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The spontaneous onset of the spin-nematic order in spin-chain systems is studied. The ordering persists due to
distortions of either magnetic ions, or ligands taking part in the superexchange between magnetic ions. The spin-
nematic order yields a nonzero biaxial magnetic anisotropy for the spin chain, violating the U(1) symmetry. The
influence of the external magnetic field and nonzero temperature is considered. We predict how the spin-nematic
ordering can manifest itself in the temperature and magnetic field behavior of magnetoacoustic characteristics.
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I. INTRODUCTION

Correlations between electrons in condensed matter
physics can change the behavior of electrons from the con-
ventional metallic one to liquid states. The examples of the
latter are electron liquid crystal states in metals, valence
bond solids, or spin liquid states in insulating quantum spin
systems [1]. For instance, the standard magnetic order (i.e.,
the ordering of magnetic dipoles) in quantum spin liquids
is suppressed down to the lowest temperatures due to the
frustration of spin-spin interactions and/or enhanced quantum
fluctuations in low-dimensional systems [2]. While magnetic
(dipole) moments remain disordered, higher-rank multipoles
can order under special conditions. Unlike the order of mag-
netic dipoles, e.g., the quadrupolar order does not break the
time-reversal symmetry. Quadrupolar ordering in insulating
spin systems is often referred to as the spin-nematic one,
because that type of ordering is analogous to the known
ordering of molecules in nematic phases of liquid crystals [3].
For orbital electron moments the dipole moment of the orbital
electron moment is frozen in most of compounds: The orbital
order manifests itself first of all in the charge ordering or in
the ordering of multipolar moments. The spin-nematic order
and the orbital/charge order breaks the rotational symmetry
of electron states. Strong nematic fluctuations were observed,
e.g., in Fe- and Cu-based superconductors [4] (nematicity
is believed to be the essential property for Fe-based su-
perconductors [5]), as well as in strontium ruthenates [6],
and high fractional Landau levels [7]. Dipole moments are
coupled to the electromagnetic field, while there is no simple
field directly coupled to quadrupoles. Hence, the quadrupolar
hidden order is frequently difficult to detect in experiments
because most of the available techniques are sensitive to
dipole moments only. However, some manifestations of the
quadrupolar order were observed in several compounds, e.g.,
in the layered system NiGa2S4, in CeB6 and UPd3, and the
high magnetic field-induced spin-nematic order in the spin-
chain compound LiCuVO4 [8]. Critical spin-chain systems
are almost ideal candidates for the search of the spin-nematic

ordering, because magnetic order is suppressed there by quan-
tum and thermal fluctuations [9].

In this paper we propose a different approach for the onset
of the spin-nematic order in spin-chain systems, not related to
the application of the external magnetic field as in LiCuVO4

[10], i.e., the spontaneous onset of the spin nematicity. We
show that due to the coupling of spins to the lattice, the
spin-nematic order can appear in quasi-one-dimensional spin
systems, even at zero field. Unlike previous approaches, which
used approximate, e.g., spin-wave-like, theories to describe
the spin subsystem of spin-chain materials [10], our work
takes into account spin-spin interactions in spin chains ex-
actly. We also show how magnetoacoustic studies can serve
as a good method for the investigation of the spin-nematic
ordering in spin-chain systems.

II. SPONTANEOUS SPIN-NEMATIC ORDERING

Let us study the spin-chain system, which is described by
the Hamiltonian

H0 =
∑

n

[
J
(
Sx

nSx
n+1 + Sy

nSy
n+1

) + JzS
z
nSz

n+1

]
, (1)

where Sx,y,z
n are the operators of projections of the spin-1/2

situated at the site n, and J, Jz are the values of the exchange
coupling between neighboring spins. Notice that for spin-1/2
systems one cannot speak about the single-ion quadrupolar
moments. Our goal is to study the onset of the spin-nematic
order. Let us limit ourselves with the homogeneous case.
Then the spin-nematic order can be characterized by the
nonzero value of the operator of the quadrupolar moment at
neighboring sites 〈Sx

nSx
n+1 − Sy

nSy
n+1〉. It obviously violates the

U(1) symmetry of the spin chain, however, it does not break
the time-reversal symmetry. It is easy to show that for the
Hamiltonian H0 such a value is zero for any temperatures
T � 0 (in our work we use the energy units in which the
Boltzmann constant is unity, kB = 1 for simplicity). Then,
let us consider a more general Hamiltonian with the biaxial
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magnetic anisotropy

H =
∑

n

[
JxSx

nSx
n+1 + JySy

nSy
n+1 + JzS

z
nSz

n+1

]
, (2)

with Jx = J (1 + x), and Jy = J (1 − x), where 0 � x � 1. The
case Jz > 0 corresponds to the antiferromagnetic chain (no-
tice that the sign of J is nonessential in thermodynamics
[11]), while Jz < 0 describes the ferromagnetic chain. For
−J � Jz � J the system is critical (with gapless low-energy
excitations), and for Jz < −J and Jz > J the system is in
the Heisenberg-Ising phase with gapped excitations. First we
consider J � 0 for concreteness; a similar approach exists
for the ferromagnetic chain. The quadrupolar (spin-nematic)
order parameter is nonzero for the system with the Hamil-
tonian H for x �= 0 for any T � 0. Hence, the onset of the
nonzero parameter x describes the onset of the homogeneous
spin-nematic order with nonzero quadrupolar order parameter
〈Sx

nSx
n+1 − Sy

nSy
n+1〉.

Consider the three-dimensional crystal with spin-1/2 mag-
netic ions, situated at sites of the crystal lattice, with the
exchange coupling between spins along one distinguished
direction being much stronger than along other directions.
Suppose that the one-dimensional spin subsystem of the
considered system is described by the Hamiltonian H. The
exchange coupling is determined by the effective overlap of
the wave functions of neighboring magnetic ions [11]. For
most of spin-chain compounds the exchange is indirect (the
superexchange) [11], and due to the spin-orbit interaction
those overlaps can be anisotropic [12]. The anisotropy of
overlaps depends on the relative positions of neighboring
magnetic ions, and also on the positions of nonmagnetic ions
(ligands) via which the superexchange coupling is realized
[13]. Hence, to get the nonzero biaxial magnetic anisotropy
Jx �= Jy, i.e., x �= 0, one needs to change the positions of either
neighboring magnetic ions, coupled by the superexchange
interactions, or the positions of the surrounding ligands. Those
shifts are characterized by the distortions uxy (namely such
distortions yield Jx �= Jy). Then the loss of the energy of the
system due to such distortions can be written in the main
approximation in uxy as Cu2

xy/2, where C denotes the elastic
modulus. For temperatures smaller than the Debye one we can
limit ourselves with that term only for the lattice subsystem.
On the other hand, the magnetic subsystem of the crystal
can gain the energy due to those distortions, because of the
onset of the biaxial anisotropy of the exchange couplings, and,
hence, the spin-nematic order with the nonzero quadrupolar
order parameter 〈Sx

nSx
n+1 − Sy

nSy
n+1〉 appears. For small distor-

tions we can approximate Jx = J (1 + duxy) and Jy = J (1 −
duxy), where d characterizes the exchange-elastic coupling.
We see that x = duxy, and can rewrite the elastic term as
Cx2/2d2.

III. GROUND STATE

Our aim is to show that for some conditions the situation
with x �= 0 can be realized. Our approach is analogous to
Peierls’ description of the dimerization of electron chains
[14]. The energy of the ground state of the system with the
Hamiltonian H (let us consider the most interesting case
with Jx � Jy > Jz � 0, i.e., for x = 0 it corresponds to the

easy-plane anisotropic critical antiferromagnetic chain with
gapless excitations) can be exactly obtained by using the
famous Baxter’s solution [15] (notice that we interchange the
indexes x ↔ z comparing to Baxter’s notations).

Two exchange constants can be expressed via the third one
as Jz = cn(2ζ , k)Jx and Jy = dn(2ζ , k)Jx. Here cn(z, k) and
dn(z, k) [and sn(z, k), see below] are Jacobi elliptic functions
of the argument z with the modulus k. The argument ζ and the
modulus k determine the magnetic anisotropy of the system.
The modulus k is equal to k = [(J2

x − J2
y )/(J2

x − J2
z )]1/2 ≡

2J[x/(J2
x − J2

z )]1/2, i.e., nonzero values of x imply nonzero
values of k (and vice versa).

The set of quantum numbers, rapidities, {xα}N/2
α=1, where N

is the number of spins in the chain, parametrize all eigenfunc-
tions and eigenstates of the Hamiltonian H. They satisfy the
Bethe ansatz equations [16,17][

H[ζ (xα + i)]

H[ζ (xα − i)]

]N

= −e2πν/G
N/2∏
β=1

H[ζ (xα − xβ + 2i)]

H[ζ (xα − xβ − 2i)]
, (3)

where G = K ′
k/ζ , H (x) = ϑ1(x/2K ′

k; iKk/K ′
k ) is the Jacobi

function, with Kk and K ′
k being the complete elliptic inte-

grals of the first kind with the modules k and k′ = √
1 − k2,

respectively. Notice that

N/2∑
α=1

ζxα = K ′
kν

′ + iKkν, (4)

where ν and ν ′ are integers. The eigenvalues of the
Hamiltonian can be written as

E = −Jxsn(2ζ , k)

2ζ

N/2∑
α=1

a1(xα ) − NJxR, (5)

where a1(x) = (ζ/π ){Z (ζ ) + sn(ζ , k)cn(ζ , k)dn(ζ , k)/
[sn2(ζ , k) − sn2(iζx, k)]}, where Z (x) is Jacobi’s zeta
function with the modulus k, and R = (1/8) − [πsn(2ζ , k)/
8ζ ][a1(0) − a1(G)].

The ground state in the thermodynamic limit N → ∞ (i.e.,
filling of all states with negative energies) corresponds to the
set of real rapidities xα distributed in the interval [−G, G]. The
ground-state energy can be written as [15]

Egs = −Jx

8
− πJx

2K ′
k

sn(2ζ , k)
∞∑

n=1

X, (6)

where

X = sinh2[(τ − λ)n] tanh(λn)

sinh(2τn)
(7)

and τ = πKk/K ′
k , λ = πζ/K ′

k (0 < λ < τ ). Now the condi-
tion of the equilibrium in the ground state implies that x is the
solution of the equation

Cx

d2
= ∂Egs

∂x
. (8)

Equation (8) is very complicated, and we can limit ourselves
with the studying of the situation with small x �= 0 (i.e.,
small k), which is the physically relevant case. For small
k (i.e., Jx → Jy) the ground-state energy can be rewritten
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as [15]

Egs = −
(
J2

x − J2
z

)1/4(
J2

y − Jz2
)1/4

4
√

k′Kk

(
1

4 sin μ

+
∫ ∞

−∞
dx

sinh[(π − μ)x] tanh(μx)

sinh(2πx)

+ 2
∞∑

n=1

q2n
k

1 − q2n
k

sin3(μn)cos(μn)

− 2π

μ

∞∑
n=1

q(2n−1)π/μ

k

1 − q(2n−1)π/μ

k

cot

[
(2n − 1)π2

2μ

])
, (9)

where μ = πζ/Kk , and qk = exp(−πK ′
k/Kk ). The main con-

tribution to Eq. (8) comes from the singular term in the last
line of Eq. (9). For k small we have qk ≈ k2/16, and one gets
for 0 < μ < π (with μ �= π/2m for m integer) [15]

Es
gs = −Jx sin μ

π

μ
cot

[
π2

2μ

]
|Y |π/μ, (10)

and for μ = π/2m one has

Es
gs = −4mJx sin μ

π
Y 2m ln |Y |. (11)

Here cos μ = Jz/Jx, and Y = Jx(Jx − Jy)/8(J2
x − J2

z ). The
analysis of Eq. (8) shows that for μ small (including the
case μ = π/2m), i.e., for the small anisotropy of the spin
system with H0, the solution with x �= 0 can exist only for
small C/d2J . On the other hand, for μ close to π/2, i.e.,
for large enough easy-plane anisotropy of H0, the solutions
with x �= 0 exist for a large interval of values of C/d2J . We
see that the fact of whether the spin-nematic ordering can
exist or not, depends on the value of C/d2J . The values
of the elastic modules and exchange constants are known
for many spin-chain materials, whilst the exchange-striction
parameter d cannot be directly determined from experiments.
However, the combination of parameters C/d2J for realistic
spin-chain materials can be in the necessary range of order of
1, which is demanded by the condition of the onset of the spin-
nematic ordering there. For example, a similar combination of
constants appears in theories describing the spontaneous onset
of the spin-Peierls alternation in spin-chain systems [18].
Spin Peierls alternation exists, e.g., in nonorganic materials
CuGeO3 and NaV2O5 [19]. Figure 1 shows how the surface
a = (C/d2J )x − (∂Es

gs)/(∂x) as a function of C/Jd2 and x
crosses zero. One sees that together with x = 0, there exists
nonzero solutions of Eq. (8). We can show that Egs + Cx2/d2

is smaller for those nonzero values of x than for x = 0 for
the case of large easy-plane anisotropy for C/d2J small.
Figure 2 manifests that behavior of the ground-state energy
E0 = Egs − Cx2/2d2 as a function of x and C/d2J . However,
for larger values of the parameter C/d2J , the energy of the
state with x = 0 is the smallest one. It implies the onset
of the spin-nematic order in such an easy-plane spin-chain
system in the ground state for small C/d2J . On the other hand,
for an almost isotropic spin-chain system the ground-state
energy is minimal for x = 0, i.e., here the spin-chain system
is robust with respect to the biaxial spin-nematic ordering. A
similar approach can be applied for the critical ferromagnetic

FIG. 1. The surface a = (C/d2J )x − (∂Es
gs/J∂x) as a function of

x and C/d2J . The crossing of the surface with the zero plane defines
possible values of x for the antiferromagnetic spin chain with the
strong easy-plane anisotropy μ = π/2 − 0.3.

spin chain [15]. The case with Jz > Jy → Jx > 0, i.e., the
Heisenberg-Ising antiferromagnetic spin chain can also be
considered in a similar way [15]. That case is characterized
by the ground-state energy being analytic function at Jx = Jy

(the same is true for the ferromagnetic easy-axis Heisenberg-
Ising case, because of the periodicity of the Jacoby elliptic
functions). This is why the onset of the spin-nematic phase is
unlikely for those cases. The ground state of the Heisenberg-
Ising spin chain is magnetically ordered, and, hence, it is
problematic to see the quadrupolar order there.

IV. NONZERO TEMPERATURES

The energy of the system at nonzero temperatures can be
described, e.g., by the string hypothesis [16]. The free energy

FIG. 2. The ground-state energy E0 = Egs + Cx2/2d2 for the
antiferromagnetic spin chain with the easy-plane anisotropy μ =
π/2 − 0.3 as a function of x and C/d2J .
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F (the total free energy is Ft = F + Cx2/2d2) of the system
with the Hamiltonian H can be written for the critical case as

F = Egs − T
∫ G

−G
dx ln[1 + exp(ε1(x)/T )]s1(x), (12)

where s1(x) = ∑∞
j=−∞ s1(x + 2 jG), s1(x) = (1/4 cosh

(πx/2)), and ε1(x) is the solution of the set of equations

ε1 = −As1(x) + T D12 � ln(1 + η2)

+ T D11 � ln(1 + eε1/T ),

ln η j = D j1 � ln(1 + eε1/T ) +
∞∑

l=2

D jl � ln(1 + η j ),

j � 2, (13)

where � denotes convolution, and A = πsn(2ζ , k)/ζ , with

D jl (x) = (1 − δ j,mi−1 )δ j,l+1si(x) + δ j,l−1si+1(x) + δ j,l di(x)
(14)

for j = mi − 1, with

di(x) =
∞∑

j=−∞
di(x + 2 jG), (15)

di(x) =
∫ ∞

−∞
(dω/2π ) exp(iωx)

× cosh((pi − pi+1)ω)

2 cosh(piω) cosh(pi+1ω)
, (16)

pi = pi−2 − pi−1νi−1, p1 = 1, p0 = π/ζ , νi = [pi−1/pi], and

D jl (x) = (1 − δ j,mi−1 )δ j,l+1si(x) + δ j,l−1si(x) (17)

for mi−1 � j � mi − 1.
For T � J, Jz only one solution x = 0 for the equation

(Cx/d2) = (∂F/∂x) exists, hence at high temperatures there
is no spin-nematic ordering in the considered system. On the
other hand, for low temperatures T  J, Jz one obtains [16]

F = Egs − T 3/2s1(G)

√
2π

As′′
1 (G)

e−As1(G)/T )[1 + O(T )], (18)

where s1(G) = K ′
kk′/2π , and s′′

1 (G) = (K ′
k )3k2k′/2π . For

small X (i.e., small k) one has s1(G) ≈ ln(4/k)/2π , and
s′′

1 (G) ≈ (k2/2π ) ln3(4/k), yielding

F s ≈ Esing
gs − 2T 3/2ζ

Jx sin(2ζ )k ln3/2(4/k)

(
4

k

)Jx sin(2ζ )/2T ζ

. (19)

i.e., similar singularity as in the ground state persists. It means
that at low temperatures x �= 0, i.e., the spin-nematic phase
with the nonzero quadrupolar order parameter 〈Sx

nSx
n+1 −

Sy
nSy

n+1〉, exists for the antiferromagnetic spin-1/2 chain with
the strong easy-plane anisotropy. Similar results can be ob-
tained for thermodynamics of the system with the Hamil-
tonian H, using the Trotter-Suzuki decomposition of the
quantum transfer matrix [11], see Ref. [20]. The onset of
the magnetic anisotropy in the isotropic antiferromagnetic

FIG. 3. The right-hand side of Eq. (20) for H = 0 and several
values of T (T = 10−7J , the solid black line; T = 0.2J , the dotted
blue line; and T = J , the dashed red line) as a function of x. When the
line C/2Jd2 crosses those lines, the solution for the equation Eq. (20)
exists.

spin-chain system with the quadrupolar order parameter
〈Sx

nSx
n+1 + Sy

nSy
n+1〉, which violates the SU(2) symmetry of the

spin chain, was considered in Ref. [21].

V. SPECIAL CASE

More results can be obtained in the special case Jz = 0,
where eigenstates are free noninteracting fermions [11]. In
that case the Hamiltonian of the spin chain can be transformed
to the quadratic form of Fermi operators with the help of the
Jordan-Wigner transformation [22] H = ∑

k εk (b†
kbk − 1/2),

where b†
k (bk) creates (annihilates) the fermion for the mode

k, and εk = {[H − J cos(k)]2 + J2x2 sin2(k)}1/2. Notice that
the case Jz = 0 permits us to study the effect of the external
magnetic field H applied along the z axis exactly, which is,
unfortunately, impossible for the exact solution for Jx, Jy, Jz �=
0.

The ground-state onset of the in-plane anisotropy for Jz =
0 case at H = 0 was studied in Ref. [23]. For small x one
obtains x = exp(−πC/Jd2), which means the spin-nematic
ordering, violating the U(1) symmetry of the spin chain. It is
easy to show that for T � J (at least for temperatures not very
high comparing to the value of the exchange coupling J) the
equation

C

2Jd2
= J

2π

∫ π

0

sin2 k

εk
tanh

[ εk

2T

]
, (20)

where εk = {[H − J cos(k)]2 + J2x2 sin2(k)}1/2, has a
nonzero solution for x, see Fig. 3. The critical temperature of
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FIG. 4. The cross section of the surface f1 as the function of
C/Jd2 and tc = Tc/J with zero plane determines the transition tem-
perature of the spin chain to the spin-nematic ordered phase as a
function of C/Jd2.

the transition to the spin-nematic phase for Jz = H = 0 is
determined from the condition

f1 = πC

Jd2
−

∫ J/2Tc

0
dy

√
1 − 4T 2

c y2

J2

y
tanh(y) = 0. (21)

Figure 4 shows how the surface f1 as a function of C/Jd2 and
tc = Tc/J crosses zero plane. The crossing curve determines
the critical value of the temperature of the transition to the
spin-nematic phase as a function of C/Jd2. We see that
the spin-nematic ordering exists for C/Jd2 � 1 at nonzero
temperatures. The critical temperature grows monotonically
with the decrease of the parameter C/Jd2.

As we pointed out already, the case Jz = 0 permits us
to obtain the dependence of the onset of the spin-nematic
phase in the critical spin chain system as a function of the
applied field H . There is only one critical field Hc = J ,
at which the second-order quantum phase transition takes
place in the system for x �= 0 (the magnetic susceptibility
has the logarithmic feature at that point in the ground state,
being nonzero for H < Hc and H > Hc). Figure 5 presents
the right-hand side of Eq. (20) for T → 0 (T = 10−7J) for
several values of the magnetic field H � Hc. One can see that
there exists the region of values of C/2Jd2, for which the
nonzero x is the solution, i.e., the spin-nematic phase exists.
For H = Hc the solution can be written in the closed form;
it is x = [

√
1 + (2πC/Jd2)2 − 1]/2πC/Jd2. For H > Hc the

nonzero solution for x is very small in the ground state and
at low temperatures. Hence, the spontaneous spin-nematic
ordering is robust with respect to the external magnetic field.

FIG. 5. The low-temperature (T = 10−7J) behavior of the right-
hand side of Eq. (20) for several values of the field (from bottom to
top: H = 0.1J , H = 0.3J , H = 0.5J , H = 0.7J , and H = 0.9J).

VI. MAGNETOACOUSTIC CHARACTERISTICS

The spin-nematic ordering in spin-chain materials is re-
lated to shifts of either magnetic ions themselves, or to shifts
of the surrounding ligands. Therefore, the natural way to
observe such an ordering is to study the behavior of magne-
toacoustic characteristics [24]. The onset of the quadrupolar
order parameter 〈Sx

nSx
n+1 − Sy

nSy
n+1〉 is mostly related to the

elastic modulus C66. However, the behavior of other elastic
modules can also reveal the features, connected with the phase
transition to the spin-nematic phase, violating U(1) symmetry.
For highly symmetric crystals the behavior of the elastic
modules Cel is connected with the behavior of the sound
velocity v via Cel = ρv2, where ρ is the density of the crystal.

According to Ref. [25] the exchange-striction coupling in
magnetic systems yields the renormalization of the velocity of
the applied sound, proportional to some spin-spin correlation
functions. Those correlation functions can be approximated
by the combination of the magnetization and the magnetic
susceptibility of the system, for purely spin-dipole case, and
by the combination of the quadrupole moment and suscep-
tibility for the system with possible quadrupolar degrees of
freedom. References [26] imply the good agreement between
the experiments and the theory (for many magnetic systems,
including spin-chain compounds) achieved even when taking
into account only the homogeneous part of the magnetic
susceptibility. The renormalization of the sound velocity v due
to the exchange-striction coupling in the general case can be
written as

�v

v
≈ − v

ρV ω2
[|g(0)|2(2M2χ + T χ2) + h(0)(M2 + T χ )],

(22)
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FIG. 6. The temperature behavior of the renormalization of the
sound velocity in the spin-chain system with the spin-nematic order-
ing at Tc = 0.1J . The red dashed line describes the transverse sound
mode, while the black solid line corresponds to the longitudinal
mode.

where V is the volume of the crystal, ω is the sound angular
frequency, M and χ are the magnetization and the mag-
netic susceptibility, respectively, and the parameters of the
exchange-sound coupling are

h =
∑

j

eiqR ji [1 − cos(kR ji )](uk · u−k )
∂2Jβ,β ′

i j

∂Ri∂R j
,

g =
∑

j

eiqR ji (eikR ji − 1)uk
∂Jβ,β ′

i j

∂Ri
(23)

(taken at q = 0), where k and u are the wave vector and
the polarization of the sound wave, R ji = R j − Ri, R j is the

position vector of the jth site of the magnetic ion, and Jβ,β ′
i j

(β, β ′ = x, y, z) are the exchange couplings between magnetic
ions situated at the ith and jth site. On the other hand, the
quadrupolar contribution to the renormalization of the sound
velocity can be written as

�vq

v
≈ − v

ρV ω2

[
|gxy(0)|2|Q|2

+ hxy|Q| + T
∑

q

|gxy|2χQ(q))

]
, (24)

where Q = 〈Sx
Ri

Sx
R j

− Sy
Ri

Sy
R j

〉 exp(iqR ji ) is the spin-nematic
order parameter (the component of the quadrupolar moment),
and χQ(q) = −∂2F/∂x2 is the quadrupolar susceptibility. Ob-
viously, the renormalization of the sound velocity due to spin-
nematic ordering is possible only inside the region, where x �=
0 (i.e., the quadrupolar order parameter is nonzero). For the
considered model the main contribution from the quadrupolar
correction to the sound velocity comes from the homogeneous

FIG. 7. The temperature behavior of the renormalization of the
quadrupolar contribution to the sound velocity �vq/v in the spin-
chain system with the spin-nematic ordering at Tc = 0.1J . The red
dashed line describes the transverse sound mode, while the black
solid line corresponds to the longitudinal mode.

quadrupolar susceptibility

χQ ≈ J2

2π

∫ π

0
dk

sin2(k)

εk

[
εk

2T cosh2(εk/2T )

− J2x2 sin2(k)

ε2
k

tanh(εk/2T )

]
, (25)

where x(T, H ) is the solution of Eq. (20). Similar expressions
can be derived for the sound attenuation. Figure 6 shows
the temperature behavior of the longitudinal (for the wave
vector of the sound wave parallel to its polarization) and
transverse (for the wave vector and the polarization being
perpendicular) sound velocities of a spin-chain material (for

FIG. 8. The magnetic field behavior of the renormalization of
the sound velocity in the spin-chain system with the spin-nematic
ordering at Tc = 0.1J . The red dashed line describes �v/v for T =
0.15J , while the red solid solid line describes the case T = 0.05J .
for the transverse mode; the black dashed and solid lines are related
to the cases of T = 0.15J and T = 0.05J , respectively, for the
longitudinal sound mode.
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Jz = 0) with the transition to the spin-nematic state at Tc =
0.1J . It turns out that namely the transverse mode (related
to the uxy distortions, like the C66 one) manifests mostly
the transition to the spin-nematic ordered state. However,
the transition to the spin-nematic phase is more pronounced
in the temperature dependence of the total transverse mode of
the renormalized sound velocity, where the scale of changes
of the sound velocity due to magnetic (dipole) characteristics
is smaller.

In Fig. 7 the contribution of the quadrupolar part is shown
separately. We see that in fact both longitudinal and transverse
parts sound modes are affected by the spin-nematic transition.
Notice the smaller scale in Fig. 7 comparing to Fig. 6.

Finally, Fig. 8 manifests the magnetic field behavior of the
transverse and longitudinal sound velocities at temperatures
below and above phase transition to the spin-nematic phase.
The magnetic field behavior of the sound velocity is mostly
determined by the spin dipole contribution. Summarizing, the
behavior of the magnetoacoustic characteristics can serve as
a good tool to detect the spin-nematic ordering in spin-chain
systems.

VII. CONCLUSION

In conclusion, we have predicted the spontaneous spin-
nematic ordering, violating the U(1) symmetry in spin-chain
systems. The predicted order is the result of the competi-
tion between the gain of the energy of the spin subsystem,
caused by the spin-nematic ordering, and the loss of energy
of the lattice due to the distortions of either magnetic ions,
or surrounding them nonmagnetic ligands. Our theory is
applicable the ground state and for nonzero temperatures,
lover than the exchange energies and the Debye temperature.
To avoid the magnetic (dipole) ordering the minimal inter-
chain spin-spin coupling in the spin-chain compound has to
be smaller than [Zχ (k, T )]−1, where Z is the coordination
number, and χ (k, T ) is the inhomogeneous magnetic suscep-
tibility of the spin chain [27]. For the special case the effect
of the external magnetic field on the spin-nematic ordering
has been also studied. We have shown how such a spin-
nematic ordering in a spin-chain material can be observed
in the behavior of sound characteristics in magnetoacoustic
experiments.
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