
PHYSICAL REVIEW B 100, 014415 (2019)

Cavity-mediated dissipative spin-spin coupling
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We study dissipative spin-spin coupling in a dispersive regime mediated by virtual photons in a microwave
cavity. Dissipative coupling between spin of each magnetic material and the cavity photons is established by
means of two phase-shifted driving forces acting on each spin. We show that mode-level attraction between two
spin modes can be reached when one of the spins is dissipatively coupled to the cavity. By tuning the phase
parameter at each ferromagnetic insulator, we can shift the order of “dark” and “bright” collective modes with
the phase difference equal to 0 or π . Moreover, by selectively applying the phase-shifted field, it is possible to
construct dark and bright collective modes with the phase difference equal to ±π/2.
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I. INTRODUCTION

Recent progress in the hybridization of magnons (collec-
tive spin excitations) in an yttrium iron garnet (YIG) ferri-
magnetic insulator (FI) with microwave cavities makes the
coupled magnon-photon system a good candidate for hybrid
quantum devices [1,2]. Strong and ultrastrong coupling [3–5]
between magnons and microwave photons has been realized
due to low damping and high spin density in YIG magnetiza-
tion [6–10]. Due to the possibility of coupling magnon modes
to various oscillators, cavity photons are good candidates for
mediating long-distance indirect coupling of hybrid systems.
Examples of different systems coupled using this approach are
spin ensembles [11,12], double quantum dots [13], and hybrid
systems [14].

Cavity-mediated dispersive coupling between two mag-
netic systems has been discussed both theoretically [15] and
experimentally [16]. One such system has been proposed by
Zhang et al. in Ref. [17], where they show that the coherent
superposition of coupled magnon states generates magnon
“dark” and “bright” modes, formed due to out-of-phase and
in-phase oscillations in two magnons, respectively. The key
property of the dark mode is that it is decoupled from the cav-
ity which enhances the coherence time, providing a platform
to implement magnon gradient memory [17]. The existence
of dark modes has also been addressed in antiferromagnets
[18,19]. The realization of dark-mode memory in Ref. [17]
is based on encoding information into the bright mode with
subsequent conversion of the mode into dark with enhanced
coherence time.

Due to the inherent dissipative nature [20] of cavity and
spin systems, the spin-photon coupling is not limited to co-
herent interactions. It was proposed recently that dissipative
spin-photon coupling [21–24] reveals mode-level attraction
at exceptional points (EPs), which opens a new avenue for
exploring cavity spintronics in the context of non-Hermitian
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physics [25–30]. The nontrivial topology of the EPs leads
to the coalescing of two eigenstates with phase difference
of ±π/2. This leads to chirality of the eigenstate [31,32].
Together with exciting new effects in light-matter interactions
[21,26–29], the discovery of dissipative spin-photon coupling
reveals new opportunities of exploring the hybridization of
collective spin modes.

Here, we address the cavity-mediated dispersive coupling
between spatially separated spins in the presence of phase-
controllable fields on both FIs. First, we reproduce the results
of dispersive spin-spin coupling in the absence of a phase-
shifted field, where the dark and bright modes are obtained
from the microwave signal transmission through the cavity
[15,16,19]. When both FIs are exposed to a phase-shifted
field, we obtain mode-level anticrossing with opposite order
of dark and bright modes. When only one of the spins is under
the action of the phase-shifted field, the indirect spin-spin
coupling becomes dissipative with mode-level attraction. In
contrast to coherent coupling [15,16], where collective modes
are formed from m1 ± m2 (depending on the sign of the effec-
tive coupling [15,33]), here we show that the chiral modes are
formed as m1 ± im2, where the sign depends on which FI is
under the phase-shifted field. Here, mi is the magnetization
direction in the ith FI. Moreover, we show that by either
changing the phase-shifted field or detuning between two
ferromagnetic resonance (FMR) frequencies, we can change
the chirality of the state. The model of dissipatively coupled
oscillators in this approach can be applied in a variety of
alternative systems such as magnon-superconducting qubit
coupling [34] and hybridization between two mechanical
modes [35].

II. THEORETICAL FORMALISM

In Fig. 1, we schematically illustrate the system, where
two magnetic materials are placed in a microwave cavity. We
assume that the FIs are placed far from each other to ensure
isolation and exclude direct coupling between the spins [36].
Our calculations are based on the semiclassical model, where
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FIG. 1. Schematic picture of the system. Two YIG films (blue)
are on top of strip lines (yellow). The green arrows show the direction
of H0, j . The total driving field is the sum of the magnetic component
of the microwave in the cavity (he−iωt ) and local fields acting on the
YIGs with controllable phase and amplitude (h�

j = h jei� j ).

the microwave oscillations in the cavity are represented by
an effective LCR circuit equation and the Landau-Lifshitz-
Gilbert (LLG) equation [10,21,37] describes the dynamics of
spin in magnetic materials.

Two classical mechanisms are behind the coupling: the
precessing magnetization induces the dynamic electromotive
forces in the cavity because of the Faraday law [38] and
the dynamic currents flowing around the cavity induces the
rf magnetic field which drives the magnetization precession
because of the Ampere law [10]. We assume that the crys-
tal anisotropy, dipolar and external magnetic fields are in
the ẑ direction. The effective LCR circuit for the cavity is
[10,21,25,37]

Lj̇ + Rj + (1/C)
∫

jdt = VF , (1)

where L, C, and R represent the induction, capacitance, and
resistance, respectively. The current j oscillates in the x̂-ŷ
plane. The driving voltage VF is induced from the precessing
spin of two FIs according to the Faraday induction,

V F
x (t ) =

∑
j

Kc, jLṁy, j, V F
y (t ) = −

∑
j

Kc, jLṁx, j, (2)

where j = 1, 2 stands for the first and second FI. Kc, j is
the coupling parameter. The spin precession in the magnetic
samples is governed by the LLG equation [10,21,37],

ṁ j = γ jm j × H j − α jm j × ṁ j, (3)

where m j = M j/Ms, j is the magnetization direction in the
jth FI. Ms, j, α j, and γ j are the saturation magnetization, the
intrinsic Gilbert damping parameter, and the gyromagnetic
ratio, respectively. H j = H0, j + he−iωt+i� j [39] is the effec-
tive magnetic field acting on the magnetization in the jth FI,
where H0, j = H0, j ẑ is the sum of the external, anisotropy,
and dipolar fields aligned with the ẑ direction. As described
in our recent proposal [21], the mechanism of controlling
the phase parameter � j is based on a combination of two
driving fields acting on each FI (see Fig. 1). The first field is
the magnetic component of the microwave in the cavity. The
second field acts locally on the YIGs with controllable phase
and amplitude. The combination of these two fields allows one
to obtain the desired phase and amplitude acting on each FI
[21]. Other mechanisms include the Lenz effect [22] and the
inverted pattern of a split ring resonator [26]. Therefore, we
assume � j to be a free-phase parameter [21]. Using m j =
ẑ + m⊥, je−iωt , the LLG equation can be linearized,

m+
j (ω − ωr, j + iα jω) + ei� j ωm, jh

+ = 0, (4)

where m+
j = mx, j + imy, j is the in-plane magnetization in

the jth FI, ωm, j = γ jMs, j , and the FMR frequency is ωr, j �
γ jH0, j . The in-plane magnetic field is h+ = hx + ihy. Using
the form j = j⊥e−iωt for the solution of the LCR equation (1),
we obtain the system of coupled equations,

�

⎛
⎜⎝

m+
1

m+
2

h+

⎞
⎟⎠ = 0 with � =

⎛
⎜⎝

ω + iα1ω − ωr,1 0 ei�1ωm,1

0 ω + iα2ω − ωr,2 ei�2ωm,2

ω2K2
1 ω2K2

2 ω2 + 2iβωωc − ω2
c

⎞
⎟⎠, (5)

where from Ampere’s law we have the magnetic field of the
microwave, which exerts torque on the FI magnetization,

hx = Km jy, hy = −Km jx, (6)

with Km being the coupling parameter and Kj � √
Kc, jKm.

The cavity frequency is ωc = 1/
√

LC and β = R/(2Lωc)
stands for the cavity-mode damping. From the solution of
det � = 0 in Eq. (5), we use three positive roots of ω. The
real and imaginary components of ω determine the spectrum
and damping of the system, respectively.

III. RESULTS AND DISCUSSION

The coupled system is driven by a circularly polarized
microwave magnetic field h+

0 = h0,x + ih0,y. We calculate the

transmission amplitude using input-output formalism [10,21],

�

⎛
⎜⎝

m+
1

m+
2

h+

⎞
⎟⎠ =

⎛
⎜⎝

0

0

ω2h+
0

⎞
⎟⎠,

S21 = 	h+/h+
0

= 	
ω2(ω + iα1ω − ωr,1)(ω + iα2ω − ωr,2)

det �
, (7)

where 	 is a normalization parameter [10,21]. We first dis-
cuss the case where magnetic fields on two FIs are de-
tuned with opposite signs (H0,1(2) = H0 ± δH) ωr,1,2 = ωr ±
δω, where δω = 0.05ωc. We use different Gilbert dampings
for the FIs, α1 = 3 × 10−5, α2 = 10−4, which are relevant
with experimental values [22]. The cavity-mode frequency is

014415-2



CAVITY-MEDIATED DISSIPATIVE SPIN-SPIN … PHYSICAL REVIEW B 100, 014415 (2019)

FIG. 2. (a)–(c) The transmission amplitude in the case of opposite detuning of the external magnetic field at each FI, where ωr,1/ωc =
ωr/ωc + δω/ωc, ωr,2/ωc = ωr/ωc − δω/ωc, with δω = 0.05ωc. The phase parameters are for (a) �1 = �2 = 0, (b) �1 = π, �2 = 0,

and (c) �1 = �2 = π. The dashed lines represent the normalized spectrum (Re(ω)/ωc). (d)–(f) The normalized damping of the system
[Im(ω)/Re(ω)] corresponding to the parameters for (a)–(c), respectively.

ωc/2π = 13.2 GHz with cavity damping β = 10−3, ωm,1 =
ωm,2 = γ Ms = 0.36ωc, where μ0Ms = 0.178 T and γ /2π =
27μ0 GHz/T [22]. The coupling constant is K1 = K2 = 0.03.

The colored area in Figs. 2(a)–2(c) is the transmission am-
plitude for different values of � j as a function of frequency
Re(ω) (normalized by ωc) and uniform magnetic field ωr .
The dashed lines show the spectrum Re[ω(ωr )]. The corre-
sponding linewidth evolutions are shown in Figs. 2(d)–2(f).
For �1 = �2 = 0, we reproduce two distinct anticrossings in
Fig. 2(a) with two characteristic peaks of transmission indi-
cating the coupling of two spins with the cavity mode [15,16].
The linewidth exchange [22] between the cavity mode with FI
modes at resonant frequencies is shown in Fig. 2(d).

In Fig. 2(b), we show the transmission amplitude and cor-
responding spectrum for �1 = π and �2 = 0. It is seen that
while �2 = 0 leads to the usual coupling with transmission
peaks at anticrossing near ωr = 1.05ωc, the phase parame-
ter (�1 = π ) from the first FI causes mode-level attraction
[21,22,26] and coalescence of the modes at two EPs. The
corresponding repulsion of linewidth [22,26] for �1 = π is
shown in Fig. 2(e), where the inset shows the evolution of
the linewidth for the second FI, where the phase parameter is
0. In Figs. 2(c) and 2(f), we plot the spectra of the real and
imaginary components of ω for �1 = �2 = π , respectively.
The attraction of the real components and the repulsion of the
imaginary components of ω are seen at the resonant magnetic
field of both FIs.

After discussing the resonant coherent and dissipative
coupling between the two FIs and the cavity, we move into
the dispersive regime where the FMR frequencies of the
FIs are significantly detuned from the cavity mode, |�| ≡
|ωr,1,2 − ωc| > K1,2ωm,1,2. We do so by adjusting the mag-
netic field on the FIs (ωr = 1.05ωc) and study the effect of
detunings δω (normalized by ωc) in the dispersive regime.

In Fig. 3(a), we plot the transmission as a function of ω

and δω for �1 = �2 = 0, meaning that there is no phase
shift introduced in either coupled system. It is seen that the
coupling anticrossings between the FMR modes and cavity
mode appear at larger detuning, when the effective FMR
frequencies are in resonance with the cavity mode. More
interestingly, an anticrossing between two FMR modes ap-
pears at δω = 0, which indicates cavity-mediated coupling
between two FIs [15,16]. The boxed part of the plot is
zoomed in Fig. 3(b), where we can see the characteristic
anticrossing of the two Kittel modes of two FIs [15,16].
We can also observe the dark and bright modes, where
the latter has larger oscillator strength than the former one
[15,16,33]. In Fig. 3(c), we plot the imaginary components
of ω, which is the linewidth of the system. The character-
istic linewidth exchange [10,22] between the cavity mode
and FMR modes is seen for large detuning (δω = ±0.05ωc).
Similarly, linewidth exchange between the two FMR modes
occurs at δω = 0, indicating coherent coupling between the
two FIs.

Next, we set one of the phase parameters to be �1 = π

while keeping �2 = 0. This corresponds to a situation when
the second FI is coherently coupled with the cavity while
the first one is in the dissipative coupling regime [21,22].
The transmission and spectrum for this set of parameters
are shown in Fig. 3(d). According to the phase parameter,
the spectrum in the first FI-cavity coupling region (δω =
−0.05ωc) shows level attraction, while level repulsion occurs
at the second FI-cavity coupling region (δω = 0.05ωc). As
it is seen from the boxed area of Fig. 3(d) and zoomed in
Fig. 3(e), the spectrum of two coupled FIs also shows a level
attraction feature, indicating dissipative spin-spin coupling.
An interesting feature of the transmission amplitude at this
region is that the dark and bright modes are formed as a
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FIG. 3. The first column shows the transmission amplitude dependence on the applied field detuning when ωr,1 = 1.05ωc + δω and ωr,2 =
1.05ωc − δω. The dashed lines depict the normalized spectrum [Re(ω)/ωc]. The second column is the zoom of the white dotted boxes in the
corresponding plots in the first column, where the arrows show the relative phases of the precessing spins. The dotted line marks Re(ω) = ωc.

The third column shows the normalized damping [Im(ω)/Re(ω)], where the labels “m1” and “m2” stand for spins in FI-1 and FI-2, and “p”
indicates cavity photon. The sign � shows the coupling between them. The parameters are (a)–(c) �1 = �2 = 0, (d)–(f) �1 = π, �2 = 0,

(g)–(i) �1 = 0, �2 = π, and (j)–(l) �1 = �2 = π.

collective mode with the phase difference equal to ±π/2,

which will be discussed in detail later. Figure 3(f) shows the
corresponding damping dependences on the detuning δω. The
inset shows a typical damping exchange for FI-2 at positive
detuning (δω/ωc = 0.05) as that in Fig. 3(c). Besides the
large linewidth repulsion for δω = −0.05ωc, corresponding
to the dissipative coupling between the magnetization in FI-1
and cavity photons, a similar feature is seen at δω = 0 for
dissipative spin-spin coupling. In Figs. 3(g)–3(i), we show the
same as in Figs. 3(d)–3(f) for �1 = 0, �2 = π. One can see
in Fig. 3(g), and zoomed in Fig. 3(h), that the order of the dark
and bright modes is shifted compared to the �1 = π, �2 = 0
case.

In Fig. 3(j) [zoomed picture of the boxed part in Fig. 3(k)],
we plot the transmission and the spectrum when both phase
parameters are �1 = �2 = π. For large negative/positive val-
ues of the detuning (δω = ±0.05ωc), both FIs’ spins are dis-
sipatively coupled with the cavity modes. The corresponding
linewidth repulsion is shown in Fig. 3(l). It is seen in Fig. 3(j)
that although both FIs are dissipatively coupled with the cavity
mode, the spectrum of cavity-mediated coupling of the FIs’
spins shows an anticrossing feature. Correspondingly, as seen
from the inset in Fig. 3(k), the linewidth at δω = 0 shows
an exchange feature in contrast to the linewidth repulsion at
δω = ±0.05ωc.
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To better understand the spectrum and collective states of
cavity-mediated dissipative magnon-magnon coupling, here
we develop a quantum picture by considering the Hamiltonian
(h̄ = 1)

H = H0 + Hg, with

H0 = ωca†a +
∑

j

ωr, jm
†
j m j,

Hg =
∑

j

g je
i� j/2(a†mj + m†

j a), (8)

where the first and second terms in H0 stand for the cavity
photon and the jth ( j = 1, 2) FI magnon energy, respectively.
Here, ωc is the cavity-mode frequency and ωr,1,2 = ωr ± δω

is the FMR frequency. Hg is the coupling between them. a(a†)
and mj (m

†
j ) are the annihilation (creation) operators for the

cavity photons and magnons in the jth FI, respectively. g j is
the coupling of the jth magnetization with cavity and � j is
the phase parameter with � j = 0 for coherent coupling [40]
and � j = π for dissipative coupling [41].) Next, we use the
Schrieffer-Wolff transformation [42,43],

H ′ = e�He−� = H + [�, H] + 1
2 [�, [�]] + · · · , (9)

where, by choosing a transformation operator � such that

Hg + [�, H0] = 0, (10)

we eliminate the direct magnon-photon interaction in favor
of higher-order (up to second order of gj) coupling be-
tween magnetic moments [33,44] in the dispersive regime
(|� j | ≡ |ωr, j − ωc| > g j). The transformation operator sat-
isfying condition (10) is � = ∑

j g jei� j/2(m†
j a − a†mj )/� j .

From Eq. (9), we obtain

H ′ = Hc + HM , with

Hc = ω′
ca†a,

HM =
∑

j

ω′
m, jm

†
j m j + geff (m†

1m2 + m†
2m1), (11)

where Hc is the cavity energy and ω′
c = ωc − ∑

j ei� j g2
j/� j

is the dispersive shift of the cavity frequency. HM in Eq. (11)
is the magnetic Hamiltonian without coupling with cavity,
where

ω′
r, j = ωr, j + ei� j

g2
j

� j
(12)

is the Lamb shift of the FMR frequency due to the presence
of virtual photons [33]. Effective coupling between two FIs
becomes [33,44]

geff = 1

2
ei (�1+�2 )

2 g1g2

(
1

�1
+ 1

�2

)
. (13)

For simplicity, we consider the case when �1 = �2 ≡ � and
g1 = g2 ≡ g. The eigenvalues of HM become

E± = 1
2 (ω′

r,1 + ω′
r,2 ± √

ωg), with

ωg = (ω′
r,1 − ω′

r,2)2 + 4g2
eff . (14)

Here we discuss four cases: (i) �1 = �2 = 0, (ii) �1 =
�2 = π, (iii) �1 = π, �2 = 0, and (iv) �1 = 0, �2 = π.

It follows from Eqs. (13) and (14) that in the two former cases
[�1 = �2 = 0(π )], ωg > 0. At δω = 0, the higher and lower
eigenstates of the Hamiltonian in Eq. (11) can be written in
general form as

± = 1√
2

[
m1 ± ei (�1+�2 )

2 sgn

(
g2

�

)
m2

]
, (15)

where + and − correspond to higher- and lower-energy
states. In the absence of phase shift �1,2 = 0, + and −
correspond to bright and dark modes, respectively, when
sgn(g2/�) > 0 [15,17,33]. The construction of dark-mode
memory proposed in Ref. [17] is based on fast (faster than
magnon dissipation rate) conversion between the bright and
dark modes. For �1,2 = 0, Eq. (15) reduces to the coherent
coupling discussed in Ref. [17]. In this case, the conversion
between dark and bright states can be realized by rapidly
tuning the magnetic bias field [15,17,33], which is prohibited
in the experiment due to the slow response of the local
inductive coils [17]. It follows from Eq. (15) that in our
proposal, the conversion can be realized by tuning the phase
parameters �1,2. The parameters can be tuned by the addi-
tional microwave applied to the FIs [21,26] and, thus, does
not suffer from the slow response of the magnetic field. For the
positive sign of g2/�, the bright (B) and dark (D) eigenstates
become, for (i),

B(i) = (m1 + m2)/
√

2, D(i) = (m1 − m2)/
√

2, (16)

and, for (ii),

B(ii) = (m1 − m2)/
√

2, D(ii) = (m1 + m2)/
√

2. (17)

The opposite order of the dark and bright collective modes
is shown in Figs. 3(b) and 3(k), where the former one corre-
sponds to (i) and the latter one is for (ii).

We now move to a discussion of the cavity-mediated
coupling between two FIs when one of the spins is coupled to
the cavity dissipatively, while the other is coherently coupled,
corresponding to (iii) and (iv). From Eq. (13), the effective
coupling (geff ) in this case becomes imaginary, which, in
analogy with the dissipative coupling in Eq. (8), leads to level
attraction between the two FMR modes and coalescence at
the EPs. This feature is shown in Fig. 3(e) for (iii) and in
Fig. 3(h) for (iv). The coalesced two energy levels at the
EPs lead to coalescing of the two eigenstates at the EPs
and a single eigenvector with a single eigenvalue survives
[21,25,41,45]. It follows from Eq. (14) that the band closing
at the EPs occurs when ωg = 0. Taking into account the
Lamb shift of the FMR frequencies [Eq. (12)], the positions
of the EPs for (iii) are δω = 0 and δω = 2g2/� [Fig. 3(e)].
Similarly, the EPs for (iv) are at δω = −2g2/� and δω = 0
[see Fig. 3(h)]. The eigenstates at the range of the coupling
bandwidth (frequencies between two EPs) for (iii) and (iv) are
calculated to be

 (iii) = (m1 + eiφ(iii) m2)/
√

2,

 (iv) = (m1 + eiφ(iv) m2)/
√

2, (18)
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FIG. 4. Dependence of the phase shift on detuning. The upper
frame ranges from 0 (EP1) to 2g2/� (EP2) for (iii) and the lower
frame ranges from −2g2/� (EP1) to 0 (EP2) for (iv). The arrows
in the circles demonstrate the phase difference between the two
magnetizations in the collective mode. The red dots correspond to
values for the circles.

where φ(iii,iv) is the phase leg between the two modes. The
dependence of the phase difference between the two modes
in the collective mode is shown in Fig. 4. It is seen that by
tuning the detuning δω from 0 (−2g2/�) to 2g2/� (0) for
(iii) and (iv), we can shift the chirality of the state. Moreover,
the same point δω = 0 has opposite chirality for (iii) and (iv).

The eigenstates at the EPs are calculated to be

B(iii) = (m1 − im2)/
√

2, D(iii) = (m1 + im2)/
√

2,

B(iv) = (m1 + im2)/
√

2, D(iv) = (m1 − im2)/
√

2. (19)

It follows from Eqs. (16) and (19) that fast switching of
�i allows one to construct dark-mode memory based on
switching between the collective modes with phase difference
0 to π, as well as between π/2 to −π/2.

In summary, we study the dispersive coupling between
spins of two FIs mediated by dissipative spin-photon cou-
pling. We show that introducing a phase-shifted field on only
one of the spins makes the spin-spin coupling dissipative
with characteristic mode-level attraction. Varying the phase
parameters in both FIs allows one to construct bright and dark
modes with tunable phase shift between the two spin modes.
Chiral modes with controllable chirality can be constructed
when only one of the FIs is under the action of a phase-shifted
field.
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