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Dissipative dynamics of a driven qubit: Interplay between nonadiabatic dynamics and noise effects
from the weak to strong coupling regime
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We study the exact solution of the Schrödinger equation for the dissipative dynamics of a qubit, achieved by
means of short iterative Lanczos method (SIL), which allows us to describe the qubit and the bath dynamics
from weak to strong coupling regimes. We focus on two different models of a qubit in contact with the external
environment: the first is the spin boson model (SBM), which gives a description of the qubit in terms of static
tunneling energy and a bias field. The second model describes an externally driven qubit, where both the bias field
and the tunneling rate are controlled by a time-dependent magnetic field, following a finite time protocol. We
show that in the SBM case, our solution correctly describes the crossover from coherent to incoherent behavior
of the magnetization, occurring at the Toulouse point. Furthermore, we show that the bath response dramatically
changes during the system dynamics, going from nonresonant at small times to resonant behavior at long times.
When the external driving field is present, for fixed values of the drive duration our results show that the bath
can provide beneficial effects to the success of the protocol. We find evidence for a complex interplay between
nonadiabaticity of the protocol due to the external drive and dissipation effects, which strongly depends on the
detailed form of the qubit-bath interaction.
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I. INTRODUCTION

Models of quantum systems interacting with their environ-
ment are of primary importance in the field of open quan-
tum systems [1,2]. In the last decades, several experimental
achievements, both in the field of quantum information and
quantum simulation, have stimulated a renewed interest in
these problems [3].

In adiabatic quantum computation (AQC) protocols, the
interaction of a system of mutually coupled qubits with a
thermal bath can lead to noticeable changes in the mech-
anism of defects creation, negatively affecting the success
probability of the computation [4–6]. However, decoherence
effects are not necessarily detrimental to the success of AQC
[7,8]; further, it has also been shown that the interaction
with an external bath at finite temperature can have beneficial
effects on the success of AQC [9–11], though the underlying
mechanism providing such an advantage over closed-system
dynamics, as well as its dependence on the nature of quantum
critical point remains rather unclear [12,13].

Several prototypical models of driven open quantum
systems [14,15] can prove useful in the study of out-
of-equilibrium quantum thermodynamics [16–18], a well-
established field that in the last decades has regained
popularity since the discovery of its links with quantum
information theory [19]. In this context, entropy production
in systems interacting with a heat bath as well as with finite,

*lorismaria.cangemi@unina.it

engineered baths has been the focus of recent experimental
and theoretical work [20,21]. Moreover, the study of energy
and heat exchange mechanism between an externally driven
quantum system and one or more heat baths is relevant for the
theoretical understanding of quantum heat engines [22,23].

The prototypical model of a two level system (TLS) in-
teracting with a thermal bath, also known as spin boson
model (SBM) has been considered in several works, aimed
at describing its out-of-equilbrium dynamics and quantum
phase transition arising from different kinds of dissipation
[24–28]. Energy exchange in dissipative driven TLS has also
been considered [16] from weak to strong coupling regimes.
Further, the effect of the environment on the ground state
topology of SBM has been studied [29], showing that only lo-
cal geometric properties are noticeably affected, while global
properties remain unchanged as long as the system is in the
delocalized phase, i.e., the coupling to the bath degrees of
freedom does not exceed the critical value (α < αc = 1).

In addition, the bath-induced nonadiabaticity has been
addressed [29], and at strong coupling regime, the crossover
from quasi-adiabatic to nonadiabatic dynamics due to the
environment has been studied. While this picture holds true in
the quasiadiabatic regime, it is not a priori clear how the envi-
ronment affects the dynamics of the TLS at not-so-low sweep
velocities; furthermore, different forms of the coupling could
lead to changes in this scenario, as stressed in several works
[12,30–36] addressing the dissipative dynamics of Landau-
Majorana-Stückelberg-Zener (LMSZ) model [37–40].

In this paper, we study the dissipative dynamics of a two
level system, i.e., a qubit subject to external driving fields and
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interacting with its environment, from weak to strong cou-
pling regimes. We first address the static field case, focusing
on the biased SBM in contact with an Ohmic bath, a widely
studied model which describes the effects of dissipation and
decoherence on a TLS. In addition, we consider a time-
dependent protocol, which has been recently implemented
in solid-state devices in order to realize dynamical measure-
ments of topological phase transitions [41,42].

We employ a numerically exact approach based on a
truncation scheme of the bath Hilbert space and on the short
iterative Lanczos (SIL) diagonalization [43–49], which allows
us to follow the dynamics of the observables of both the qubit
system and the environment, without the need of tracing out
the bath degrees of freedom. This method has proved useful in
reproducing the correct physical behavior of the SBM in the
weak coupling regime [50], and we show how the inclusion of
higher-order excitation processes in the physical description
can noticeably widen the range of coupling strengths to be
investigated, allowing us to describe the physics from interme-
diate to strong coupling regime where no analytical scheme is
known to hold.

We show that in the case of unbiased SBM our approach
is successful in describing the crossover from coherent to
incoherent behavior of magnetization dynamics, occurring at
the Toulouse point at α = 1/2. In addition, taking advantage
of our technique we find the dynamical evolution of the mean
population of the bath modes as a function of time, and we
observe a change from nonresonant to resonant response at
fixed coupling strengths. Furthermore, in the case of the driven
qubit, we show a nonmonotonic behavior of the fidelity at
fixed final times as a function of the dissipation strength:
this behavior, which is found to depend on the detailed form
of interaction with the environment, signals the complex
interplay between nonadiabatic effects due to the external
time-dependent driving force and dissipation.

The paper is organized as follows. In Sec. II, we introduce
the general Hamiltonian scheme we intend to study, focus-
ing on the characteristic form of coupling with the bath. In
Secs. III and IV, we discuss two different prototypical models
of a TLS interacting with external environment, subject to
static and time-dependent external fields, and we analyze nu-
merically their open dynamics from weak to strong coupling
regimes. We test our predictions by a comparison with well
known theoretical approximations, and discuss their possible
physical intepretations. Eventually, in Sec. V, we discuss
viable extensions of this work along with future perspectives.

II. MODEL HAMILTONIAN

We focus on a TLS system, i.e., a qubit subject to time-
dependent external fields, which is interacting with its envi-
ronment. The qubit is described by a time-dependent Hamil-
tonian HS(t ). The total Hamiltonian of the interacting system
is written as

H (t ) = HS(t ) + HB + HI, (1)

where HB is the free Hamiltonian of the bath and HI is the
coupling energy between the qubit and the bath. Making
use of the spin 1/2 Pauli matrices σ = (σx, σy, σz ), the qubit

Hamiltonian can be written in a very simple form,

HS(t ) = − 1
2 h(t ) · σ, (2)

where we take as h a time-dependent magnetic field vector
which at fixed time t points in a given direction of the three-
dimensional coordinate space. We conventionally adopt as a
basis for the qubit states, i.e., the computational basis, the
set of eigenstates of σz operator, namely σz |ẑ; ±〉 = ± |ẑ; ±〉:
as a consequence, the component of h along the ẑ axis acts
as a bias on the energy levels of the two states, while linear
combinations of σ± operators give rise to tunneling between
these two states.

As usual, we model our bath by means of a collection of
bosonic oscillators of frequencies ωk , and the Hamiltonian HB

can be conveniently written in terms of creation (annihilation)
operators b†

k (bk ) obeying the bosonic commutation relations
[bk, b†

l ] = δkl ,

HB =
∑

k

ωkb†
kbk . (3)

The time-independent interaction term couples the qubit with
the external bath along a given direction n̂ as follows:

HI = 1

2
σ · n̂

∑
k

λk (b†
k + bk ), (4)

where λk is the coupling strength with the kth oscillator. The
bath properties are described by its spectral density J (ω) [25]:
it can be written as a sum over discrete frequencies of the bath
modes, ranging from 0 up to a cutoff frequency ωc, which is
the greatest energy scale of the system. In the continuum limit,
we choose for the spectral density of the bath the conventional
form employed in the literature, which takes the form

J (ω) =
∑

k

λ2
kδ(ω − ωk ) = 2α

ωs

ωs−1
c

e− ω
ωc , (5)

Here the adimensional parameter α measures the strength of
the dissipation, while the parameter s distinguishes among
three different kinds of dissipation that have been studied
in the recent literature [2,25,51]: Ohmic (s = 1), sub-Ohmic
(s < 1), and super-Ohmic case (s > 1). The expression for
the coupling term in Eq. (4) is rather general: it has been
proposed to study the effect of a thermal environment on
qubits subject to different time-dependent protocols, including
the widely studied LMSZ sweeps [12,36,52]; in the latter
case, it has been argued that the introduction of a “transverse”
coupling direction, i.e., orthogonal to the time-dependent bias
field, could provide a simple theoretical explanation of the
experimental findings regarding D-Wave Rainier’s chip [10].

In the following, we extend our analysis to the case of
a qubit coupled to a thermal bath along different mutually-
orthogonal directions in a three-dimensional coordinate space,
labeled by x̂, ŷ, ẑ. As a first example, we consider the dissipa-
tive dynamics of a widely studied model in the spin-boson
literature, which accounts for decoherence and dissipation
effects on the qubit dynamics [25,27,28]; here the qubit is
coupled with the heat bath along ẑ axis, playing the role of an
additional bias field on the computational basis states |ẑ; ±〉; if
the external fields are time-independent, in the case of Ohmic
dissipation (s = 1), as the coupling strength reaches its critical
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value αc = 1 this model predicts the occurrence of a quantum
phase transition (QPT) of Kosterlitz-Thouless kind. As a sec-
ond example, we analyze a time-dependent protocol where the
qubit is subject to a rotating magnetic field h(t ) performing a
sweep in a fixed plane, and the dissipation can take place along
two particular directions in the plane of rotation.

III. SPIN BOSON MODEL

We study the dynamics of model in Eq. (1), taking a static
tunneling element along x̂ axis, i.e., hx = �, a bias field along
ẑ axis, hz = h0, hy = 0, and restricting to the case of Ohmic
dissipation (s = 1), with n̂ = ẑ : hence our model reduces to
the biased SBM.

In the last decades, several works have been written in or-
der to characterize its quantum phase diagram and describe the
corresponding dynamical properties under different parameter
regimes. A number of approximate analytical treatments have
been devised in order to compute the behavior of one of
the most important correlators as a function of time, i.e.,
the magnetization along the ẑ axis 〈σz(t )〉, which is directly
related to experiments.

In the unbiased case (h0 = 0), theoretical approaches based
on conformal field theory (CFT) predict that 〈σz(t )〉 exhibits
underdamped oscillations in time, for fixed values of the
coupling strength 0 � α < 1/2; however, the detailed expres-
sions of the oscillation frequency and the damping rate depend
on the adopted approximation scheme [53]. One of the most
popular approximate treatments is the noninteracting blip
approximation (NIBA) [14,25]: according to NIBA scheme, at
T = 0, the underdamped oscillation in time can be described
in terms of analytical functions of the inverse timescale �−1

eff ,
with the effective tunneling energy �eff reading

�eff = [�(1 − 2α) cos πα]
1

2(1−α) �r, �r = �

(
�

ωc

) α
1−α

(6)

where �r is the renormalized gap [25,53]. While the resulting
expression for the oscillation frequency is expected not to
be valid [54], this analytical treatment provides the correct
result for the quality factor of the damped oscillation (see
Appendix B for details), which is a monotonic decreasing
function of α.

Although the NIBA approach successfully describes the
main features of the system in the unbiased case, in the pres-
ence of an external bias field h0, it fails in describing the long-
time limit of 〈σz(t )〉. Several exact analytical treatments based
on perturbation theory are known which, in the weak coupling
limit, give the correct results for the qubit observables, taking
into account the fully quantum correlations between the qubit
and bath degrees of freedom. These theories have been em-
ployed to derive analytical results for the dynamics of heat
exchange of the qubit with the reservoir [55].

The SBM problem can be analytically solved for the
coupling strength α = 1/2 (Toulouse limit). Here a crossover
from coherent to incoherent dynamics takes place: at this
point, at zero bias, the oscillation frequency tends to vanish, as
well as the quality factor. The analytical solution can be found
by mapping the SBM into a resonant level model (RLM),
describing a single localized impurity in contact with a bath
of spinless fermions at the Fermi level; in addition, Coulomb

interactions between the impurity and the fermionic bath are
present [25,27,56], and the resulting coupling strength is a
function of α. For α = 1/2, Coulomb interactions vanish and
the model can be exactly solved: by preparing the qubit in the
state |ẑ; +〉, i.e., 〈σz(0)〉 = 1, in the limit of small �/ωc, i.e.,
ωc → ∞ the magnetization dynamics takes the form

〈σz(t )〉 = e−γ t + 2
∫ t

0
dτ

sin(h0τ )

β sinh
(

πτ
β

) (e−γ τ
2 − e−γ t eγ τ

2 ),

(7)
where β = 1/T (kB = 1) and the damping rate is proportional
to the renormalized gap at α = 1/2, i.e., γ = π�2/2ωc. In the
absence of external bias, 〈σz(t )〉 takes the exponential form
which is also recovered in the NIBA approximation.

Different numerical approaches have been devised in order
to compute the real time dynamics of this problem in the range
of coupling strengths 0 < α < 1/2, where no exact analytical
solution is known to exist [53,57–61]. Here we apply the nu-
merical SIL technique (see Appendix C) in order to describe
dynamics of the reduced density matrix of the qubit up to
the Toulouse point. As stressed in Ref. [50], this technique
allows us to simulate the exact dynamical evolution of the
whole system density matrix ρ(t ) in a suitably truncated bath
Hilbert space: hence, the observables of the whole qubit +
bath system can be computed. We start by preparing the
system and the bath at initial time t0 in a factorized state:

ρ(t0) = ρS(t0) ⊗ e−βHB

ZB
, (8)

where ρS(t ) is the reduced density matrix of the qubit that
can be computed by tracing out the bath degrees of freedom,
i.e., ρS(t ) = trB ρ(t). We choose |ẑ; +〉 as the initial state of
the qubit, while the bath state is taken as the equilibrium state
at T = 0. We model our bath with a collection of M = 50
bosonic modes, choosing the absolute maximum number of
excitations up to Nph = 6 (see Appendix C for details) and
we fix the cutoff frequency of the bath to ωc = 5�. In the
following, we restrict to the unbiased case (h0 = 0), while in
Appendixes A and B, we discuss the biased case along with a
comparison with analytical results.

We simulate the dynamics of the system for different
values of the coupling strength α, ranging from 0.10 to 0.50.
In Fig. 1, we plot the qubit magnetization 〈σz(t )〉 as a function
of the rescaled time �rt : we show that the magnetization
dynamics experiences a crossover from a regime of under-
damped oscillations in time to an incoherent regime where
the oscillation frequency tends to vanish. It occurs when the
coupling strength approaches the expected crossover value
α = 0.50. The crossover from coherent to incoherent behavior
can be interpreted in terms of the growth of the entanglement
between the qubit and its bath [27], a mechanism which can
be found in several bipartite systems [62].

Starting from the initial condition in Eq. (8), where the
state of the system is factorized into a product of states of the
two subsystem, the state of the qubit thermalizes towards the
equilibrium state of the whole Hamiltonian in Eq. (1) at T =
0, showing entanglement with the bath degrees of freedom.
Each numerical curve reported in Fig. 1 describes the correct
dissipative behavior of the qubit, as it can be shown by a direct
comparison with the theoretical result for the quality factor
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FIG. 1. Magnetization 〈σz(t )〉 as a function of the rescaled time
�rt , in the case of Ohmic bath (s = 1), T = 0, h0 = 0, for different
values of the coupling strengths α in the range 0.10 to 0.50. The
number of bath modes is M = 50, the cutoff frequency ωc = 5� and
the maximum number of excitations is Nph = 6.

as a function of the coupling strength α (see Appendix B).
Our results are also in good agreement with recent findings
obtained through novel numerical approaches based on non-
perturbative techniques [53]. A detailed comparison with the
case α = 1/2 in Eq. (7), reported in Appendix B, shows also
good agreement with theory at long times, while at shorter
times small deviations start to appear: it can be explained by
the small cutoff value chosen ωc = 5�, which cannot meet
the parameters conditions ensuring the validity of Eq. (7);
we argue that this limit is also responsible for the residual
coherent behavior of the magnetization at α = 1/2 observed
in Fig. 1 for long times.

A similar analysis of the magnetization dynamics can be
performed in the biased case, considering both the well-
known limits of weak coupling and Toulouse point (see re-
spectively Appendixes A and B). As expected, in the weak
coupling regime an excellent agreement can be found with
the analytical curves, while in the strong coupling limit the
observed deviations from the analytic results can be traced
back to the same reason as in the unbiased case.

Additional insights can be derived from the analysis of the
expectation values of the difference of number operators from
their initial equilibrium values, i.e., 〈�nk (t )〉 = 〈nk (t )〉 − n0

k ,
computed for each bosonic mode at fixed time intervals in the
range [t0, tf], as shown in Fig. 2; it can be inferred that at short
times the bath response extends over the whole frequency
spectrum, high-frequency modes showing slightly greater oc-
cupation than the slower ones, even if the occupation is quite
small. At intermediate times, a set of peaks start to come into
play, due to multiple scattering processes of the qubit with
the bath modes. The bath response shows a first order peak
which signals the onset of a resonant behavior, its position
shifting towards lower frequencies for increasing time. As
expected, the behavior of each curve at intermediate times,
as well as at longer times shows a clear dependence on the
value of the coupling strength α. In Fig. 3, we plot 〈�nk (t )〉,
computed at sufficiently long time tsat for different coupling

FIG. 2. Expectation values of �nk (t ) computed for each bath
mode k at different times {t1, t2, t3, tf} = {0.03, 0.06, 1.14, 6.00} (in
units of �−1

r ), for fixed coupling strength α = 0.40, ωc = 5�, T =
0, h0 = 0, M = 50, and Nph = 6.

strengths α: the results show that the position of the first-order
peak shifts towards lower energies for increasing coupling
strengths, and the characteristic energy of the system is pro-
portional to the effective tunneling energy �eff. Moreover,
the curves of bosonic excitations exhibit oscillations in ωk/ωc

that tend to disappear as the coupling strength approaches the
crossover value: this effect can be seen as a consequence of the
increasingly incoherent behavior of the system. These features
confirm that, for coupling strengths in the range 0 � α � 0.5,
the dynamical evolution of the whole system reaches an equi-
librium state that can be interpreted in terms of a single qubit
whose tunneling energy is renormalized proportionally to �r,
experiencing incoherent tunneling between localized states.

The exchanged energy with the bath can also be studied
for different values of the coupling strengths α. From Fig. 4,
it can be shown that all the curves tend to a saturation value,

FIG. 3. Expectation values of 〈�nk〉 computed for each bath
mode k at rescaled time tsat = 5.35 (in units of �−1

r ), for different
coupling strengths α in the range 0.10 to 0.50, ωc = 5�, T = 0,
h0 = 0, M = 50, and Nph = 6.
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FIG. 4. Expectation values of 〈HB(t )〉 (in units of �r) computed
as a function of the rescaled time �rt , for different coupling strengths
α in the range 0.10 to 0.50, ωc = 5�, T = 0, h0 = 0, M = 50, and
Nph = 6.

which in our simulation is fixed by the energy conservation:
as shown in Ref. [50], at every time t the energy of the
nonequilibrium initial state of the qubit is equal to the sum
of the expectation values of the different operators in Eq. (1).
It can also be noticed that the saturation value of 〈HB(t )〉
strongly depends on the coupling strength α. Moreover, for
increasing coupling strengths, it can be observed that the bath
energy exhibits an oscillatory behavior at short times, and a
moderately pronounced peak which tends to be greater than
its long-time value.

This feature is due to the increasing importance of the
qubit-bath correlations which, in the strong coupling regime,
can modify the mechanism of energy exchange between the
two subsystems. These findings shed light on the complex
physics occurring in the limit of strong dissipation, where
the interaction energy of the qubit with the bath cannot be
neglected. They can serve as starting point for a more detailed
study of interaction effects in a quantum thermodynamics
setting, where the rigorous definition of heat and work is still
debated [63,64]. Furthermore, these findings can be of interest
in the study of quantum heat engines beyond the Markovian
limit.

IV. TIME-DEPENDENT PROTOCOL

In this section, we study the effect of decoherence and
dissipation on a two level system subject to a rotating mag-
netic field. We take the qubit Hamiltonian as in Eq. (2),
where h is the magnitude of the applied magnetic field;
we adopt a system of polar coordinates (θ, φ), i.e., h =
(h sin θ cos φ, h sin θ sin φ, h cos θ ). We also introduce an ad-
ditional static magnetic field along the positive ẑ direction, i.e.,
h0ẑ. We restrict the rotating magnetic field h in the x̂-ẑ plane
by fixing φ = 0. The qubit Hamiltonian thus reads

HS(t ) = −1

2
(h0 + h cos θ (t ))σz − h

2
sin θ (t )σx. (9)

The magnetic field h evolves performing a sweep in x̂-ẑ plane
in a total time tf, i.e., the polar angle changes according to

θ (t ) = π (t − t0)/tf, from θ (t0) = 0 to θ (tf ) = π (1 − t0/tf ).
This protocol, widely studied in the field of nuclear magnetic
resonance (NMR), has regained attention following recent
theoretical and experimental works [41,42]. It has been shown
that physical implementations of Hamiltonians of the form of
Eq. (9) can be achieved with high level of control employ-
ing superconducting circuits; moreover, a simple mapping
exists from Eq. (9) to the Haldane model at half filling on a
honeycomb lattice [65], which is a prototypical model of a
Chern insulator. Following this mapping, every qubit state on
the Bloch sphere at fixed coordinates (θ, φ) can be mapped
onto a single quasimomentum state (kx, ky) around the high-
symmetry points of the first Brillouin zone of the honeycomb
lattice. As a consequence, it allows for a dynamical measure-
ment of the topological properties of the Haldane model by
making use of a superconducting qubit, e.g., the first Chern
number can be probed. It follows that, by tuning the ratio
of the field amplitudes h0/h and performing quantum state
tomography at different times t during the sweep, topological
transitions can be measured with high level of accuracy.

In the following, we analyze the dissipative dynamics of
a qubit described by Eq. (9) at weak and strong coupling
strengths, both for long and short sweep times tf as compared
with the timescale 1/h, i.e., we consider both adiabatic and
antiadiabatic regimes. The qubit is coupled to the environment
along a direction which lies in the plane of rotation of the
magnetic field, and we focus on the two particular cases
n̂ = ẑ, x̂. We compute the excess energy of the qubit at the end
of the sweep, i.e., the difference between the mean value of the
reduced system energy and the ground state energy εgs(tf ) of
the noninteracting qubit Hamiltonian in Eq. (9), computed at
final time tf

εres = Tr[ρ(tf)HS(tf)] − εgs(tf). (10)

Due to the simple form of Eq. (9), the excess energy can also
be linked to the fidelity F (tf ) at the end of the sweep

εres = |h − h0|(1 − F (tf )), (11)

where F (tf ) = 〈ψgs(tf )| ρS(tf ) |ψgs(tf )〉 and |ψgs(tf )〉 is the
ground state of qubit Hamiltonian in Eq. (9) at t = tf. In ad-
dition, we compute the expectation values of qubit operators
〈σ〉 = (〈σx(t )〉, 〈σy(t )〉, 〈σz(t )〉) as functions of time, i.e., the
dynamical evolution of the Bloch vector, at fixed final times tf
and for different values of the coupling strength.

We first consider the qubit system in the absence of dissi-
pation, taking the static bias field h0 = 0: at initial time t0 = 0,
the magnetic field is aligned along the positive ẑ direction
and the qubit is prepared in its ground state, i.e., |ψ (t0)〉 =
|ẑ,+〉. For t > 0, the field h rotates around the ŷ axis.
The qubit dynamics can be straightforwardly solved in the
counter-rotating frame around the ŷ axis (see Appendix D):
due to its simple form, the Hamiltonian in Eq. (9) in the
rotating frame is time-independent, and it follows that the
excess energy of the closed system reads

εres = hθ̇2

2

1 − cos(π
√

h2 + θ̇2/θ̇ )

h2 + θ̇2
, (12)

where we put for brevity θ̇ = π/tf. The qubit dynamics is
described by a cycloid on the Bloch sphere, i.e., the Bloch
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FIG. 5. Excess energy plotted as a function of the final time tf

(in units of h−1), for different coupling strengths α ranging from 0
to 0.20, in the case n̂ = ẑ. The number of modes has been fixed to
M = 80, the cutoff frequency ωc = 5h, Nph = 3, and T = 0. (Inset)
Semilogarithmic plot of the same curves as in the main plot.

vector periodically points out of the x̂-ẑ plane. This trajectory
is due to the oscillations in time of the magnetization along the
ŷ axis: therefore 〈σy(t )〉 can serve as a measure of deviation
from the adiabatic path, which is a circle in the x̂-ẑ plane. The
nonadiabatic response of the Bloch vector is thus proportional
to 〈σy(t )〉 [41]; furthermore, using perturbation theory it has
been shown that at first order in θ̇/h the nonadiabatic response
can be linked to the curvature of the ground state manifold of
the Hamiltonian in Eq. (9), i.e., to the Berry phase of the qubit.
As a consequence, the measure of 〈σy(t )〉 at each time t allows
to achieve the fidelity at final time tf that, in the quasiadiabatic
limit, can be used to compute the first Chern number of the
system [42]. The deviation from the adiabatic path can also
be seen from the excess energy in Eq. (12), which is plotted
in Fig. 5 (black curve): notice that it exhibits several maxima
corresponding to different final times tf owing to the fact that,
in the nonadiabatic regime, the qubit dynamics cannot follow
the evolution of the externally driven magnetic field, and the
state vector of the qubit at the end of the sweep differs from
the corresponding ground state. However, the amplitude of
these maxima is decreasing for increasing final times tf, i.e.,
the dynamics can be considered truly adiabatic only in the
limit tf � 1/h. This scenario undergoes several changes if the
interaction with the external bath is considered.

A. Coupling along ẑ

We first analyze the case of interaction along ẑ axis. In
Fig. 5, we plot the excess energy curve of the qubit interacting
with a bath at T = 0, for different values of the coupling
strength α ranging from 0 to 0.20. As it can be noticed, the
interaction with the external bath acts to reduce the coherence
of the system dynamics. The effect of decoherence results in
a smoothing of the excess energy curve with respect to the
closed case. However, the difference between the closed and
the open system curve depends on the final time tf: at short
final times tf, the interaction with the environment generally

FIG. 6. Plot of 〈σz(t )〉 as a function of time t for the protocol in
Eq. (9), with fixed final time tf = tfmax = 8.42/h. The qubit couples to
an Ohmic bath (s = 1) along n̂ = ẑ, for different coupling strengths
ranging from 0 to 0.40. The number of modes has been fixed to M =
70, the cutoff frequency ωc = 5h, Nph = 5, and T = 0.

leads to an increase of the residual energy, resulting in a
nonadiabatic behavior of qubit dynamics; conversely, at inter-
mediate times tf, the effect of the bath can lead to a decrease
of the local maxima of the excess energy as compared with
the closed case, i.e., the state of the qubit at θ (tf ) is closer
to the corresponding state on the adiabatic path. It follows
that, at weak coupling regime the effect of friction counteracts
the nonadiabaticity of the system induced by the fast external
drive, thus resulting in a reduction of the excess energy. This
scenario changes in the intermediate coupling regime: for
coupling strengths α > 0.1, it can be noticed that the excess
energy starts to increase, and the system definitely misses
the adiabatic path. The resulting nonmonotonic behavior of
the excess energy can be clearly observed for final times tf
where the closed system curve shows secondary maxima of
excitation, while for values of tf corresponding to minima the
interaction with the bath leads to monotonic nonadiabaticity.
It should also be noticed that, as depicted in the inset of
Fig. 5, for very slow sweeps the open system curves at weak
coupling strengths tend to coincide, and they are consistent
with the closed system result. Interestingly, the monotonic
nonadiabaticity at strong coupling regime was recently ob-
served in Ref. [29], where the dynamical behavior of the
Chern number in a dissipative environment was studied and a
description of the bath-induced nonadiabaticity was achieved
using nonperturbative stochastic Schrödinger equation.

Further information on the dynamics of the open system at
intermediate final times tf can be derived from the analysis of
the expectation values 〈σx(t )〉, 〈σy(t )〉, 〈σz(t )〉: in Figs. 6–8,
we plot the expectation values of the spin operators as a
function of time t , from weak to strong coupling regime and
for fixed final time tf = tfmax = 8.42/h, corresponding to the
first second-order maximum of Eq. (12). It can be noticed
that, following the Heisenberg equations which link the time
derivative of 〈σz(t )〉 to 〈σy(t )〉, the decrease in the excess
energy occurring for tf = tfmax = 8.42/h observed at weak
coupling can be traced back to the progressive change of
〈σy(t )〉.
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FIG. 7. Plot of 〈σy(t )〉 as a function of time t for the protocol in
Eq. (9), with fixed final time tf = tfmax = 8.42/h. The qubit couples to
an Ohmic bath (s = 1) along n̂ = ẑ, for different coupling strengths
ranging from 0 to 0.40. The number of modes has been fixed to M =
70, the cutoff frequency ωc = 5h, Nph = 5, and T = 0.

Hence, for increasing coupling strengths α it can be noticed
that the magnetization along ŷ loses the oscillatory behavior
with frequency

√
θ̇2 + h2 (see Appendix D), which is a char-

acteristic feature of dynamics in the absence of dissipation:
actually, as it can be inferred from Fig. 7 the second local
minimum turns into a local maximum, its position drifts
towards higher times t , causing the inflection point of 〈σz(t )〉
in Fig. 6 to change accordingly; eventually, at the end of
the sweep the magnetization along ẑ tends to the adiabatic
value, and the state of the qubit in the open dynamics at
final time tf is closer to the ground state |ψgs(tf )〉. While the
previous description holds true also when the closed-system
excess energy in Eq. (12) shows local minimum values, e.g.,
tf = tfmin = 12.7/h, it can be observed that at weak coupling
strengths the interaction with the bath cannot noticeably
change the excess energy.

FIG. 8. Plot of 〈σx (t )〉 as a function of time t for the protocol in
Eq. (9), with fixed final time tf = tfmax = 8.42/h. The qubit couples to
an Ohmic bath (s = 1) along n̂ = ẑ, for different coupling strengths
ranging from 0 to 0.40. The number of modes has been fixed to M =
70, the cutoff frequency ωc = 5h, Nph = 5, and T = 0.

FIG. 9. Fidelity at final time tf F (tf ), plotted against the coupling
strength α in the range 0.01 to 0.45, for two fixed final times tf =
{ tfmax, tfmin } = { 8.42/h, 12.17/h } corresponding to the first second
order maximum and the second minimum of Eq. (12). The number
of modes has been fixed to M = 70, the cutoff frequency ωc = 5h,
Nph = 5, and T = 0.

More information on the physics at strong coupling regime
can be drawn: as shown in Fig. 6, for α > 0.10 〈σz(tf )〉 starts
to increase. This behavior clearly depends on the final time
tf, i.e., on the slope of the external drive: for faster sweeps,
the nonadiabatic behavior due to the interaction with the
environment occurs at lower coupling strengths as compared
to slower evolutions; as a consequence, the coupling strength
directly influences the adiabaticity condition. This feature can
be inferred from Fig. 9, where we plot the behavior of fidelity
F (tf ) at the end of the sweep, computed for two different
fixed final times tf = { tfmax, tfmin } = { 8.42/h, 12.17/h }, cor-
responding to the first second-order maximum and the second
minimum of Eq. (12) (see Fig. 5, black curve), for different
coupling strengths α taken in the range 0.01 to 0.45. At final
time tf = tfmax, where the closed system excess energy ex-
hibits a local maximum, fidelity shows a small nonmonotonic
behavior, due to the previously described effect; conversely,
at tf = tfmin a flat behavior at weak coupling, followed by
monotonic decrease occurring at higher values of α can be
observed.

As shown in Ref. [29], an adiabaticity criterion for the
protocol in Eq. (9) has been proposed which links the velocity
of the sweep θ̇ to the renormalized field �r along x̂ direction
(with � = h), i.e., θ̇ � �r, provided that θ̇ � h. Further, for
fixed values of θ̇ well below h, at strong coupling a crossover
from quasi-adiabatic to nonadiabatic behavior occurs at
θ̇ 	 �r. We find that our numerical results at strong coupling
generally agree with this scenario, while in the weak coupling
regime several intervals of final times tf exist where the bath
can act to improve the adiabaticity. It follows that, at weak
coupling strengths the dynamical measure of the topological
properties shows robustness to the external noise.

B. Coupling along x̂

Qualitatively different results can be found if the qubit
couples with the bath along x̂ axis. Here we restrict to weak
coupling regime and simulate the dissipative dynamics at
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FIG. 10. Excess energy plotted as a function of the final time tf

(in units of h−1), for different coupling strengths α ranging from 0 to
0.20, in the case of n̂ = x̂. The number of modes has been fixed to
M = 80, the cutoff frequency ωc = 5h, Nph = 3, and T = 0.

T = 0 of the time-dependent protocol in Eq. (9) with n̂ = x̂
and h0 = 0. In Fig. 10, we plot the excess energy as a function
of the final time tf for different coupling strengths, taken in the
same range as in Fig. 5.

It can be shown that, for very fast sweeps the excess
energy can be lower than the closed system result: the actual
numerical results at short final times tf depend on the coupling
strength α at fixed cutoff frequency ωc. As shown in Fig. 11,
by increasing the cutoff frequency ωc, the short final time
limit of the excess energy curve decreases, as a result of the
reduced reaction time of the bath. However, the choice of
different cutoff frequencies ωc does not qualitatively change
the physics at long times tf. The decrease in the excess energy
at short tf is due to the peculiar form of the coupling to the
external environment, which causes the qubit to flip at a fixed
rate proportional to the coupling strength. This effect can
provide a slight advantage to the success of the protocol, as
long as the final time tf is sufficiently short. However, for

FIG. 11. Excess energy plotted as a function of the final time tf

chosen in the range 0.2 to 1.5 (in units of h−1), for fixed α = 0.10,
M = 80, Nph = 3, T = 0, and different cutoff frequencies ωc.

longer final times tf the open system excess energy tends
to be greater than the closed curve: this effect leads to an
increasingly nonadiabatic dynamics, even at weak coupling
strengths, as opposed to the case studied in Sec. IV A where,
as long as the closed system dynamics is quasi-adiabatic, the
dynamics is unaffected by the environment. This result shows
several analogies with a recent study of the finite-time LMSZ
protocol [66], showing that the effect of a transverse coupling
to the bath at long final times tf can lead to a fidelity F (tf )
lower than 1, as opposed to the exact result proposed in [34].
In addition, here the effect of time-periodic driving can be
clearly observed, noticing the persistence of a structure made
of several secondary maxima in the excess energy. These
findings point towards an increasingly nonadiabatic behavior
due to the bath for increasing coupling strengths, occurring at
intermediate up to long final times tf.

V. CONCLUSIONS

In this work, we studied the dynamics of a qubit in contact
with its environment, subject both to static and driven external
fields, from weak to strong coupling strengths, using the
SIL approach. We showed that our method can provide a
good description of the physics of the SBM as a function
of the coupling strength up to the Toulouse point, where a
crossover from coherent to incoherent behavior of the qubit
magnetization takes place. We provided additional insights on
the dynamics of the bath degrees of freedom, showing the
changes in the bath response as a function of time. Moreover,
we studied a protocol of a driven qubit subject to a time-
periodic driving, with dissipation taking place along different
directions. We showed that in the case of coupling along ẑ,
if the dissipation strength is sufficiently weak, the influence
of the bath can counteract the nonadiabaticity of the closed
system evolution, leading to a nonmonotonic behavior of the
fidelity as a function of the coupling strength at fixed values
of the final times. Conversely, at strong coupling bath-induced
non adiabaticity [29] takes place, hindering the success of
the protocol. This scenario changes if the coupling along x̂
axis is considered: a measurable advantage over the closed
system dynamics can be observed only for very fast sweeps,
while for longer sweep durations we predict an increasingly
nonadiabatic behavior, i.e., the excess energy tends to increase
at increasing coupling strength. In the near future, we plan
to extend our analysis to recently proposed time-dependent
protocols implementing counter-diabatic driving [67,68], in
order to investigate the influence of the environment on the
final success probability of these protocols in a broad range of
coupling regimes. In addition, the energy exchange between
systems of externally driven interacting qubits and the bath
will also be analyzed, as well as prototypical models of
quantum heat engines.

APPENDIX A: THE BIASED CASE - WEAK
COUPLING REGIME

Below, we report a comparison of our numerical results for
the dynamics of the qubit magnetization in the biased SBM
(h0 
= 0), with analytical curves derived by means of a first
order expansion in the model parameters reported in Ref. [55].
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FIG. 12. Plot of 〈σz(t )〉 as a function of time t for the biased
SBM, having fixed ωc = 5�, α = 0.001, h0 = 0.5�, T = 0, and
Nph = 3. SIL results (red points) compared with theoretical curve
from Eq. (A1) (solid blue curve).

In the limit of weak coupling regime (α � 1), and taking T =
0, the qubit magnetizations along x̂, ẑ axes read

〈σz(t )〉 = h0

�
(1 − e−γr t ) + h2

0

�2
e−γr t + �2

r

�2
cos(�t )e−γ̃r t ,

〈σx(t )〉 = �2
r

��
(1 − e−γr t ) + h0�

2
r

��2
(e−γr t − cos(�t )e−γ̃r t ),

(A1)

where � =
√

�2
r + h2

0 , and the damping rates are γr =
πα�2

r /�, γ̃r = γr/2. For nonzero temperatures T of the
reservoir, these results slightly change [55]. Equation (A1)
include the quantum non-Markovian effects due to the in-
teraction of the qubit with the bath. In Figs. 12 and 13,
we compare numerical SIL results with analytical curves
in Eq. (A1), having fixed the bias field h0 = 0.5� and the

FIG. 13. Plot of 〈σx (t )〉 as a function of time t for the biased
SBM, having fixed ωc = 5�, α = 0.001, h0 = 0.5�, T = 0, and
Nph = 3. SIL results (red points) compared with theoretical curve
from Eq. (A1) (solid blue curve).

FIG. 14. Plot of the quality factor Q against the coupling strength
α at T = 0: numerical estimate derived from a fit of the numerical
curves showed in Sec. III (red points), compared with the theoretical
result in Eq. (B1) known from CFT and NIBA predictions (blue
curve).

coupling strength α = 0.001. As expected, SIL results show
an excellent agreement with analytical curves. It could be
shown that small quantitative differences may appear as we
compare the numerical results for the energy exchanged
with the reservoir with the analytical expression reported in
Ref. [55].

However, by means of our technique the qualitative fea-
tures of the energy exchange, from intermediate to long times,
can be correctly described, and we argue that the observed
differences are mainly due to the choice of the small cutoff
frequency ωc.

APPENDIX B: TOWARDS STRONG COUPLING REGIME

In the following, we compare our numerical findings for
the SBM with well known theoretical results from the lit-
erature. As discussed in the main text, in the unbiased case
approximate analytical treatments (NIBA) have been devised
in order to describe the underdamped oscillation in time of
the qubit magnetization and its crossover to the incoherent
regime. Although it is argued that these theories generally
don’t give the correct analytical expression for the oscillation
frequency, the result for the quality factor of the oscillation, in
the limit of large ωc and T = 0, reads

Q = �

γ
= cot

[
πα

2(1 − α)

]
. (B1)

In Fig. 14, we plot the quality factor computed by fitting
the numerical curves of Sec. III against the theoretical result
in Eq. (B1), as a function of the coupling strength α in
the range 0.03 to 0.45. The numerical results fairly agree
with the theoretical prediction, showing that our technique
can successfully describe the dissipative behavior expected
from conventional theories. However, a direct comparison
with Eq. (7) for h0 = 0 shows that at the Toulouse point our
numerical simulations cannot correctly describe the expected
result in the whole time domain. As it can be derived from
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FIG. 15. Magnetization 〈σz(t )〉 as a function of the rescaled time,
computed at the Toulouse point (α = 1/2), for h0 = 0 (unbiased
case), at T = 0; we plot of the numerical SIL result (red curve),
compared with the theoretical curve in Eq. (7) (solid blue curve),
which is valid in the limit ωc → ∞. As in the main text, M = 50,
ωc = 5�, and Nph = 6.

Fig. 15, a deviation from the analytical result can be observed
in the region of intermediate times, while at longer times a
residual coherent behavior can be observed which cannot be
found in nonperturbative analytical treatments.

Similar results can be found in the biased case: as it is
evident from Fig. 16, while the numerical curve correctly
describe the qualitative behavior of the function in Eq. (7),
which is strictly valid for ωc → ∞ as leading order, several
quantitative differences can be observed, e.g., the long-time
value of 〈σz(t )〉 slightly differs from that expected from
Eq. (7) at T = 0, i.e., 〈σz(∞)〉 = 2

π
arctan( 4h0ωc

π�2 ). As antic-
ipated in the main text, these results are mainly due to the
small value of the frequency cutoff ωc chosen: we expect
these small numerical differences to vanish if the frequency

FIG. 16. Magnetization 〈σz(t )〉 as a function of the rescaled time,
computed at the Toulouse point (α = 1/2), with fixed bias h0 = 3�,
and T = 0; we plot the numerical SIL result (red points), compared
with the theoretical curve in Eq. (7) (solid blue curve). As in the main
text, M = 50, ωc = 5�, and Nph = 6.

cutoff, as well as the number of the bath oscillators M is
increased. However, as the dimension of the truncated Hilbert
space considered rapidly grows with the absolute maximum
number of excitations Nph and the number of modes M (see
Appendix C for details), the inclusion of additional modes in
the strong coupling regime can become prohibitively costly.
These findings point towards the need for an optimized basis
of states for the implementation of SIL method, which could
hopefully reduce its computational cost.

APPENDIX C: SIL METHOD

The dissipative dynamics governed by Eq. (1) can be stud-
ied numerically by evaluating the evolution operator U (t, t0)
of the whole qubit + bath system, in order to simulate the
unitary dynamics of the global state |�(t )〉 of the system and
then carry out the trace over the bath degrees of freedom. This
task can be performed by employing a discretization of the
bath modes entering in Eq. (3), a suitable truncation scheme
of the bath Hilbert space, followed by the application of SIL
method [48–50]. The discretization of the bath modes can be
performed by choosing a density of states ρ(ω) and by fixing
the total number of bosonic modes M in the range [0, 2ωc];
here we adopt an exponentially decreasing density of states
with frequency cutoff ωc

ρ(ω) ∝ exp

(
− ω

ωc

)
,

∫ ωc

0
ρ(ω) = M. (C1)

As a consequence, for each mode of frequency ωk we choose
the coupling strength g(ωk ) obeying the following relation

ρ(ωk )g2(ωk ) = 2α
ωs

k

ωs−1
c

e− ωk
ωc , (C2)

It is clear that this finite system can mimick the theoretical
model of a continuum set of modes constituting tha bath as
long as M is sufficiently high. Every bath state is described
by a set of basis states {|n1, n2, . . . , nM〉 }, where nk is the
occupation number of the kth bosonic mode of the bath. In
order to perform a truncation of the space spanned by these
states, we fix the absolute maximum number of bosonic ex-
citations Nph with respect to the thermal equilibrium, and we
restrict the description only to states for which �nk = nk −
neq

k = { 0,±1,±2, . . . ,±Nph }, with
∑

k |�nk| � Nph, where
neq

k is the occupation number of the kth bosonic mode at
equilibrium. Hence this numerical approach can give an exact
description of the physics up to terms in αNph . The resulting
dimension of the truncated Hilbert space of the qubit + bath
system is thus equal to

N = 2
Nph∑
j=1

(
Nph

j

)(
M

j

)
. (C3)

For Nph = 5 and M = 50, the dimension of the truncated
Hilbert space is N = 6 957 520. After having fixed the set
of basis states, we compute iteratively the state of the system
|�(t )〉 at each time t : it can be achieved by employing a dis-
cretization of the total evolution time interval in steps dt , and
a projection of the Hamiltonian evaluated at midpoint in each
time interval [t, t + dt] into the n-dimensional subspace K =
{ |�(t )〉 , H |�(t )〉 , . . . , Hn |�(t )〉 } spanned by the Krylov
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orthonormal vectors {|�k〉 }n
k=1, which we compute using

recursive Gram-Schmidt orthogonalization techniques. The
reduced Hamiltonian reads H̃ (t + dt/2) = PH (t + dt/2)P†,
where P is the projection operator in the subspace K; it can be
easily diagonalized and the evolution operator in terms of the
eigenstates of H̃ (t + dt/2) can be derived

Ũ (t + dt, t ) 	 exp[−i H̃ (t + dt/2)dt]. (C4)

Finally, we expand the state at previous time t |�(t )〉 in terms
of the eigenvectors of H̃ (t + dt /2), and thus we are able to
compute the state at the end of the time interval |�(t + dt )〉
using (C4) by means of matrix products. The computation of
the full ket state allows us to derive the density matrix of the
system, from which we can numerically trace over the bath
degrees of freedom and compute the reduced density matrix
of the qubit. Every bath observable can also be computed. The
number of time steps employed in the simulations depends
on the final time tf needed: a typical value for the fixed time
interval is dt = 0.1/h.

APPENDIX D: QUBIT DYNAMICS IN THE
ABSENCE OF DISSIPATION

The qubit dynamics ruled by Eq. (9) can be easily solved
in the counter-rotating reference frame around the ŷ axis, if
the static field h0 is taken to be equal to zero. Given the
rotation operator of angle φ around the n̂ direction U (n̂, φ) =
exp(−i n̂ · σφ/2), we can write the Schrödinger equation for
the rotated ket |ψ (t )〉r = U |ψ (t )〉; taking h̄ = 1, the Hamil-
tonian Hr in the rotating frame reads

Hr = i
dU

dt
U † + UHU †. (D1)

Notice that the Hamiltonian can be written as a sum of two
terms, the first is the adiabatic gauge potential in the rotating

frame, while the second is the diagonalized Hamiltonian
operator. The adiabatic gauge term is responsible for the
transitions between diabatic states in the rotating frame: this
implies that, as shown in Refs. [68,69], at least in principle
it is possible to engineer counter-adiabatic Hamiltonians for
which these transitions are always suppressed in the rotating
frame. In our conventional scheme, we take n̂ = ŷ and impose
the counter-rotating condition φ(t ) = −θ (t ), the resulting
Hamiltonian Hr is time-independent and it reads

Hr = −h

2
σz − θ̇

2
σy. (D2)

The adiabatic eigenvalues of Hamiltonian in Eq. (D2) are
E± = ± 1

2

√
θ̇2 + h2; after computing the adiabatic eigenvec-

tors of Eq. (D2), given the initial state of the qubit |ψ (t0)〉, the
state of the qubit at final time t can be easily found:

|ψ (t )〉 = U †(ŷ, θ (t ))Ur (t, t0)U (ŷ, θ (t0)) |ψ (t0)〉 , (D3)

where Ur(t, t0) is the evolution operator in the rotating frame.
In the protocol described in Sec. IV the qubit is initially
prepared in the state |ψ (t0)〉 = |ẑ; +〉: by choosing t0 = 0, the
magnetic field evolves from θ (0) = 0 to θ (tf ) = π , thus the
final state reads

|ψ (tf )〉 = −i σy exp(−i Hrtf ) |+〉 . (D4)

From Eq. (D4), the magnetization along ẑ at the end of the
protocol can be straightforwardly derived, and it reads

〈σz(tf )〉 = −h2 + θ̇2 cos(π
√

θ̇2 + h2/θ̇ )

θ̇2 + h2
. (D5)

The excess energy at the end of the annealing can thus be
directly evaluated and gives Eq. (12).
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