresponding (2π − q, q, 0) state (i) features the same spiraling
behavior in two directions, but these spirals now have different chiralities, albeit the same pitch. On top of this, the spins on the body centers
are flipped. Note that the relative chirality of the spirals is fixed within the Heisenberg model in contrast to the absolute chirality. The (q, q, q)
state (g) features spiraling with the same pitch and chirality in all three spatial directions, which means spins are ferromagnetically aligned in
111 planes. For antiferromagnetic J2, the corresponding state (j) has a wave vector of (2π − q, q, q). This implies that the spins are spiraling
backward when moving along one particular spatial direction and, in addition, the spins on the body centers are again flipped. Spins are now
aligned parallel on −111 planes.
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TABLE I. The pitch vectors of the helimagnetic orders in the classical J1-J2-J3 Heisenberg model on the bcc lattice together with their
degeneracy in the first Brillouin zone and the energy per spin in the corresponding ground state. Here, u = (J1)2 + 32J3(4J3 − J2 ).

Pitch vector (q) Component q Degeneracy of q in the first Brillouin zone Energy E
NS2

(q, 0, 0) 2 cos−1( |J1|
J2+4J3

) 6-fold J2 − 2J3 − 2(J1 )2

J2+4J3

(2π − q, 0, 0) 2 cos−1( |J1|
J2+4J3

) 6-fold J2 − 2J3 − 2(J1 )2

J2+4J3

(q, q, 0) cos−1( |J1|−J2−2J3
2J3

) 12-fold −J2 − 2J3 − (−|J1|+J2 )2

2J3

(2π − q, q, 0) cos−1( |J1|−J2−2J3
2J3

) 24-fold −J2 − 2J3 − (−|J1|+J2 )2

2J3

(q, q, q) 2 cos−1(
|J1|+

√
(J1 )2−32J3(J2−4J3 )

16J3
) 8-fold − (J1 )2 (u+16J3(4J3+J2 ))+|J1|u 3

2 +384(J2 )2 (J3 )2

1024(J3 )3

(2π − q, q, q) 2 cos−1(
|J1|+

√
(J1 )2−32J3(J2−4J3 )

16J3
) 24-fold − (J1 )2 (u+16J3(4J3+J2 ))+|J1|u 3

2 +384(J2 )2 (J3 )2

1024(J3 )3

(0,0,0) 1-fold −4|J1| + 3J2 + 6J3

(2π, 0, 0) 1-fold −4|J1| + 3J2 + 6J3

(π, π, 0) 6-fold −J2 − 2J3

(π, π, π ) 1-fold −3J2 + 6J3

II. METHODS

A. Luttinger-Tisza method

The classical limit of a quantum spin model can be ob-
tained by replacing all spin operators on the lattice by unit
vectors. For general Heisenberg-type interactions on the bcc
lattice, the classical spin Hamiltonian is thus

H =
∑
i, j

J (|Ri − R j |)Si · S j, (2)

where the Heisenberg spin operators Ŝi, such as in Eq. (1), are
reduced to standard three-component unit vectors Si. Here, Ri

is the position of the lattice site i. Formally, this limit can be
understood as normalization of the spin operators by the total
angular momentum

√
S(S + 1), and subsequently taking the

limit S → ∞ [40,41]. The Luttinger-Tisza method [42–44]
is an approach to find the approximate ground state of the
classical model in Eq. (2) by replacing the unit length con-
straint for each classical spin vector with a global constraint∑

i |S2
i | = S2N , called a weak constraint. Here, N denotes the

total number of spins in the system. This approximation, in
principle, allows for local fluctuations in the spin length as
only the average of the local moments is fixed. On Bravais lat-
tices, such as the bcc lattice, however, the ground state subject
to the weak constraint automatically fixes |S2

i | = S2 ∀ i, which
renders the Luttinger-Tisza method exact on Bravais lattices.

To understand this and also solve the weakly constrained
problem we switch to reciprocal space in which the classical
Heisenberg Hamiltonian Eq. (2) reads

H =
∑

k

J (k)S(k) · S(−k). (3)

Here, we have used the Fourier transform of the spin configu-
ration

S(k) = 1√
N

∑
i

e−ık·Ri Si. (4)

An analogous expression also gives the Fourier transform of
the interaction J (k), which is to be understood as a matrix in
sublattice space; i.e., it is scalar for Bravais lattices.

Normalized Fourier modes corresponding to a single k in
real space are planar spin spirals given by

Si = R( ± cos(k · Ri ), sin(k · Ri ), 0), (5)

where R ∈ O(3) is an arbitrary rotation and reflection matrix
allowed by the symmetry of the Heisenberg model. The choice
of sign in the first component of Si reflects the chirality of
the spiral and is not fixed within the Heisenberg model alone
and instead requires the presence of terms anisotropic in spin
space such as dipolar interactions. For Bravais lattices, Eq. (3)
and Eq. (5) imply that the classical ground state is obtained
by minimizing J (k) with respect to k within the first Brillouin
zone, and the real-space spin configuration is then given by
the corresponding spin spiral. For the case of the J1-J2-J3

Heisenberg model on the bcc lattice in Eq. (1) we obtain

J (k) = 8J1 cos

(
kx

2

)
cos

(
ky

2

)
cos

(
kz

2

)

+ 2J2[cos(kx ) + cos(ky) + cos(kz )]

+ 4J3[cos(kx ) cos(ky)

+ cos(ky) cos(kz ) + cos(kx ) cos(kz )], (6)

where kx, ky, and kz are the three components of the wave
vector k. It is possible to analytically carry out the mini-
mization of J (k), and the wave vector corresponding to the
minima in k space is termed the ordering wave vector, and
subsequently denoted by q. The ordering wave vectors can
be unique or degenerate for a particular ordered state, but are
always distinct for two different magnetic orders. Hence, an
ordered state can be uniquely specified by its q vector(s).

Employing this scheme, we obtain all the different classical
ground states stabilized in the J1-J2-J3 bcc Heisenberg model.
The analytical minimizations are performed only along the
high symmetry lines of the first Brillouin zone of the bcc lat-
tice, where all the q’s for the different ground states are found
to be located. Away from these lines numerical minimizations
are done only for completeness. Mapping out the respective
ground states in the J1-J2-J3 parameter space permits us to
build the complete analytical phase diagram of the Heisen-
berg model on the bcc lattice. We also obtain the analytical
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expressions for the phase boundaries between different mag-
netically ordered ground states, and the order of the phase
transitions. The latter is determined by how the ordering wave
vector evolves when crossing the phase boundary in reciprocal
space: a jump in the ordering wave vector is classified as a
first-order transition, whereas in a second-order one it evolves
smoothly across the phase boundary.

B. Pseudofermion functional renormalization group method

We now briefly introduce the PFFRG method, which is
used to calculate the quantum (S = 1/2) phase diagram of
the system. The first key step of this approach [23,45–49]
is to reexpress the spin Hamiltonian, e.g., Eq. (1), in terms
of Abrikosov pseudofermions using Ŝi = 1

2

∑
α,β ĉ†

i,ασσσαβ ĉi,β

[50], where α, β =↑ or ↓, ĉ†
i,α (ĉi,α) are the pseudofermion

creation (annihilation) operators, and σσσ is the Pauli matrix
vector. The introduction of pseudofermions leads to an ar-
tificial enlargement of the Hilbert space, which, apart from
the local physical spin states |↑〉 = |1, 0〉 and |↓〉 = |0, 1〉
also contains empty and doubly occupied states, |0, 0〉 and
|1, 1〉, respectively, carrying zero spin (here, the notation
|n↑, n↓〉 indicates the occupations of the ↑ and ↓ modes). The
problem of possible spurious contributions from unphysical
S = 0 states in the PFFRG can be cured by adding level
repulsion terms −A

∑
i S2

i to the Hamiltonian, which, upon
choosing A sufficiently large (and positive), energetically
separate the Hilbert spaces of the |↑〉, |↓〉 and |0, 0〉, |1, 1〉
states, respectively [51]. For most practical purposes (such as
an application to the models considered here), it is sufficient
to set A = 0 since the single-occupancy constraint is already
naturally fulfilled in the ground state [51]. This is because an
unphysical occupation may be viewed as a vacancy in the spin
lattice associated with a finite excitation energy.

The resulting fermionic theory is then equipped with a
steplike infrared frequency cutoff � suppressing the bare
fermion propagator between ω = −� and ω = � on the
Matsubara axis. This manipulation generates a � dependence
of all m-particle vertex functions that may be formulated as an
exact but infinite hierarchy of coupled differential equations
[52,53], where the ones for the self-energy � and for the two-
particle vertex, 	2, are illustrated in Fig. 3(a) and Fig. 3(b). To
be amenable to numerical solutions, this hierarchy of equa-
tions needs to be truncated, which, for the results presented
below, amounts to approximating the three-particle vertex, 	3,
using two different schemes:

(i) One-loop plus Katanin scheme. This approach has been
widely used and has proven suitable to capture the right
balance between ordering tendencies and quantum fluctua-
tions. In particular, the ordered and disordered phases as well
as the phase boundaries of different models [23,45–49] as
obtained from PFFRG are in good agreement with those from
other studies. It will be applied in most calculations presented
below. Within this scheme, the contracted three-particle vertex
in Fig. 3(b) takes the form of Fig. 3(c), which corresponds to
a self-energy insertion in the interaction channels of the two-
particle vertex flow. The crucial benefit of this approximation
as compared to neglecting 	3 completely is that it guarantees
the full feedback of the self-energy into the two-particle vertex
flow, hence leading to a fully self-consistent RG scheme.

FIG. 3. Diagrammatic representation of the FRG equations for
(a) the self-energy � and (b) the two-particle vertex 	. Fermionic
propagators are drawn as lines with an arrow, where gray slashes
indicate that a � derivative acts on the cutoff function (resulting
in so-called single-scale propagators). Gray slashes crossing two
propagators indicate that the derivative acts on the product of
both propagators. (c) Within the Katanin truncation the contracted
three-particle vertex [last term on the right hand side in (b)] is
approximated by the depicted diagram representing a self-energy
correction to the two-particle vertex flow. Note that the self-energy
correction is only depicted for the particle-particle channel while
further diagrammatic contributions can be constructed from the other
channels. (d) Different interaction channels may be inserted into
each other to yield additional two-loop diagrammatic corrections.
Note that only one particular nested two-loop diagram is shown
corresponding to one possible choice of inserting two interaction
channels into each other.

From a different perspective, it can be shown that the one-
loop plus Katanin scheme exactly sums up all diagrammatic
contributions separately in the large-S limit [51] and in the
large-N limit [where in the latter case the spins’ symmetry
group is promoted from SU(2) to SU(N)] [54]. This ensures
that magnetically ordered phases (as typically encountered for
S → ∞) as well as disordered phases (obtained for N → ∞)
may both be faithfully described. The three-particle terms that
are neglected within the one-loop plus Katanin scheme can be
shown to be subleading in both 1/S and 1/N .

(ii) Two-loop scheme. This approach adds further cor-
rections to the three-particle term such as those shown in
Fig. 3(d). In this diagram, different two-particle interaction
channels are inserted into each other resulting in effective
two-loop contributions. It should also be noted that similarly
to the Katanin scheme in (i), self-consistency again requires
the full feedback of self-energy into such nested diagrams,
which even generates certain three-loop contributions (see
[55] for details). All these corrections ensure that the afore-
mentioned subleading terms in 1/S and 1/N are better ap-
proximated, which allows for a more accurate investigation of
quantum critical parameter regions in which the detailed in-
terplay between magnetic ordering and quantum fluctuations
becomes crucial. While this may generally lead to shifted
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phase boundaries compared to the scheme in (i) it has been
shown in Ref. [55] that such shifts turn out to be rather small,
i.e., on the order of numerical truncation errors arising from
discretization of frequency dependencies of vertex functions
and RG steps. Another benefit of the two-loop scheme is that
it determines Néel/Curie temperatures more accurately [55],
which is also the context in which it will be applied below.

Up to fermionic contractions, the two-particle vertex [ei-
ther calculated via (i) or (ii)] is the diagrammatic repre-
sentation of the static (i.e., imaginary-time integrated) spin
correlator given by

Ci j = Czz
i j =

∫ ∞

0
dτ

〈
Ŝz

i (τ )Ŝz
j (0)

〉
, (7)

where Ŝμ
i (τ ) = eτĤŜμ

i e−τĤ. Since the Heisenberg model is
spin-rotation invariant all diagonal components Cμμ

i j of the
spin correlator are identical. Without loss of generality we
have chosen the zz component here. Within PFFRG, the
thermodynamic limit is approached by calculating the cor-
relators Ci j only up to a maximal distance between sites i
and j. Fourier-transforming Ci j into momentum space, we
then obtain the static susceptibility χ�(k) as a function of
�, which represents the central physical outcome of this
approach. While the Fourier transform generally allows us to
access a continuous set of wave vectors k within the Brillouin
zone, the restriction to a finite set of correlators Ci j limits
the number of harmonics in the Fourier sums and, therefore,
smoothens sudden changes in the susceptibility. In the present
study of the J1-J2-J3 model on the bcc lattice, we have set the
maximal length of spin correlators to be equal to 10 nearest-
neighbor lattice spacings, which incorporates a total of 2331
correlated sites, producing well-converged χ (k) (with respect
to maximal correlation length) with a high k-space resolution.
We, furthermore, approximate the frequency dependencies of
the vertex functions by discrete grids containing 64 or 100
points for each frequency variable. The number of coupled
differential equations for the above given system size and 64
frequencies is (i) 611 057 728, without using any point group
symmetry, and (ii) 1 537 568, upon exploiting the complete Oh

point group [56] symmetries, while for a calculation with 100
frequencies, we have (i) 2 331 000 100, without symmetries,
and (ii) 5 801 300, with symmetries. When a system spon-
taneously develops magnetic order, the susceptibility χ�(k)
shows a sharp increase at the corresponding wave vector q
upon decreasing � and eventually the flow becomes unstable
(see Appendix B of Ref. [16] for a discussion on detection of
magnetic instabilities in the RG flow). The � values at which
this breakdown takes place can be associated with the critical
ordering temperature via the relation Tc = ( π

2 )�c for S = 1/2
[16,57]. This relation is obtained by comparing the mean-field
limit of PFFRG, where only the RPA diagrammatic contri-
butions are taken into account, to a standard spin mean field
formulated in terms of temperature instead of �. In contrast,
a smooth flow of the susceptibility down to � → 0 indicates
a magnetically disordered state. After the initial applications
of the PFFRG in two dimensions, it has subsequently been
applied with much success to three-dimensional systems
[14–16,57–61]. For further details about the PFFRG proce-
dure, its subsequent refinements, and expansions to handle a

larger class of magnetic Hamiltonians, we refer the reader to
Refs. [23,45,47,54,57,62–66].

III. RESULTS

A. Classical phase diagram

We begin by presenting the classical ground state phase
diagram, i.e., at T = 0, and a detailed analysis of the magnetic
orders in the classical J1-J2-J3 Heisenberg model on a bcc lat-
tice as obtained from the Luttinger-Tisza method (Sec. II A).

1. Ferromagnetic J1

The classical phase diagram in the J1-J2-J3 parameter
space with FM J1 is shown in Fig. 4(a). It is host to six
different types of magnetic orders: three incommensurate
coplanar spiral structures and three collinear orders. Starting
with both FM J1 and J2 we trivially find a FM ground state
[Fig. 2(a)]. The inclusion of an AF J3 coupling above a critical
value Jc

3 = 1
4 (|J1| + |J2|) destabilizes the FM state [67], via

a second-order phase transition, into an incommensurate 1D
spiral [Fig. 2(e)] with a pitch vector q = (q, 0, 0) with q
given in Table I. This pitch vector is 6-fold degenerate within
the first Brillouin zone. It is important to emphasize that
the spiral state is only governed by one of these symmetry-
equivalent pitch vectors; i.e., superpositions are not possible
as they would violate the classical spin-length constraint,
and hence the degeneracy remains discrete. This 1D spiral
structure is stabilized only when the J2 interaction is FM.
Indeed, along the line J2 = 0, there is a first-order phase
transition to a 2D incommensurate spiral [Fig. 2(f)] with a
pitch vector q = (q, q, 0) with q given in Table I. Similarly
to the 1D spiral, the ground state in this phase is determined
only by one of the 12 symmetry-equivalent (q, q, 0)-type pitch
vectors. Upon increasing J2, we observe that the value of q
continuously evolves towards π . At the line J2/|J1| = 1 and
above a critical Jc

3/|J1| ≈ 0.29 (see Table II for an analyti-
cal expression of the phase boundaries), there is a second-
order phase transition to a planar AF order [Fig. 2(d)] with
q = (π, π, 0) [25]. In contrast to the incommensurate orders
discussed above, the pitch vector of the planar AF is half of a
reciprocal lattice vector, i.e., 2q ≡ 0. As pointed out by Villain
[68], this characteristic allows the ground state to be com-
posed of all six symmetry-equivalent pitch vectors, namely,
(π, π, 0), (π, 0, π ), (0, π, π ), (π,−π, 0), (−π, 0, π ), and
(0,−π, π ). All six pitch vectors satisfy the property sin(q ·
Ri ) = 0 at every lattice site. Therefore, the general ground
state can be written as

Si = S{a cos[(π, π, 0) · Ri] + b cos[(π, 0, π ) · Ri]

+ c cos[(0, π, π ) · Ri] + d cos[(π,−π, 0) · Ri]

+ e cos[(−π, 0, π ) · Ri] + f cos[(0,−π, π ) · Ri]},
(8)

a2 + b2 + c2 + d2 + e2 + f2 = 1,

a · b + d · e = a · c + d · f = a · e + b·
d = a · f + c · d = b · c + e · f = c · e + b · f = b·

e + a · d + c · f = 0, (9)
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FIG. 4. The classical phase diagrams of the J1-J2-J3 Heisenberg model on the bcc lattice for (a) ferromagnetic J1 and (c) antiferromagnetic
J1. Brown solid (dashed) lines mark phase boundaries with first (second) order phase transitions. The corresponding S = 1/2 quantum phase
diagrams are shown in (b) for ferromagnetic J1 and (d) for antiferromagnetic J1. Note the change in the phase boundaries and the appearance of
a paramagnetic phase in both quantum phase diagrams. The classical phase boundaries overlaid in (b) and (d) are meant as an aid to visualize
the modifications in the quantum phase diagram with respect to the corresponding classical one.

where a, b, c, d, e, f are arbitrary vectors constrained by
Eq. (9), which normalizes the spin length at each site. The
arbitrary vectors defining the spin configuration have in total
18 continuous degrees of freedom, and are subject to 8 con-
straints. Accounting for the global spin rotation invariance (2
degrees of freedom) of the Heisenberg model, the continuous
ground state manifold of the planar AF order is 8-dimensional.
This is in contrast to the other magnetic orders in the J1-J2-J3

parameter space, which feature only a n-fold discrete degen-

eracy (see Table I). A similar enhancement for the available
degrees of freedom is also found for the stripe AF phase on
the square lattice [69] and other cubic lattice systems [70].

Upon decreasing the value of J3, we find that the interplay
between AF J2 and J3 couplings leads to the appearance of an
incommensurate 3D spiral [Fig. 2(g)] in a sliver of parameter
space. This state also continuously evolves from the FM state
via a second-order phase transition; however, its transition
into the (q, q, 0) and (π, π, 0) states is of first order. Its pitch
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TABLE II. For the classical phase diagram of the J1-J2-J3 Heisenberg model on the bcc lattice, we provide the analytical expression for the
different phase boundaries between the members of the columns “Phase I” and “Phase II,” and the order of the corresponding phase transitions.

Here u = (J1)6 − 10872(J1)4(J3)2 − 2709504(J1)2(J3)4 + 108
√

3J3

√
−(J1)2(12(J3)2 − (J1)2)(512(J3)2 − (J1)2)3 + 7077888(J3)6.

Phase I Phase II Equation for the phase boundary Type of phase transition

(0,0,0) (q, 0, 0) J2 = |J1| − 4J3 2nd order
(2π, 0, 0) (2π − q, 0, 0) J2 = |J1| − 4J3 2nd order

(0,0,0) (q, q, q) J2 = |J1| − 4J3 2nd order
(2π, 0, 0) (2π − q, q, q) J2 = |J1| − 4J3 2nd order

(0,0,0) (π, π, π ) J2 = 2
3 |J1| 1st order

(2π, 0, 0) (π, π, π ) J2 = 2
3 |J1| 1st order

(q, 0, 0) (q, q, 0) J2 = 0 1st order
(2π − q, 0, 0) (2π − q, q, 0) J2 = 0 1st order

(q, q, 0) (π, π, 0) J2 = |J1| 2nd order
(2π − q, q, 0) (π, π, 0) J2 = |J1| 2nd order

(q, q, 0) (q, q, q) J2 = 56|J1|(J3 )2−11(J1 )2J3−32(J3 )3−
√

|J1|(J3 )2 (5|J1|−16J3 )3

8(J3 )2 1st order

(2π − q, q, 0) (2π − q, q, q) J2 = 56|J1|(J3 )2−11(J1 )2J3−32(J3 )3−
√

|J1|(J3 )2 (5|J1|−16J3 )3

8(J3 )2 1st order

(q, q, q) (π, π, 0) J2 = (J1 )4+4416(J1 )2 (J3 )2+((J1 )2+48(J3 )2 ) 3√u+(u)2/3+36864(J3 )4

108J3
3√u

1st order

(2π − q, q, q) (π, π, 0) J2 = (J1 )4+4416(J1 )2 (J3 )2+((J1 )2+48(J3 )2 ) 3√u+(u)2/3+36864(J3 )4

108J3
3√u

1st order

(q, q, q) (π, π, π ) J2 = (J1 )2+144(J3 )2

36J3
1st order

(2π − q, q, q) (π, π, π ) J2 = (J1 )2+144(J3 )2

36J3
1st order

vector q = (q, q, q) is 8-fold degenerate, but again, only one
of them is present in any given ground state. Lowering the AF
J3 coupling even further, and for J2/|J1| > 2/3, the collinear
stripe order [Fig. 2(c)] with a wave vector q = (π, π, π )
is stabilized. This state is composed of two interpenetrating
simple cubic lattices that are Néel ordered. For any spin on
a given sublattice, all its nearest-neighbor spins residing on
the other sublattice add up to zero. Hence, the energy of
the (π, π, π ) state is independent of the relative orientation
of the two sublattices [28], which is thus not determined
within the J1-J2-J3 Heisenberg model. The pitch vector of this
state resides at the corners of the first Brillouin zone, and is
therefore unique. Since the third-neighbor spins in this state
are FM ordered, changing J3 to FM only enhances its sta-
bility, and thus this state occupies the entire parameter space
for J2/|J1| > 2/3 and FM J3. The phase boundary between
the FM and the stripe collinear order is determined solely
by the coordination number at nearest-neighbor and second-
neighbor distances, and is given by J2/|J1| = z1/2z2 = 2/3.

2. Antiferromagnetic J1

A change in the J1 coupling from FM to AF is found
not to alter the phase boundaries and the order of the phase
transitions in the J2-J3 parameter space, as observed in the
corresponding phase diagram [Fig. 4(c)] and Table II. This
feature is most easily understood by viewing the bcc lattice
as being composed of two interpenetrating simple cubic sub-
lattices with one being positioned at the body center of the
other. As J2 and J3 couple sites only within the sublattices,
it is only the J1 coupling that connects the two simple cubic
lattices. Hence, a sign reversal of J1 can be undone by flipping
the spins on one of the sublattices without affecting the J2

and J3 couplings. Therefore, the phase boundaries remain
unchanged; however, in reciprocal space this flipping amounts
to a shift of the wave vector q → (2π, 2π, 2π ) − q. After
folding back this wave vector into the first Brillouin zone this
amounts to a shift of any one of the wave vector components
q → 2π − q. Consequently, the FM state is replaced by a
Néel AF [Fig. 2(b)] with wave vector q = (2π, 0, 0) [71].
Similarly, the incommensurate 1D spiral is now characterized
by the pitch vector q = (2π − q, 0, 0) [Fig. 2(h)] with q
and the degeneracy of the ground state being the same as
in the FM case (see Table I). Along the same lines, the
pitch vector of the incommensurate 2D spiral in the AF J1

case is given by q = (2π − q, q, 0), which is now 24-fold
degenerate in contrast to the 12-fold degeneracy present in
the ferromagnetic J1 case. Nonetheless, the ground state is
still composed of only one of these pitch vectors. This state
also evolves continuously to the planar AF upon increasing
J2, and the planar AF remains unchanged compared to the
FM J1 case. The incommensurate 3D spiral now has a 24-fold
degenerate pitch vector q = (2π − q, q, q). Finally, the stripe
AF q = (π, π, π ) phase remains unchanged.

The complete analytical expressions for the pitch vectors
of the spiral orders together with their degeneracies are to be
found in Table I. Also, in Table II we provide the analytical
expressions of all phase boundaries together with the order of
the phase transitions.

B. Quantum phase diagram

We now investigate the effects of quantum fluctuations
on the classical phase diagram employing one-loop PFFRG.
As found in Ref. [55], the one-loop formulation is mostly
sufficient to correctly determine the phase boundaries for spin
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FIG. 5. Representative RG flows (� is in units of |J1|) of the maximum of the magnetic susceptibilities (in units of 1/|J1|) in momentum
space for the ordered regimes and the PM regimes of Fig. 4(b) and Fig. 4(d). The susceptibilities are evaluated for FM J1 (left panel) at the
following (J2/|J1|, J3/|J1|) points: FM order at (0, 0), (π, π, 0) order at (1.5, 1), (π, π, π ) order at (1.5, 0), 1D spiral (q, 0, 0) at (−0.5, 1),
2D spiral (q, q, 0) at (0.5, 1), 3D spiral (q, q, q) at (0.26, 0.2), and PM at (0.8, 0.3). For AF J1 (right panel), the magnetic susceptibilities are
plotted at the same parameter points as for FM J1. The points at which the solid lines become dashed (marked by vertical arrows) indicate an
instability in the flow and express the onset of long-range magnetic order. A smooth flow down to � → 0 (black curves) indicates paramagnetic
behavior.

S = 1/2, and indeed, we do not find any appreciable differ-
ence between one- and two-loop schemes as regards ordering
tendencies in the vicinity of phase boundaries [72]. The more
numerically intensive two-loop scheme will only be applied
for a select set of coupling parameters in order to calculate

critical magnetic ordering temperatures more accurately, the
results of which are presented in Sec. III C. As described
in Sec. II B, at each point in parameter space we track the
evolution of the susceptibility χ�(k) as a function of � for
all k in the first Brillouin zone. The k vector that yields the

FIG. 6. The normalized susceptibility profiles in the first Brillouin zone, a rhombic dodecahedron, for the S = 1/2 J1-J2-J3 Heisenberg
model on a bcc lattice with FM J1 for the magnetically ordered states. The plots are calculated for the coupling parameters quoted in the
caption of Fig. 5. The corresponding � values are given by the respective points of instabilities as indicated by the vertical arrows in the left
panel of Fig. 5.
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FIG. 7. The normalized susceptibility profiles in the first Brillouin zone, a rhombic dodecahedron, for the S = 1/2 J1-J2-J3 Heisenberg
model on a bcc lattice with AF J1 for the magnetically ordered states. The plots are calculated for the coupling parameters quoted in the
caption of Fig. 5. The corresponding � values are given by the respective points of instabilities as indicated by the vertical arrows in the right
panel of Fig. 5.

dominant susceptibility at the point of breakdown of the RG
flow then determines the nature of the magnetically ordered
ground state. On the other hand, the absence of a breakdown
in the limit � → 0 signals the absence of long-range dipolar
magnetic order, and points to a paramagnetic ground state. We
find that all the magnetic orders in the classical phase diagram
are to be found in the quantum phase diagram [Fig. 4(b)
and Fig. 4(d)], and that no new types of long-range dipolar
magnetic orders are stabilized by quantum fluctuations. In
Fig. 5, we show the representative RG flows for all the
quantum phases with their momentum-resolved susceptibility
profiles shown in Fig. 6 and Fig. 7.

For S = 1/2, the most salient effect of quantum fluctu-
ations is the appearance of a PM phase over an extended
region in the J2-J3 parameter space for FM as well as AF
J1 [see Fig. 4(b) and Fig. 4(d)]. The PM phase extends over
a larger region in the case of FM J1 as compared to AF J1.
It engulfs a substantial portion of parameter space occupied
classically by the 2D and 3D incommensurate spiral orders,
and to a lesser degree cuts into the classical domain of the q =
(π, π, 0) planar AF state. For FM J1, we find that a tiny region
of the classical FM phase is destabilized into a PM phase
by quantum fluctuations. On the other hand, for AF J1, the
Néel order does not succumb at all to quantum fluctuations.
Interestingly, we find that for FM as well as AF J1 quantum
fluctuations do not destabilize the q = (π, π, π ) stripe AF
order into a PM phase, and consequently, the PM phase does
not occupy any portion of the parameter space that classically
hosts the stripe AF. In Fig. 8, we present the momentum-

resolved susceptibilities for the PM phase. For completeness
we have also considered larger spin magnitudes S > 1/2,
using a modification of the one-loop PFFRG as described in
Ref. [51]. Interestingly, we find that already at S = 1 the PM
phase disappears entirely owing to the weakening of quantum
fluctuations.

In the following, we investigate in more detail the effects
of quantum fluctuations for S = 1/2 on the different mag-
netically ordered phases. Although our principal method to
investigate the quantum phase diagram is the PFFRG, for
comparison we also add here results using the exact diago-
nalization (ED) and the coupled-cluster method (CCM). Both
methods have been used previously to study the S = 1/2 bcc
J1-J2 model with AF J1 [24,34], but so far no results for FM J1

are available. The ED is a well-established method; see, e.g.,
[24,36,39]. Here, we use Schulenburg’s SPINPACK [73,74].
The CCM is a universal many-body method [75–78] that has
been successfully applied on frustrated quantum spin systems;
see, e.g., [79–85]. We will give a brief illustration of the CCM
in Appendix A. Moreover, we mention that ED and CCM
calculations used here follow closely Ref. [24] and Ref. [34],
respectively. The main ED and CCM results are summarized
in Fig. 9. The results discussed in the following are from
PFFRG, unless it is explicitly mentioned otherwise.

First, the only impact of quantum fluctuations on the stripe
AF state is to shift its phase boundaries compared to the
classical ones; cf. Figs. 4(c), 4(d). In particular, we find that
for large enough J2 (i) the stripe AF replaces the classical
incommensurate 3D spirals, whose existence is thus reduced
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FIG. 8. The normalized paramagnetic susceptibility profile eval-
uated at the end of the flow for (a) ferromagnetic J1 and (b) antiferro-
magnetic J1 for the spin-1/2 bcc Heisenberg model. In both plots the
susceptibility profile is calculated at (J2/|J1|, J3/|J1|) = (0.8, 0.3).
Note the softer peaks as compared to the sharp peaks in the similar
plots for the ordered states.

FIG. 9. Main panel: Ground state energies per site for the S =
1/2 J1-J2 Heisenberg model on a bcc lattice with FM J1. For the
(π, π, π ) state we use ED for a finite lattice of N = 36 and the CCM
for an infinite lattice. The crossing of the energies of the (0,0,0) and
(π, π, π ) states determines the first-order transition between both
phases (see Table III). Inset: CCM result for the magnetic order
parameter (sublattice magnetization) M as well as ED and CCM re-
sults for the nearest-neighbor (1-NN), next-nearest-neighbor (2-NN),
and third-nearest-neighbor (3-NN) equal-time spin-spin correlation
functions of the (π, π, π ) phase (ED, symbols; CCM, lines). The
black vertical dotted line indicates the first-order transition, where
the (π, π, π ) state gives way to the ferromagnetic ground state.
Although the (π, π, π ) state ceases to be the ground state beyond
the phase boundary and the correlators change their nature to FM
ones, we are still able to trace the (π, π, π ) state correlators into the
FM phase as shown in the inset.

to a tiny sliver in the J2-J3 plane, and (ii) the stripe AF cuts
into the classical domain of the planar AF with which it
now shares a phase boundary hitherto absent in the classical
phase diagram. This is similar to the findings on the square
lattice wherein quantum fluctuations are found to favor the
(π, π ) state over the (π, 0) state [69]. In contrast, quantum
fluctuations act differently on the other phase boundary of the
stripe AF with the FM or Néel orders depending on whether
J1 is FM or AF, respectively. For FM J1, we find that the

TABLE III. The critical value Jc
2 /|J1| of the transition between the FM/Néel and the stripe order obtained from PFFRG and compared to

different methods for the S = 1/2 J1-J2 Heisenberg model on the bcc lattice with J3 = 0. The results marked with an asterisk are from the
present study.

Phase I Phase II Method Jc
2 /|J1|

J1 ferromagnetic (0,0,0) (π, π, π ) PFFRG∗ 0.56(2)
Exact diagonalization∗ 0.568
Coupled-cluster method∗ 0.579
Rotation-invariant Green’s function method [30] 0.68
Random phase approximation [29] 0.6799

J1 antiferromagnetic (2π, 0, 0) (π, π, π ) PFFRG∗ 0.70(2)
Coupled-cluster method [34] 0.704
Exact diagonalization [24] 0.7
Nonlinear spin-wave theory [32] 0.705
Random phase approximation [33] 0.72
Linked cluster series expansions [31] 0.705(5)
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FIG. 10. The susceptibility χ (k) (in units of 1/|J1|) as a function of the wave vector k for different values of J2, with both FM
(left panel) and AF (right panel) J1, along the high symmetry lines in the momentum space. The characteristic points of our choice are
I = (0, 0, 0), II = (0, 0, π ), III = (2π, 2π, 2π ), IV = (2π, 2π, 0), V = (π, π, π ). The susceptibility is plotted for �/|J1| � 4/π , which
corresponds to a temperature T/|J1| � 2. Note that the ordering wave vector q = (0, 0, 0) is equivalent to q = (2π, 2π, 0). Similarly, the
ordering wave vector q = (2π, 0, 0) is equivalent to q = (2π, 2π, 2π ).

phase boundary shifts to a smaller value of J2 [see Fig. 4(b)],
whereas for AF J1 the phase boundary is shifted to a larger
value [see Fig. 4(d)] as also observed on the simple cubic
lattice [57]. In particular, there is no intermediate PM phase
in between the FM/Néel and stripe AF orders in the J1-J2

model in agreement with previous studies [24,29–34]. This
is in contrast to the findings on the square lattice, and can
be attributed to diminished quantum fluctuations in 3D. In
Table III, we provide numerical estimates of the phase bound-
ary for J3 = 0, i.e., along the J1-J2 line obtained by PFFRG
and other numerical approaches. The observation that for FM
J1 the stripe AF order extends at the expense of FM order
follows from the fact that quantum fluctuations, in general, do
not alter the FM state (including its ground state energy) as
it is an eigenstate of the Heisenberg exchange Hamiltonian
and thus free of macroscopic zero-point vibrations [5,86];
however, they act on AF orders, e.g., by lowering their ground
state energies. Hence, compared to the classical case, phase
boundaries between FM and AF orders are typically shifted
towards the FM side [see Fig. 4(b)]. One further observes
that the shift in the phase boundary from the classical value
of Jc

2/|J1| = 2/3 is larger for FM J1 compared to AF J1. We
mention that our PFFRG findings for the bcc J1-J2 model
are in excellent agreement with ED and CCM results; cf.
Table III, where we provide a comparison of the critical
values Jc

2/|J1| of the transition between the FM/Néel and
the stripe orders. Moreover, the ED and CCM results for the
spin-spin correlation functions and the order parameter shown
in Fig. 9 clearly demonstrate the absence of an intermediate
quantum paramagnetic phase; cf. the PFFRG phase diagram
in Fig. 4(b).

A plot of the susceptibility along a path in reciprocal space
for different J2/|J1| within the FM and Néel ordered phases
is presented in Fig. 10. The maxima of the susceptibility
at the magnetic wave vectors of the respective orders are
seen to be clearly resolved. The frustrating effect of a J2

coupling on the FM/Néel orders leads to a reduction in
the dominant susceptibility peaks and to the development
of a peak at the incipient stripe AF order at q = (π, π, π ),

similarly to the findings by high temperature series expansion
[87].

Another phase boundary that is significantly shifted by
quantum fluctuations is the one between the 2D spiral and pla-
nar AF orders (see Fig. 4). For FM as well as AF J1, the classi-
cal phase boundary at J2/|J1| = 1 is shifted to a smaller value,
implying that quantum effects enhance the stability of the pla-
nar AF state. In particular, for FM J1 the phase boundary shifts
to J2/|J1| ≈ 0.82, while for AF J1 the shift is comparatively
smaller, and the phase boundary is found to be located at
J2/|J1| ≈ 0.93. This strong effect of quantum fluctuations can
be explained by the fact that the q = (π, π, 0) planar AF has
a continuous 8-dimensional classical ground state degeneracy
whereas the 2D spiral only features a 12-fold (for FM J1)
or 24-fold (for AF J1) discrete degeneracy. Consequently,
quantum fluctuations play a more prominent role on top of
the classical planar AF state in comparison to the 2D spiral.

We find that similar to the shifts observed in the phase
boundary between the FM/Néel and stripe AF order, the
boundaries between FM/Néel orders to the 1D and 3D spiral
phases behave differently depending on whether J1 is FM or
AF; cf. Fig. 4. For FM J1, the 1D and 3D spirals enhance their
domain of stability beyond the classically allowed region of
their existence, and thus the domain of the FM phase shrinks
compared to the classical one. In contrast, for AF J1 the
Néel phase extends into these spiral orders but to a lesser
extent. In total, the domain of existence of the FM order is
significantly reduced by quantum fluctuations, whereas for the
Néel phase it is enhanced, compared to the classical phase
diagram. Finally, two phase boundaries remain unaffected by
quantum fluctuations, namely, the 2D to 3D spirals, and the
one between 1D and 2D spirals.

Now, we discuss the impact of quantum fluctuations within
the incommensurate spiral orders, which primarily amounts to
a shift of the value of the pitch vectors. Indeed, our PFFRG
analysis shows that for FM J1 the shift is such that the 1D
spiral pitch vector is shifted towards that of the Néel state.
At a fixed J2, this effect is stronger for small J3 and appears to
decrease with increasing J3 [Fig. 11(a)]. At a fixed J3, this shift
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FIG. 11. Variation of q for the incommensurate spiral phases (q, 0, 0), (q, q, 0), (2π − q, 0, 0), and (2π − q, q, 0) along three different
cuts in the J2-J3 plane of the Heisenberg model on the bcc lattice. Circles (triangles) denote the case of FM (AF) J1. The corresponding classical
values are shown by gray lines.

of q towards the Néel pitch vector increases with increasing
FM J2 [Fig. 11(c)]. Note that quantum fluctuations seem to
act counterintuitively here since with increasing strength of
the FM J2 coupling one would expect the FM state to become
increasingly favorable. Interestingly, in the case of AF J1 the
1D spiral pitch vectors shift in the opposite direction; i.e., they
migrate towards the FM state [see Fig. 11(a)], except for large
FM J2, where essentially no shift is observed [see Fig. 11(c)].
For the 2D spirals, we observe that when J1 is FM, the shift
of the pitch vector is towards that of the planar AF order, and
the magnitude of the shift decreases with increasing J3 [see
Fig. 11(b)]. At fixed J3, the magnitude of the shift remains
essentially constant with varying J2 [see Fig. 11(c)]. This
finding is consistent with the fact that the phase boundary of
the planar AF state shifts to a smaller value of J2. However,
for AF J1 we find that the 2D spiral pitch vector is shifted
towards that of the Néel state, and upon varying J2 and J3

the magnitude of the shift remains essentially constant [see
Fig. 11(b) and Fig. 11(c)]. We do not show the changes of the
q vector for the (q, q, q) spiral since it covers only a tiny sliver
in the quantum phase diagram.

C. Néel and Curie temperatures

The magnetic ordering temperature, i.e., the Curie temper-
ature (TC) for a FM and the Néel temperature (TN ) for an
AF ordered state, is one of the fundamental thermodynamic
quantities that serves as a measure of the degree of frustra-
tion. The (numerically exact) quantum Monte Carlo (QMC)
method can be employed to calculate TC and TN in the nonfrus-
trated region of parameter space. However, in the frustrated
regime, one must resort to approximate numerical approaches
to obtain estimates of TC and TN . Here, we employ one- and
two-loop PFFRG to estimate the ordering temperatures for
nonfrustrated and frustrated coupling parameters of the J1-J2

bcc Heisenberg model. As observed in Ref. [55], the one-loop
PFFRG is less converged when estimating critical ordering
temperatures as compared to determining phase boundaries.
We therefore carry out our calculations in both one-loop
and two-loop formulations. Furthermore, we compare these
estimates to those obtained by high-temperature expansion

(HTE) and Green’s function methods in previous studies,
which also serves as a benchmark test for the performance of
the PFFRG. Additionally, we carry out QMC calculations for
the nearest-neighbor FM and AF couplings only, and obtain
estimates of TC and TN by a finite-size scaling analysis of the
renormalization-group invariant quantities Binder ratio and
the ratio ξ/L of the second-moment correlation length ξ over
the lattice size L; see Appendix A of Ref. [95] for a discussion
on the definition of ξ . More details on the QMC simulations
and the analysis are reported in Appendix B.

We start discussing the S = 1/2 nearest-neighbor-only
model with FM and AF J1 interaction. Both systems are un-
frustrated such that they are amenable to a QMC calculation.
Interestingly, our QMC results show that the Néel and the
Curie temperatures are unequal (see Table IV), with TN being
greater than TC by about 9%, in agreement with the findings
from HTE and Green’s function methods [31,87,88,96,97]
(see Table IV). Indeed, it is known to be a general feature of
finite spin-S Heisenberg models on bipartite lattices with non-
frustrating interactions that the Néel and Curie temperatures
are unequal with TN > TC [90]. This difference between TC

and TN of ∼9% is also reflected in our two-loop PFFRG data
but is slightly overestimated on the one-loop level, where the
difference is found to be ∼12%. Concerning absolute values
of the ordering temperatures, our one-loop and two-loop
results both slightly overestimate TN and TC . By extending
the PFFRG from one-loop to two-loop the accuracy of the
results becomes significantly better; particularly, the errors of
the one-loop critical ordering temperatures are approximately
halved in the two-loop results. One may therefore expect
that even higher loop orders might give very accurate esti-
mates. We leave such an analysis for future studies. Finally,
in Table V, we compare our results against those for the
simple cubic lattice, and also compare the S = 1/2 ordering
temperatures against the ones for the classical model to obtain
the reduction due to quantum fluctuations. As expected, the
ordering temperatures for the bcc lattice are larger compared
to those for the SC lattice due to its higher coordination
number. For the same reason, the reduction in the critical
temperature for S = 1/2 with respect to the classical value is
less for the bcc lattice in comparison to the SC lattice.
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TABLE IV. Critical temperatures Tc/|J1| of the S = 1/2 J1-J2 bcc Heisenberg model for various values of the frustrating AF J2 coupling,
obtained from different methods for both FM and AF J1. The results marked with an asterisk are from the present study. For plotted data see
Fig. 12.

Method J2
|J1| = 0 J2

|J1| = 0.1 J2
|J1| = 0.2 J2

|J1| = 0.3 J2
|J1| = 0.4 J2

|J1| = 0.5 J2
|J1| = 0.6

J1 FM PFFRG (one loop)∗ 1.45(1) 1.33(1) 1.18(1) 1.04(1) 0.88(1) 0.66(1)

PFFRG (two loop)∗ 1.37(1) 1.26(3) 1.11(1) 0.97(1) 0.84(3) 0.62(1)

QMC∗ 1.260(1)

HTE [χu] [88–90] 1.2602(5)

HTE [χ quot
u ] [30] 1.253(8) 1.125(15) 1.06(32)

HTE [χDA
u ] [30] 1.268(8) 1.16(3) 0.89(7)

HTE [S(Q)] [87] 1.273(8) 1.17(3) 1.09(10) 0.89(7) 0.72(11) 0.45(18)

GFA [30] 1.359 1.247 1.136 1.022 0.903 0.771

J1 AF PFFRG (one loop)∗ 1.63(1) 1.52(1) 1.36(1) 1.26(2) 1.10(1) 0.90(1) 0.71(1)

PFFRG (two loop)∗ 1.50(1) 1.42(1) 1.32(1) 1.16(1) 1.06(1) 0.89(1) 0.75(1)

QMC∗ 1.377(2)

HTE [χs] [90] 1.376(4)

HTE [S(Q)] [87] 1.50(8) 1.36(10) 1.26(13) 1.09(13) 0.96(7) 0.75(6) 0.61(10)

HTE [χs] [31] 1.38(2) 1.26(2) 1.13(1) 1.00(2) 0.86(2) 0.71(2) 0.57(3)

GFA [87] 1.530 1.369 1.195 1.004 0.786 0.520

In the presence of a frustrating J2 interaction there is a
significant reduction in both TC and TN , which are found
to decrease monotonically with increasing J2 (see Fig. 12),
and on approaching the transition point the ordering tem-
peratures have a sharp drop. Our PFFRG data show that
the inequality TN > TC remains valid up till the transition
point into the stripe AF order in agreement with HTE data
[30,31,87,90], but in contrast to results from Green’s func-
tion approach [30,87] (see Table IV). Again, we see that
the ordering temperatures from PFFRG are slightly larger
than those obtained by HTE, where two-loop PFFRG mostly
gives better estimates. Overall, these results imply that PF-
FRG (particularly the two-loop formulation) correctly cap-
tures the relative behavior of ordering temperatures. The
absolute values, however, might still be subject to errors of
a few percent, which are possibly reduced within higher-loop
schemes.

IV. SUMMARY AND OUTLOOK

We have shown that frustrating the ferromagnetic and
Néel antiferromagnetic orders of Heisenberg spins on a
three-dimensional bipartite body centered cubic lattice by

competing interactions up to third neighbors leads to the
appearance of a rich variety of helimagnetic and collinear
spin structures at the classical level. In the extreme quantum
limit of S = 1/2, our PFFRG analysis shows that the most
salient feature of quantum fluctuations is the realization of
an extended region of parameter space displaying quantum
paramagnetic behavior. The classical phase boundaries are
also found to be strongly renormalized by quantum effects,
and helimagnetic pitch vectors undergo significant shifts. In
total, we find that quantum effects are stronger in the case
of a ferromagnetic nearest-neighbor coupling compared to an
antiferromagnetic one. We have also estimated the Curie and
Néel temperatures from PFFRG, and compared our results
to those from quantum Monte Carlo for unfrustrated case
of nearest-neighbor-only antiferromagnetic and ferromagnetic
models, and with available high-temperature expansion data
in the frustrated regime of the J1-J2 model. We obtain good
agreement with quantum Monte Carlo for the pure nearest-
neighbor Heisenberg ferromagnet and Néel antiferromagnet
and reproduce qualitative trends for frustrating couplings.
However, we observe that in general the PFFRG overestimates
the ordering temperatures, which is partially cured by employ-
ing two-loop PFFRG.

TABLE V. For the nearest-neighbor Heisenberg FM and the AF on the bcc and simple cubic (SC) lattices, we provide for S = 1/2 the Curie
temperature T S=1/2

C /[|J1|S(S + 1)] and the Néel temperature T S=1/2
N /[J1S(S + 1)] as obtained from quantum Monte Carlo. We also provide the

ordering temperature T S→∞
C/N /[|J1|S(S + 1)] for the corresponding classical Heisenberg model as obtained from classical Monte Carlo. In the

classical model, the equality of the ordering temperatures for FM exchange and AF exchange is a consequence of the fact that the free energy
is an even function of the coupling J1 [90].

Lattice T S=1/2
C /[|J1|S(S + 1)] T S=1/2

N /[J1S(S + 1)] T S→∞
C/N /[|J1|S(S + 1)]

T S=1/2
C

T S→∞
C/N

T S=1/2
N

T S→∞
C/N

bcc 1.680(1) 1.836(3) 2.054241(52) [91] 0.818(1) 0.894(3)
SC 1.119(1) [92,93] 1.261(1) [94] 1.442929(77) [91] 0.776(1) 0.874(1)
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FIG. 12. Critical temperatures Tc of the J1-J2 bcc Heisenberg model as a function of the frustrating AF J2 coupling. Left panel: Curie
temperatures TC/|J1| for J1 FM. Right panel: Néel temperatures TN/J1 for J1 AF. Please refer to Table IV for numerical values.

As a future study, it will be interesting to investigate
the finite-temperature classical phase diagram of the J1-J2-J3

model, including its critical properties and the nature of phase
transitions, which has traditionally largely focused on the
Ising model [98–102], with some recent studies of the J1-J2

Heisenberg model for a given parameter value [103,104]. In
particular, it will be of utmost interest to characterize the uni-
versality class of the paramagnetic to helimagnetic transitions,
which could potentially fall outside the standard O(n) Wilson-
Fisher type [105,106]. The role of disorder in determining
the stability of the realized phases is another important issue
worth investigating. It has been pointed out in Ref. [107] that
if one restricts the second-nearest-neighbor coupling J∗

2 to
be defined by bond distance instead of geometrical distance
(as in the current paper), then the classical Heisenberg J1-J∗

2
antiferromagnet on the bcc lattice hosts spin spiral surfaces
analogous to the J1-J2 model on the diamond lattice [108].
It will be interesting to investigate the selection effects on
the spiral surface due to quantum fluctuations as a function
of the frustration ratio J∗

2 /J1 and spin S, and in particular,
to examine the possibility of realizing a spiral spin liquid
[109,110]. Our finding of extended domains characterized
by an absence of long-range dipolar magnetic order in the
S = 1/2 model lays a path for future numerical investigations
aiming to identify the nature of the nonmagnetic phase, which
could potentially be host to a plethora of exotic nonmagnetic
phases such as quantum spin liquids, valence bond crystals,
and lattice nematics, or feature quadrupolar ordered phases,
i.e., spin-nematic orders [111]. Indeed, in the S = 1/2 J1-J2-J3

square lattice Heisenberg model, these orders were found to
be stabilized [22]. The question of the microscopic identifica-
tion of the nature of the nonmagnetic phase can be addressed
within the PFFRG framework itself by combining it with a
self-consistent Fock-like mean-field scheme to calculate low-
energy effective theories for emergent spinon excitations in
S = 1/2 systems as has been recently achieved on the square
and kagome lattices [112]. Within this scheme, the effective
spin interactions obtained from PFFRG, i.e., the two-particle
vertices, act as an input for the Fock equation, yielding a self-
consistent approach to calculate the spinon band structures

beyond a mean-field treatment. However, the precise forms of
such free spinon Ansätze are given by a projective symmetry
group classification [113], and it will be useful to carry out
a classification of the symmetry-allowed mean-field quantum
spin liquid and nematic states on the bcc lattice. These Ansätze
would also then serve as the basis for Gutzwiller projected
variational wave function studies employing Monte Carlo
methods [57,114–116].
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APPENDIX A: BRIEF ILLUSTRATION OF THE
COUPLED-CLUSTER METHOD

We illustrate here only some features of the CCM relevant
for the results shown in Fig. 9. We follow the lines given in
Ref. [34], where the CCM was applied to the J1-J2 bcc model
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with AF J1. For more general information on the methodology
of the CCM, see, e.g., Refs. [75–78]. We first mention that the
CCM yields results directly in the thermodynamic limit N →
∞. First we choose a normalized reference or model state |
〉
that is here the classical (π, π, π ) state; see Fig. 2. Second we
perform a rotation of the local axes of each of the spins such
that all spins in the model state align along the negative z axis.
In this new set of local spin coordinates we define a complete
set of mutually commuting multispin creation operators C+

I ≡
(C−

I )† related to this model state: |
〉 = |↓ ↓↓ · · · 〉; C+
I =

Ŝ+
n , Ŝ+

n Ŝ+
m , Ŝ+

n Ŝ+
m s+

k , . . .; Ŝ+
n ≡ Ŝx

n + iŜy
n, where the spin op-

erators Ŝx
n and Ŝy

n are defined in the local rotated coor-
dinate frames, and the indices n, m, k, . . . denote arbitrary
lattice sites. The CCM parametrizations of the ket and bra
ground state eigenvectors |�〉 and 〈�̃| of the spin system
are given by |�〉 = eS|
〉, S = ∑

I �=0 aIC
+
I ; 〈�̃| = 〈
|S̃e−S ,

S̃ = 1 + ∑
I �=0 ãIC

−
I . The coefficients aI and ãI contain the

CCM correlation operators, S and S̃. They are determined
by the ket-state and bra-state equations 〈
|C−

I e−SHeS|
〉 =
0, 〈
|S̃e−S[H,C+

I ]eS|
〉 = 0, ∀I �= 0. Each of these equa-
tions labeled by a configuration index I corresponds to
a certain configuration of lattice sites n, m, k, . . . . Using
the Schrödinger equation, H |�〉 = E0|�〉, we can write the
ground state energy per site as E0 = 〈
|e−SHeS|
〉. The
magnetic order parameter (sublattice magnetization) is given
by M = − 1

N

∑N
i=1〈�̃|Ŝz

i |�〉, where Ŝz
i is expressed in the

transformed coordinate system, and N (→ ∞) is the number
of lattice sites. In order to truncate the expansions of S and
S̃ we use the well-established LSUBn approximation scheme;
cf., e.g., Refs. [76,78–85]. In the LSUBn scheme all multispin
correlations over distinct locales on the lattice defined by
n or fewer contiguous sites are retained. Using an efficient
parallelized CCM code [117] we solve the CCM equations
up to LSUB8. The maximum number of ket-state equations
considered here is 128 267. For the considered (π, π, π ) state
of J1-J2 bcc model with FM J1 we find that the LSUBn data
rapidly converge to the n → ∞ limit. Thus, the difference
between the LSUB6 and LSUB8 CCM ground state energies
E0 (order parameter M) is less than 0.1% (1%). Therefore,
the LSUB8 data used for the CCM curves shown in Fig. 9
practically may stand for the converged n → ∞ data.

APPENDIX B: QUANTUM MONTE CARLO ANALYSIS

We have investigated the critical behavior of the model
at a finite temperature for vanishing coupling constants J2 =
J3 = 0, considering a FM and AF J1 interaction. Here, we fix
|J1| = 1. We have simulated the model by means of the looper
code [118,119] of the ALPS library [120–122], for lattice
sizes L = 8, 12, 16, 24, for a total of 2L3 lattice sites, and
in an interval around the critical temperature. To compute the
critical temperature we have performed a finite-size scaling
[123,124] analysis of two renormalization-group invariant
quantities. For the FM case we study the Binder ratio U4

and the ratio ξ/L of the second-moment correlation length ξ

over the lattice size L. The Binder ratio is defined as U4 ≡
〈M2〉/〈M4〉, where M is the total magnetization of the system.
The finite-size correlation length ξ is defined in terms of the
local magnetization Ŝz

i . In the AF case, the order parameter is

the staggered magnetization. Accordingly, we have analyzed
the staggered Binder ratio U AF

4 ≡ 〈M2
s 〉/〈M4

s 〉, where Ms ≡∑
i εiŜ

z
i is the staggered magnetization, and εi = 1 (εi = −1)

when the lattice site i belongs to the A (B) sublattice. As for
the correlation length ratio, we have analyzed the quantity
ξAF/L, where the antiferromagnetic second-moment corre-
lation length ξAF is defined in terms of the local staggered
magnetization εiŜ

z
i . A discussion on the definition of a finite-

size second-moment correlation length, in terms of a local
order parameter, can be found in Appendix A of Ref. [95]. In
Fig. 13 we show the QMC estimates for the renormalization-
group invariant observables considered.

Following Refs. [125,126], to analyze a renormalization-
group invariant quantity R, we expand the corresponding
scaling function and its leading scaling correction in a Taylor
series around the critical temperature. To illustrate the proce-
dure, we first consider the FM case and fit the Binder ratio
R = U4 to

R(T, L) = R∗ +
mmax∑
m=1

am(T − Tc)mLm/ν, (B1)

where Tc is the critical temperature and R∗ is the universal
value of R at the critical point. Since the phase transition
belongs to the classical three-dimensional Heisenberg univer-
sality class, here and in the following we fix the exponent
ν to the corresponding value for such universality class ν =
0.7112(5) [127]. In Eq. (B1) we neglect scaling corrections.
To monitor their influence, we have systematically disre-
garded the smallest lattice sizes. In Table VI, we report fit
results as a function of mmax and the minimum lattice size
taken into account Lmin. For a given value of Lmin we observe
a significant drop in the value of χ2/DOF (DOF denotes the
degrees of freedom) when increasing mmax from mmax = 1 to
mmax = 2, whereas fits for mmax = 3 (not reported here) give
a negligible improvement of χ2/DOF. This indicates that a
second-order Taylor expansion of R = U4 suitably describes
the data, whereas a linear approximation is not sufficient.
For fixed mmax = 2, on increasing Lmin the value of χ2/DOF
decreases and we obtain a good value for Lmin = 12, 16.
However, we also observe a systematic drift of the fitted
values, which is larger than the statistical error bars. This
clearly indicates that scaling corrections are relevant. To test
their influence on the final results, we include them in the
analysis, replacing Eq. (B1) with

R(T, L) = R∗ +
mmax∑
m=1

am(T − Tc)mLm/ν

+ L−ω

kmax∑
k=0

bk (T − Tc)kLk/ν, (B2)

where kmax is the Taylor expansion order of the correction to
scaling term. Within the range and precision of our QMC data,
fits of R = U4 with mmax = 2 allow us to include corrections
to scaling with kmax = 0, i.e., to the leading order only,
providing a suitable approximation of the scaling function
and allowing us to extract consistent results. As a further
check, we have repeated the fits to Eq. (B2) fixing the value
of the correction-to-scaling exponent ω = 0.8, as expected
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FIG. 13. QMC estimates for the Binder ratio U4 and the ratio of the finite-size correlation length over the lattice size ξ/L for a FM
Heisenberg model on the bcc lattice, and the corresponding quantities for the AF model, U AF

4 and ξAF/L. The temperature T is expressed in
units of |J1|.

for the three-dimensional O(3) universality class [127]. A
similar analysis has been done with the renormalization-
group invariant ratio R = ξ/L. In this case we find that a
linear approximation mmax = 1 is sufficient to fit the data. In
Table VI we report the results of our fit. Along these lines
we have also analyzed the AF cases. As for the FM case,
we have found that within the range of our data and their
precision, suitable fits of the Binder ratio U AF

4 require mmax =
2, whereas for ξAF/L a linear approximation mmax = 1 is suffi-
cient. Corresponding fits are reported in Table VI. By judging
conservatively the fit results, we extract the estimates of the

critical temperatures for the FM and AF models reported in
Table IV.

Fits in Table VI allow us also to determine the universal
values R∗ of the renormalization-group invariant quantities at
criticality. As expected by universality, they are the same for
the FM and AF models. Inspecting the fit results of Table VI
we estimate

U ∗
4 = U AF∗

4 = 0.491(5), (B3)

(ξ/L)∗ = (ξAF/L)∗ = 0.62(2). (B4)

TABLE VI. Results of fits to Eq. (B2). An absent kmax indicates a fit without including scaling corrections. In the fits indicated with ∗ we
fix ω = 0.8.

R = U4, U AF
4 R = ξ/L, ξAF/L

Lmin mmax kmax R∗ Tc χ 2/DOF Lmin mmax kmax R∗ Tc χ 2/DOF

FM 8 1 0.4984(1) 1.2571(1) 310/48 8 1 0.6199(4) 1.26094(7) 101/48
12 1 0.4960(2) 1.2583(1) 96/35 12 1 0.6228(6) 1.26058(9) 49/35
16 1 0.4940(4) 1.2592(2) 44/22 16 1 0.623(1) 1.2606(2) 22/22
8 2 0.4986(2) 1.2575(1) 190/47 8 1 0∗ 0.636(3) 1.2599(2) 64/47

12 2 0.4965(2) 1.2583(2) 40/34
16 2 0.4951(4) 1.2589(2) 10/21
8 2 0 0.4912(6) 1.2598(2) 30/45
8 2 0∗ 0.486(1) 1.2605(3) 30/46

AF 8 1 0.4965(2) 1.3752(1) 156/43 8 1 0.5843(5) 1.38212(8) 1067/43
12 1 0.4949(2) 1.3760(2) 64/32 12 1 0.5986(6) 1.3801(1) 122/32
16 1 0.4940(4) 1.3764(2) 44/21 16 1 0.607(1) 1.3791(2) 19/21
8 2 0.4966(2) 1.3754(1) 91/42 8 1 0 0.68(7) 1.375(2) 52/41
12 2 0.4953(2) 1.3760(2) 27/31 8 1 0∗ 0.672(3) 1.3756(2) 52/42
16 2 0.4949(4) 1.3762(2) 17/20
8 2 0 0.4947(3) 1.3762(2) 31/40
8 2 0∗ 0.489(1) 1.3773(3) 34/41
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