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We develop a theory of the phonon-mediated Casimir interaction between two pointlike impurities which
is based on the single-impurity scattering T -matrix approach. We show that the Casimir interaction at T = 0
falls off as a power law with the distance between the impurities. We find that the power in the weak and
unitary phonon-impurity scattering limits differs, and we relate the power law to the low-energy properties of the
single-impurity scattering T matrix. In addition, we consider the Casimir interaction at finite temperature and
show that at finite temperatures the Casimir interaction becomes exponential at large distances.
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I. INTRODUCTION

The Casimir interaction is the fundamental physical phe-
nomenon which emerges due to modifications of vacuum
fluctuations by boundaries in a confined area of space [1–3].
It arises in many fields of physics [4–6], including condensed
matter [7–9]. Recently, substantial interest in the Casimir
effect has revived as a result of the significant progress in the
experimental techniques in cold atoms [10–16]. Several setups
were proposed for studying the Casimir interaction in cold
atoms. [17–19]. Among them is the Luttinger liquid in one-
dimensional (1D) atomic gases [20–24], in which phonons
may mediate the Casimir interaction between two impurity
atoms [25,26]. The Casimir interaction for this realization was
studied in two limits in one dimension: by Recati et al. in the
static limit [25] and by Schecter and Kamenev in the dynamic
limit [26]. It was shown that the Casimir interaction falls off
with the distance r between the impurities as r−1 in the static
limit of impurities in the Luttinger liquid of fermions with
repulsion and as r−3 in the dynamic one. Later on, the authors
of [27] examined how the Casimir interaction evolves with
the increase of the mass of the impurities and showed that
the scaling of the Casimir interaction continuously changes
from r−3 to r−1 for dynamic impurities if the mass of the
impurities becomes infinitely large. The observability of the
Casimir effect in 1D cold atoms was checked in [25,26]. It
was predicted there that the magnitude of the Casimir inter-
action in cold atoms is within the experimentally accessible
range.

In the present paper, we extend the theory of the phonon-
mediated Casimir interaction to two- and three-dimensional
systems at finite temperatures. We consider a model of two
impurity atoms having different masses (e.g., isotopes), em-
bedded in a lattice. The scattering of the lattice phonons on the
impurities gives rise to Casimir forces between the impurities.
We investigate the evolution of the Casimir interaction in the
full range of the scattering amplitude starting from the weak
phonon-impurity scattering to the unitary limit. In order to
regularize the intrinsic infrared and ultraviolet divergences,

the impurity scattering T -matrix approach is used. Such an
approach was used in earlier works in different contexts
[28–38].

The rest of the paper is organized as follows. We describe
the model for dynamical impurities. Then we derive the
Casimir interaction in terms of the single-impurity T matrix
for the considered system. Using the general properties of the
T matrix, we consider the Casimir interaction in dimensions
D = 1–3. Then, we evaluate the effect of temperature. Finally,
we consider a model for static impurities in an external poten-
tial. We conclude with a discussion of the obtained results.

II. DYNAMICAL IMPURITIES

We consider acoustic phonons which are described by a
standard Hamiltonian (e.g., [39]):

Ĥ0 =
∑

k

[
π (k)π̄ (k) + ω2

kϕ(k)ϕ̄(k)
]
, (1)

where the bosonic fields are

π (x) = i√
V

∑
k

√
ωk

2
[bkeikx − b†

ke−ikx],

ϕ(x) = 1√
V

∑
k

√
1

2ωk
[bkeikx + b†

ke−ikx],

with linear dispersion ωk = c|k|. Here bk, b†
k are phonon

annihilation and creation operators, V is the volume of the
system, and c is the sound velocity. We put h̄ = 1 in the paper.

The simplest form of the interaction of the phonons with
an impurity is the bilinear form of the field operators, i.e.,
ππ̄ and ϕϕ̄. The term ππ̄ describes a perturbation in the
kinetic energy and gives a dominant contribution to the
Casimir interaction in systems with mobile impurities which
are moving coherently with the media [26]. Hereafter, we
refer to these types of impurities as dynamic impurities. The
term ϕϕ̄ characterizes a perturbation in the potential energy
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of immobile impurities. Therefore, we label them as static
impurities. The origin of these terms will be discussed below
with the example of a model of two impurity atoms embedded
in a lattice (see Appendix A). In addition, the model can
also describe the interaction between two impurities in the
Luttinger liquid in one dimension, as shown in [26].

In this section, we consider the ππ̄ impurity-phonon in-
teraction for two impurities. We consider the case when the
impurities are much slower than phonons. In this limit, the
interaction of phonons with two impurities located at the given
time at the coordinates −r/2 and r/2 can be written as

Ĥint = −g[π (x)π̄ (x)|x=− r
2
+ π (x)π̄ (x)

∣∣
x= r

2

]
x.

(2)

Here g is the interaction constant. The requirement of the
positiveness of the kinetic energy leads to g � 1. It was shown
in [27] that g = 1 corresponds to the limit of infinite mass of
impurities in the lattice model (see Appendix A).

We define the Green’s functions on the Matsubara axis
(ωn = 2πT n) at temperature T for noninteracting bosons
as [40]

G(0)(x, x′, ωn)=−
∫ 1

T

0
dτe−iωnτ 〈Tτ (π (x, τ )π̄ (x′, 0))〉. (3)

For the calculations of the Casimir interaction, it is enough
to find the Green’s functions taken at the coordinates of
the impurities ±r/2. For the sake of simplicity, we use the
following notation:

G(0)
r (ωn) ≡ G(0)

(
+ r

2
,− r

2
, ωn

)
= G(0)

(
− r

2
,+ r

2
, ωn

)
,

G(0)(ωn) ≡ G(0)
(
+ r

2
,+ r

2
, ωn

)
= G(0)

(
− r

2
,− r

2
, ωn

)
.

(4)

The explicit expressions for these Green’s functions read [27]

G(0)
r (ωn) =

∫
dDk

(2π )D

[
1 − ω2

n

ω2
n + ω2

k

]
e−ikr (5)

and

G(0)(ωn) =
∫

dDk
(2π )D

[
1 − ω2

n

ω2
n + ω2

k

]
, (6)

respectively. Note that G(0)(ωn) is formally divergent in the
ultraviolet limit. It can be regularized considering a lattice
model.

III. THE CASIMIR INTERACTION

The starting point is the derivation of the thermodynamic
potential of the system of phonons interacting with two im-
purities located at points ±r/2. We employ the well-known
relation between the derivative of the thermodynamic poten-
tial with respect to a parameter and the derivative of the
total Hamiltonian Ĥ = Ĥ0 + Ĥint with respect to the same
parameter [40,41]. Then one has

∂�(r)

∂r
=
〈
∂Ĥint (r)

∂r

〉
. (7)

FIG. 1. Diagrammatic representation of the derivative of the ther-
modynamic potential with respect to the distance of the impurities.

The right side of Eq. (7) can be found using the T -matrix
approach. The corresponding diagram is presented in Fig. 1.
The solid line with a tick stands for the derivative of the
Green’s function ∂G(0)

r (ωn )
∂r . The circle is the two-impurity scat-

tering T matrix T2(− r
2 , r

2 , ωn). Then Eq. (7) takes the form

∂�(r)

∂r
= T

∑
n

∂G(0)
r (ωn)

∂r
T2

(
− r

2
,

r
2
, ωn

)
.

T2(− r
2 , r

2 , ωn) can be deduced from the single-impurity scat-
tering matrix T1(ωn). The series for T1(ωn) is shown in Fig. 2.
The explicit form is

T1(ωn) = g

1 − gG(0)(ωn)
. (8)

The two-impurity T matrix, represented in Fig. 3, is given by
the set of the following equations:

T2

( r
2
,

r
2
, ωn

)
= T1(ωn) + T1(ωn)G(0)

r (ωn)T2

(
− r

2
,

r
2
, ωn

)
,

T2

(
− r

2
,

r
2
, ωn

)
= T1(ωn)G(0)

r (ωn)T2

( r
2
,

r
2
, ωn

)
. (9)

Solving Eqs. (9), one gets

∂�(r)

∂r
= −T

∞∑
n=−∞

[
T1(ωn)G(0)

r (ωn)
]2

1 − [
T1(ωn)G(0)

r (ωn)
]2

∂rG(0)
r (ωn)

G(0)
r (ωn)

.

(10)
The Casimir interaction can be found by integration of
Eq. (10) with a condition ��(r) → 0 for r → ∞:

UCas(r) ≡ ��(r) = T
∑
ωn>0

ln
{
1 − [

T1(ωn)G(0)
r (ωn)

]2}
.

(11)

Now, as we have established the general expression for the
Casimir energy via the single-particle scattering matrix and
Green’s functions, it is worth evaluating these Green’s func-
tions in various dimensions. The Green’s function G(0)

r (ωn)
(r 	= 0) can be explicitly calculated for the linear boson
spectrum ωk = ck from Eq. (5). It yields in the dimensions

T1(ωn)

= + + ...
g gG(0)(ωn)g

FIG. 2. Definition of the single-particle T matrix T1(ωn).
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FIG. 3. Diagrammatic representation of the two-impurity T ma-
trix. The empty circles here correspond to T1(ωn), light blue and dark
blue circles mean T2( r

2 , r
2 , ωn) and T2(− r

2 , r
2 , ωn), respectively, and

the wavy lines are the Green’s functions G(0)
r (ωn).

D = 1–3 (see Appendix B for details)

G(0)
r (ωn) =

⎧⎪⎪⎨
⎪⎪⎩

−|ωn|
2c e− |ωn |

c r, D = 1,

−|ωn|2
2πc2 K0

( |ωn|
c r
)
, D = 2,

− |ωn|2
4πrc2 e− |ωn |

c r, D = 3,

(12)

where K0(x) is the modified Bessel function of the second
kind.

We would like to note that the large-distance scaling of
G(0)

r (ωn) is universal and can be expressed in the form

G(0)
r (ωn) ∼

r |ωn |
c �1

|ωn| D+1
2 r− D−1

2 e− |ωn |
c r . (13)

Due to the exponential dependence of G(0)
r (ωn) on the energy,

the leading contribution to the Casimir effect comes from low
energies ωn � ω∗

n = c/r at large distances.

A. Second order of the perturbation theory

The lowest-order term in g contributing to the Casimir
interaction is of the second order, which is given by the
diagram depicted in Fig. 4:

UCas(r) =
∫ ∞

0

dωn

2π

[
gG(0)

r (ωn)
]2

. (14)

Using the expression for G(0)
r (ωn) given by Eqs. (12) and (13),

we get that the Casimir potential in the second order of the
perturbation theory obeys the law UCas(r) ∼ r−(2D+1). In D =
1–3, we get the following expressions:

UCas(r) =

⎧⎪⎪⎨
⎪⎪⎩

− g2c
32πr3 , D = 1,

− 27g2c
2048r5 , D = 2,

− 3g2c
64π2r7 , D = 3.

The expression for D = 1 agrees with earlier results obtained
in [26,27].

B. T -matrix approximation

Continuum limit. Keeping only the leading terms in
the low-energy expansion, one can write down the single-

−r/2 r/2

FIG. 4. UCas(r) in the second order of the perturbation theory.

impurity T1(ωn) matrix of the phonon-impurity scattering in
the following form (for details see Appendix B):

T1(ωn) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
a−1+A1

|ωn |
c

, D = 1,

1

a−1+A2
|ωn |2

c2 ln
∣∣ ωc

ωn

∣∣ , D = 2,

1

a−1+A3
|ωn |2

c2

, D � 3.

(15)

The coefficients a, AD, and ωc can be determined in various
transport experiments and can be considered phenomenolog-
ical parameters. Then Eq. (11) directly relates the Casimir
interaction to the physical properties of the phonon-single-
impurity scattering amplitude. This parameter cannot be
found in the frame of the considered microscopic theory
since it emerges as a consequence of the linear spectrum
possessed by an effective low-energy theory. For numerical
estimations of the Casimir forces we use further a mapping
of the continuum model with linear dispersion on the lattice
model presented in the next paragraph.

For the finite value of a, the T1 matrix can be ap-
proximately set as T1 → a at small values of ωn � ω∗

n .
As one can see from Eq. (15), the characteristic en-
ergy ω∗

n depends on the dimensionality and for D = 1–3
reads ω∗

n,1D = c/(aA1), ω∗
n,2D = c

√
1/[aA2| ln ωc(

√
aA2/c)|],

ω∗
n,3D = c

√
1/(aA3).

Since G(0)
r (ωn) exponentially depends on ωnr, the leading

contribution to the Casimir energy, as seen from Eq. (10),
comes from the energies ωn � c/r. It naturally defines the
characteristic length ra ∼ c/ω∗

n of the change of the scaling
behavior of the Casimir interaction. At these energies, the
T1(ωn) matrix can be approximated by the constant a. As
a result, at large distances between the impurities r � ra,
the scaling of the Casimir interaction is the same as in the
second order of the perturbation theory with the renormalized
phonon-impurity coupling UCas(r) ∼ T 2

1 (ωn = 0)/r (2D+1).
For g = gcr, a → ∞, and ra → ∞. Hence, the energy

dependence of the T1(ωn) matrix becomes important. The
evaluation of Eq. (10) with T1(ωn) from Eq. (15) in the unitary
limit shows that the Casimir interaction scaling in the leading
order leads to

UCas(r) ∼

⎧⎪⎨
⎪⎩

1
r , D = 1,

1
r ln2 r

, D = 2,

1
r2D−1 , D � 3.

(16)

The analysis of the intermediate case of large but finite ra

shows that at small distances r � ra the scaling in the leading
approximation is described by Eq. (16).

Lattice model. Now we map the model on a lattice in order
to study the general properties of the T matrix. We analyze

an ideal harmonic cubic lattice described by H0 = ∑
i

p̂2
i

2m +
mω2

0
2

∑
〈i, j〉(ûi − û j )2, with two embedded impurity atoms with

a mass different from the mass of the atoms of the lattice.
Here p̂i and ûi are the momentum and coordinate operators, m
is the mass of the atoms of the cubic lattice, and mω2

0 is the
potential term, where ω0 = c/δ and δ is the lattice constant.
For simplicity, we put δ = 1.

The excitations of the ideal harmonic lattice are noninter-
acting phonons. The Hamiltonian reads H0 = ∑

k ωk(b†
kbk +

1
2 ). The dispersion of the phonons on a lattice is given as
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ωk = c
√

2D − 2
∑

δ cos (kδ), where the summation is done
over the nearest neighbors. The effect of the introduced im-
purity atoms can be considered a perturbation to the kinetic
part of the Hamiltonian: V = g

2m ( p̂2
a + p̂2

b), where a and b are
impurity positions. The coupling constant g = (1 − m/M ),
with m being the mass of the atom of the ideal lattice and M
being the mass of the impurity atom. The momentum operator
p̂k is quantized as p̂k = i

√mωk
2 (b̂†

k − b̂k ). This term V is an
equivalent of the phonon-impurity coupling given at Eq. (2).
In terms of the bosonic operators b̂k, b̂†

k, it reads

V (r) = g
∑
k,k′

√
ωk

√
ωk′

[
− b̂†

kb̂k′ cos
(k − k′)r

2

+ b̂kb̂k′ cos
(k + k′)r

2
+ H.c.

]
,

r = rb − ra. Rewriting this expression in terms of π and π̄ ,
one obtains Eq. (2). Then we define the Green’s functions in
accordance with Eqs. (3), (5), and (6). Integrations in G(0)

r (ωn)
and G(ωn) are performed over the Brillouin zone, and the
integrals in Eqs. (5) and (6) become finite:

G(0)
r (ωn) = V D

c

∫
BZ

dDk

(2π )D
cos kr

ω2
k

ω2
n + ω2

k

,

G(0)(ωn) = V D
c

∫
BZ

dDk

(2π )D

ω2
k

ω2
n + ω2

k

. (17)

V D
c is the elementary cell volume in D dimensions.

Now we evaluate G(0)
r (ωn), G(0)(ωn), T1(ωn) and the

Casimir interaction for the cubic lattice with the phonon
spectrum ωk:

ωk = 2c

√√√√ D∑
i=1

sin2 ki

2
, (18)

where D is the dimensionality. The Green’s functions G(0)
r (ωn)

and G(0)(ωn) are

G(0)
r (ωn) = − fD

( |ωn|
2c

)
,

G(0)(ωn) = 1 − fD

( |ωn|
2c

)
,

where the function fD(x, r) does not contain any divergences
and falls off exponentially with energy and distance. It can be
analytically calculated in D = 1 (see [27]) and estimated in
the leading approximation for higher dimensions.

The T1(ωn) matrix can be found exactly by summation of
the contributing diagrams:

T1(ωn) = 1
1−g

g + fD
( |ωn|

2c , 0
) . (19)

The value g = 1 corresponds to the unitary limit a = g/(1 −
g) → ∞. Namely, this limit corresponds to the scattering of
bosons on a static impurity considered in [25]. Far away
from this limit, the low-energy part of the T matrix can be
considered constant.

The function f1D reads

f1D(x) = x√
1 + x2

(x +
√

1 + x2)−2r .

This expression in the limit of small ωn gives Eq. (15), with
a = g

1−g and A = 1
2c .

For the dimensions D = 2, 3, a and A are evaluated nu-
merically. For a cubic lattice in two and three dimensions,
Gr (ωn) in the leading approximation is identical to Eq. (12)
in the limit of small Matsubara frequencies ωn � c/δ. The
coefficients a, AD, ωc in the analytical expressions given
above are fitted to match these numerical results. This gives

us G(0)(ωn) = 1 − ω2
n

2πc2 ln |ωc
ωn

| in two dimensions. While the
coefficient in front of the ln is universal in two dimen-
sions, the value of ωc depends on the parameters of the
lattice. For the square lattice one can approximate ω2

c � 28
in units of energy. The same calculation for the hexago-
nal lattice leads to the phonon spectrum ω2

k = 8
3 ( sin2 kx

2 +
sin2 kx+

√
3ky

4 + sin2 kx−
√

3ky

4 ), with ω2
c ≈ 32. In three dimen-

sions, G(0)(ωn) = 1 − 1
4c2 ω

2
n in the leading approximation for

low energies.
This allows us to approximate the Casimir interaction for

the linearized spectrum as

U (1D)
Cas (r) =

∫ ∞

0

dωn

2π
ln

⎡
⎣1 −

( |ωn|
2c e− |ωn |

c r

(1 − g)/g + |ωn|
2c

)2
⎤
⎦,

(20)

U (2D)
Cas (r)=

∫ ∞

0

dωn

2π
ln

⎡
⎣1−

( |ωn|2
2πc2 K0

( |ωn|
c r
)

(1 − g)/g + |ωn|2
2πc2 ln

∣∣ωc
ωn

∣∣
)2
⎤
⎦,

(21)

U (3D)
Cas (r) �

∫ ∞

0

dωn

2π
ln

⎡
⎣1 −

( |ωn|2
4πrc2 e− |ωn |

c r

(1 − g)/g + |ωn|2
4c2

)2
⎤
⎦. (22)

The r dependence of the Casimir interaction given by
Eqs. (20)–(22) for various g and D = 1–3 is illustrated in
Figs. 5 and 6. There are two regions, which are determined by
the characteristic distance ra. For r � ra, one finds the uni-
versal scaling UD ∼ 1

r2D+1 . At distances r � ra this interaction
is not universal. But at very short distances, r � ra = c/ω∗

n ,
the Casimir interaction can be approximated in the leading
order as Eq. (16). In the unitary limit g → 1 (the static limit
in terms of the lattice model) due to the energy dependence
of T1(ωn), U1D(r) ∼ 1/r, U2D(r) ∼ 1/(r ln2 r), and UD(r) ∼
1/r2D−3 for D � 3 at any r since ra → ∞.

C. Casimir interaction at finite temperatures

Finite temperatures affect the scaling of the Casimir inter-
action at large distances since the phonons get damping due
to temperature. The Casimir interaction at finite temperatures
is given by Eq. (11). Since G(0)

r (ωn) ∼ e−ωnr/c, there are two
limiting cases of r � λT and r � λT , where λT = c/(2πT )
is the thermal de Broglie wavelength. In the former case, one
restricts the summation by the first term. However, in the latter
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(a) (b) (c)

FIG. 5. Casimir interaction of dynamic impurities at finite temperature and at T = 0. rT is the effective length of the potential. In units of
energy, (a) 1D system with parameter g = 0.95. Red line: T = 0.002ω0. Blue line: T = 0. (b) Two-dimensional system with g = 0.99. Red
line: T = 0.003. Blue line: T = 0. λT � 53 is the de Broglie wavelength, rT � 110. (c) Three-dimensional system with g = 0.999. Red line:
T = 0.004. Blue line: T = 0.

case, one has to perform the summation over all Matsubara
frequencies.

To illustrate this point, it is worth considering a 1D system.
In the explicit form, the thermodynamic potential reads

U 1D
Cas(r) = T

∞∑
n=1

ln

[
1 −

(
e−nr/λT

2λT (na)−1 + 1

)2
]
,

where we use a = g/(1 − g). Now there are two characteristic
lengths: the characteristic length ra and rT of the order of the
thermal de Broglie length rT � λT [generally speaking, this
parameter has a weak dependence on g in D > 1 and can differ
from λT by a numerical factor of the order of 1, as illustrated
in Fig. 5(b)]. For r � rT , the sum is dominated by the first
Matsubara term, and we get a universal exponential decay of
the interaction:

U 1D
Cas(r) ≈ −T

e−2r/λT

(2λT /a + 1)2
. (23)

For r � ra, rT the Casimir interaction follows the r−1 law.
For the intermediate distances ra � r � rT , the Casimir in-
teraction falls off as r−3. A special consideration is required
when we are exactly in the unitary limit a → ∞. The decay

of the Casimir interaction for r � rT in this case is precisely
r−1, and it further transfers to the exponential behavior (23)
for r � λT . These dependencies can be seen in Figs. 5
and 6, in which the Casimir interaction at finite tempera-
tures and at T = 0 is presented. As a guideline, we depict
approximate borders of the change of the Casimir law ra

and rT . A detailed derivation of various limits is provided in
Appendix C.

The effect of temperature in two-dimensional (2D) and
three-dimensional (3D) systems can be calculated in the same
way. The calculations lead to

U 2D
Cas = T

∞∑
n=1

ln

⎡
⎣1 − 2

[
K0
(

nr
λT

)]2

( 4πλ2
T

n2a + ln λ2
T ω2

c +(cn)2

(cn)2

)2

⎤
⎦

and

U 3D
Cas = T

∞∑
n=1

ln

⎡
⎣1 −

(
1
πr e− nr

λT

4λ2
T

an2 + 1

)2
⎤
⎦.

(a) (b) (c)

FIG. 6. Casimir interaction of dynamic impurities in the unitary limit (g = 1). (a) One-dimensional system. Red line: T = 0.002. Blue
line: T = 0. (b) Two-dimensional system. Red line: T = 0.003. Blue line: T = 0. (c) Three-dimensional system. Red line: T = 0.004. Blue
line: T = 0.
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For r � rT , the leading contribution to the thermodynamic
potential comes from the first Matsubara frequency:

U 2D
Cas �

r�rT

−
πT λT

4r e− 2r
λT( 2πλ2

T
a + ln

∣∣ λT ωc
c

∣∣)2 (24)

and

U 3D
Cas �

r�rT

g2T

r2π2

e− 2r
λT( 4λ2

T
a + 1

)2
. (25)

The typical behavior is demonstrated in Figs. 5(a) and 5(b).
Note that the value of rT in two and three dimensions is
different from the de Broglie wavelength by some factor. This
difference can be clearly seen in Fig. 5(b). One can see that at
large distances r � rT the decay of the Casimir interaction is
exponential in all dimensions. For r � rT and g < 1, there is a
crossover from the short-distance law to the T = 0 long-range
law r−(2D+1). The Casimir interaction in the unitary limit
given in Fig. 6 demonstrates the asymptotic behavior (16) with
temperature corrections similar to the ones given in Fig. 5 for
the nonunitary case.

IV. MODEL FOR LOCALIZED IMPURITIES
IN AN EXTERNAL FIELD

Now we consider the ϕϕ̄ interaction. It corresponds to the
external potential applied to two given atoms and trapping
them at fixed positions. This situation was studied in [25,27]
for the one-dimensional case. This case may be relevant for
an experimental setup with trapped quantum gases proposed
in [11,25]. It corresponds to the interaction for the field ϕ(x)
from Eq. (1):

Ĥint = gω2
0

[
ϕ(x)ϕ̄(x)|x=− r

2
+ ϕ(x)ϕ̄(x)|x= r

2

]
.

(26)

The strength of the external potential is given by the value
g > 0, and ω0 is a unit of energy.

The Green’s functions for this case are defined as

G̃(0)(x, x′, ωn) = −
∫ 1

T

0
dτe−iωnτ 〈Tτ (ϕ(x, τ )ϕ̄(x′, 0))〉.

For the calculations, we need two Green’s functions at the
points − r

2 , r
2 , which we denote as

G̃(0)
r (ωn) ≡ G̃(0)

(
+ r

2
,− r

2
, ωn

)
= G̃(0)

(
− r

2
,+ r

2
, ωn

)
,

G̃(0)(ωn) ≡ G̃(0)
(
+ r

2
,+ r

2
, ωn

)
= G̃(0)

(
− r

2
,− r

2
, ωn

)
.

Their explicit expressions are

G̃(0)
r (ωn) =

∫
dDk

(2π )D

ω2
0

ω2
n + ω2

k

e−ikr,

G̃(0)(ωn) =
∫

dDk
(2π )D

ω2
0

ω2
n + ω2

k

.

The explicit form of G̃(0)
r (ωn) is given by the integration

above and reads

G̃(0)
r (ωn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω2
0

2|ωn|c e− |ωn |
c r, D = 1,

ω2
0

2πc2 K0
( |ωn|

c r
)
, D = 2,

ω2
0

4πc2r e− |ωn |
c r, D = 3.

(27)

The second order of the perturbation theory in D = 1 for
T = 0 is given by

Ũ (2)
Cas(r) =

∫ ∞

0

dωn

2π

g2ω4
0e−2 |ωn |

c r

4ω2
nc2

.

The integral diverges at the lower limit. This divergence
cannot be eliminated by the introduction of the lattice model.
The same infrared divergence emerges in any order of the per-
turbation theory. However, the single-impurity matrix T̃1(ωn),
which is the sum of the diagrams in Fig. 2, allows us to
renormalize this divergence. T̃1(ωn) is defined as

T̃1(ωn) = g

1 − gG̃(0)(ωn)
. (28)

The explicit form of Eq. (28) is

T̃1(ωn) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−g

1+ gω2
0

|ωn |c
, D = 1,

−g

1+ gω2
0

2πc2 ln
∣∣ ω0

ωn

∣∣ , D = 2,

−g

1+ gω2
0

4c2

, D = 3.

(29)

Note that the T matrix vanishes in the limit ωn → 0 in
D = 1, 2. This means that the impurities become essentially
transparent for long-range phonons. The leading contribution
comes from phonons of the energy c/r. Therefore, the Casimir
interaction cannot be approximated via scatterings at zero
energy, in contrast to the model of dynamic impurities.

Substituting Eqs. (27) and (29) into Eq. (11), we calculate
the Casimir interaction. It remains finite since T̃1(ωn) cancels
the divergence of G̃(0)

r (ωn) at ωn → 0. The results are pre-
sented in Fig. 7. In the long-range limit r � ra, the Casimir
potential scales as

UCas(r) ∼

⎧⎪⎪⎨
⎪⎪⎩

1
r , D = 1,

1
r ln2 r

, D = 2,

1
r3 , D = 3.

(30)

The characteristic length ra of the crossover to the long-
range limit is smaller than for the dynamic impurities. The
difference stems from the low-energy behavior of the T
matrix. In contrast to the dynamic impurities, the T ma-
trix goes quickly to the saturation point. The characteristic
length ra is fully determined by the saturation energy ω∗

n,D
of the T matrix as ra ∼ c/ω∗

n,D. The saturation energies are

ω∗
n,1D ∼ gω2

0/c, ω∗
n,2D ∼ ω0e− gω2

0
2πc2 . Since T̃1 � const for D =

3, ra,3 = 0, and the 1
r3 law is fulfilled at all distances.

Comparing the long-range behavior with the unitary limit
of the dynamic impurities, one finds that the scaling is exactly
the same. It originates from the fact that both cases describe
the same physical picture of two classical localized impurities
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(a) (b) (c)

FIG. 7. Casimir interaction for atoms trapped by the external potential at a finite temperature and at T = 0. rT is the effective length of
the interaction, g = 2, ω0 = 1. Blue line: T = 0, red line: T = 0.0002. (a) One-dimensional system. (b) Two-dimensional system. (c) Three-
dimensional system.

of infinite mass. Mathematically, it follows from the identity
(see Appendix D)

T1(ωn)
∣∣
g=1G(0)

r (ωn) = T̃1(ωn)
∣∣
g=∞G̃(0)

r (ωn). (31)

Similar to the model of dynamic impurities, the power law
changes to exponential at finite temperatures at long distances.
The characteristic length rT is determined by the thermal de
Broglie length with rT ∼ c/2πT . The crossover to the thermal
regime is demonstrated in Fig. 7.

V. DISCUSSION

Throughout the paper, we considered the Casimir inter-
action mediated by acoustic phonons. The phonon-mediated
Casimir interaction between the dynamic impurities scales as
r−(2D+1) in D dimensions for a large distance in a continuum
model. The result remains the same for large distances in
a lattice model. A small difference can be found only at
short distances r � ra. The Casimir interaction at long dis-
tances is universal. The comparison of the Casimir interaction
for the lattice model and the continuum model is given in
Appendix E. The reason for the similarity of the results is the
dominating contribution of low-energy phonons, for which the
spectrum can be linearized.

It is worth discussing the relation between the considered
model and the phonon-mediated Casimir interaction in the
Luttinger liquid in one dimension. The model, in contrast
to the Luttinger liquid, does not contain vertex corrections
to the phonon-impurity scattering [26,42–44]. Therefore, the
phonon-impurity scattering amplitude is treated phenomeno-
logically in the low-energy limit. The bare phonon-impurity
interaction element coincides with that derived in the leading
order in the Supplemental Material of [26]. For 1D systems,
our results for dynamic impurities in the second order of the
perturbation theory are identical to the model of [26]. The
results for static impurities are identical to the one considered
in [25]. Further, we demonstrated that the results for the two
models converge in the limit of infinite mass of the impurities.

An impurity in a Luttinger liquid is dressed by a density
depletion cloud [45]. These depletion clouds are relevant for
interactions between static impurities in a Bose gas [19,25]

but are neglectable for dynamic impurities [26] and for static
impurities in a Fermi gas [25]. Our model corresponds to the
two latter cases.

The model is restricted only on the phonon-mediated
interaction. In real gases of cold atoms in addition to the
phonon-mediated interaction, dipole-dipole interactions can
arise [46], but the phonon-induced Casimir interaction falls
off much slower and therefore dominates over the dipole-
dipole interactions [27].

The phonon-induced Casimir interaction of impurities in
cold atoms may be observable. As estimated in [26], for the
experimental setup [14] of 40K atoms with 87Rb atoms as
impurities, the Casimir interaction is expected to be ∼1 kHz
at 0.14-μm separation between the impurities. For the param-
eters of this setup, we estimate ω0 � 400 kHz, and the red line
in Fig. 5(a) corresponds to T = 40 nK, with rT � 6 μm (the
interaction parameter g used in our paper is the low-energy
scattering amplitude given in ([26]).

An observable phonon-induced Casimir interaction may
also arise in two- and three-dimensional lattices with phonons
having a high Debye frequency. A particularly interesting
material for this is solid hydrogen with deuterium impurities
since in addition to a high Debye frequency, this system
has a relatively large coupling parameter g = 1

2 (due to the
mass ratio mD

mH
= 2). With phonon energies of the order of

10 meV [47], the Casimir energy between nearest-neighbor
impurities is expected to be UCas � 2 μeV. Other promising
systems from this point of view are hydrates like H3S [48]
and superhydrides, such as LaH10 [49], etc. These materials,
synthesized under high pressures, currently attract enormous
attention due to unusually high critical temperatures of the
superconductivity, which is a consequence of high Debye
frequencies. But considering multiatomic lattices is out of the
scope of the present paper.

VI. CONCLUSION

In conclusion, we have developed a theory of the phonon-
mediated Casimir interaction based on the single-impurity
scattering T matrix. The model can be applied for impurities
in quantum liquids in one-dimensional systems, or lattices
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with embedded impurity atoms in two- and three-dimensional
systems. The energy dependence of this quantity is vital for
heavy impurities. We show that the energy dependence of the
T matrix determines the power law decrease of the Casimir
interaction at short distances and at large distances in the
unitary limit at T = 0. For the weak impurity scatterings, the
Casimir interaction is universal at large distances. This T -
matrix method is especially important for the consideration of
the Casimir forces between two atoms in an external potential
and allows us to obtain the nonperturbative results.

At finite temperatures, a new characteristic scale of the
order of the thermal de Broglie wavelength appears. For
distances much larger than the de Broglie wavelength, the
Casimir interaction decays exponentially with the distance
between the impurities. Our results may be relevant to the
proposed experimental setups of [11,14]
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APPENDIX A: THE LATTICE MODEL

In this Appendix, we derive the effective phonon-impurity
interaction for a cubic harmonic lattice. The lattice is
determined by the following Hamiltonian:

H =
∑

i

p̂2
i

2m
+ mω2

0

2

∑
|i− j|=1

(ûi − û j )
2,

where m is the mass of the atoms and ω0 is the characteristic
energy of the nearest-neighbor interaction. After quantization
and the Bogoliubov transformation the Hamiltonian takes the
standard form for free phonons:

H =
∑

k

ωk

(
b†

kbk + 1

2

)
,

where b†
k, bk are creation and annihilation phonon operators

and their dispersion in D dimensions is

ωk = ω0

√
2Dνk, νk = 1 − 1

D

D∑
i=1

cos(qiδ),

with δ being a lattice constant. For qδ � 1 one gets ωk = ck
with the sound velocity cω0δ.

Below, we consider two types of the perturbations at site
i: (a) the mass of the atom at site i is changed to M without
modification of the interaction with the nearest atoms (iso-
topic substitution), (b) a local external harmonic potential is
applied to the atom at position i.

(a) The perturbation is determined by the difference of the
kinetic energy of the impurity atom at the site i in comparison

to the regular atom of the lattice:

Ĥint = p̂2
i

2

(
1

M
− 1

m

)
.

Introducing g = (1 − m
M ), one can rewrite the expression in

terms of phonon operators:

Hint = −g
∑
k,k′

√
ωkωk′ (bkb†

k′e−iri (k−k′ ) + b†
kbk′eiri (k−k′ )

− bkbk′e−iri (k+k′ ) − b†
kb†

k′eiri (k+k′ ) ),

which is, in the short form,

Hint = −gπ (ri )π̄ (ri ).

(b) The perturbation is

Hint = gmω2
0

(
û2

i

)
.

The expression in terms of phonon operators

Hint = g
∑
k,k′

1√
ωkωk′

(bkb†
k′e−iri (k−k′ ) + b†

kbk′eiri (k−k′ )

+ bkbk′e−iri (k+k′ ) + b†
kb†

k′eiri (k+k′ ) ),

which is, in the short form,

Hint = gω2
0ϕ(ri )ϕ̄(ri ).

APPENDIX B: EVALUATION OF THE GREEN’S
FUNCTION G(0)

r (ωn), G(0)(ωn) AND THE SINGLE-PARTICLE
T MATRIX T1(ωn)

Linear spectrum. Here we evaluate Eq. (5) for the linear
spectrum ωn = c|k| at large distances. For r 	= 0, it reads

G(0)
r (ωn) = −

∫
dk‖dD−1k⊥

(2π )D

ω2
n

ω2
n + c2k2

⊥ + c2k2
‖

e−ik‖r,

where D is dimensions. We represented the vector k as k =
k⊥ + k‖ and chose k‖ along r. After integration over k‖,
we have

−CD

(ωn

c

)2
∫ ∞

0
dk⊥

kD−2
⊥√(

ωn
c

)2 + k2
⊥

e
−
√(

ωn
c

)2
+k2

⊥r
,

where CD = π
(2π )D

∫
d�D−1 is a constant containing all angu-

lar integrations.
We renormalize the momentum, introducing a new dimen-

sionless variable q, defined as k⊥ → q ωn
c . The contribution

of large values of the momentum to the integral is exponen-
tially small, so only small momenta matter here. It turns the
integral into

−CD

( |ωn|
c

)D ∫ ∞

0
dq

qD−2

1 + q2
e−

√
1+q2 |ωn |

c r

�
r |ωn |

c �1
−CD

( |ωn|
c

)D

e− |ωn |
c r
∫ ∞

0
qD−2e− q2

2
ωn
c rdq.
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The remaining integral can be evaluated exactly and gives
2

D−3
2 ( |ωn|

c r)−
D−1

2 �( D−1
2 ). It leads us to Eq. (13):

G(0)
r (ωn) � CD2

D−3
2 �

(
D − 1

2

)( |ωn|
c

) D+1
2

r− D−1
2 e− |ωn |

c r .

G(0)(ωn) diverges on the upper limit. Therefore, a cutoff
ωc is introduced. This cutoff is used here formally; all the
divergent terms are included in the T matrix. Its value for
impurity-phonon scatterings can be measured experimentally;
and therefore, there are no real divergences in this approach.
Then the integration yields

G(0)(ωn) �

⎧⎪⎪⎨
⎪⎪⎩

ωc
πc − |ωn|

2c , D = 1,

ω2
c

4πc2 − |ωn|2
2πc2 ln |ωc

ωn
|, D = 2,

ω3
c

6π2c3 − ωc|ωn|2
2π2c3 , D = 3.

Since the T1(ωn) matrix is given by the diagrams in Fig. 2, it
has the form

T1(ωn) = g

1 − gG(0)(ωn)
. (B1)

Substitution of G(0)(ωn) gives in the low-energy limit the form
of the T matrix given in Eq. (15).

Lattice. The integrals (5) and (6) are convergent on the
lattice:

G(0)
x (ωn) = Vc

∫
BZ

dDk

(2π )D

ω2
k

ω2
n + ω2

k

eik·x

= Vc

∫
BZ

dDk

(2π )D
eik·x

−Vc

∫
BZ

dDk

(2π )D

ω2
n

ω2
n + ω2

k

eik·x

= δx,0 − fD

( |ωn|
2c

, x

)
.

For D = 1, on a square lattice the expression above re-
sults in G(0)(ωn) = 1 − f1( |ωn|

2c , 0), with f1(x, r) = x√
1+x2 (x +√

1 + x2)−2r . In the small-ωn limit, this function turns into
G(0)(ωn) = 1 − |ωn|

2c . For higher dimensions, the structure 1 −
fD( |ωn|

2c , 0), with some finite function fD, remains.
For D � 3, the Green’s function G(0)(ωn) can be approxi-

mated:

G(0)(ωn) = 1 − ω2
nVc

∫
BZ

dDk

(2π )D

1

ω2
n + ω2

k

� 1 − ω2
nVc

∫
BZ

dDk

(2π )D

1

ω2
k

.

This means that G(0)(ωn) � 1 − ADω2
n, with constant AD. For

D = 1, one gets G(0)(ωn) − 1 ∼ ωn. For D = 2 the integral is
G(0)(ωn) − 1 ∼ ω2

n ln |ωn|.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE
CASIMIR INTERACTION AT FINITE TEMPERATURES

Low-temperature corrections in one dimension. At low
temperatures and short distances, when r � λT , we use the
Euler-Maclaurin formula up to the first term to approximate
the sum:

U 1D
Cas(r) �

r�λT

c
∫ ∞

0

dx

2πr
ln

[
1 −

( gx
2r e−x

1 − g + gx
2r

)2
]

− 1

12

d

dn
T ln

⎡
⎣1 −

(
gπnT

c e−2π2n r
λT

1 − g + gπnT
c

)2
⎤
⎦

2∣∣∣∣∣∣
n=1

.

At g = 1 it gives

U 1D
Cas(r) �

r�λT

− πc

24r
+ 2π2rT

λT
,

while for small g it gives

U 1D
Cas(r) �

r�λT

− g2c

32πr3
+ g2π6rT

λ3
T

.

Low-temperature corrections in two dimensions. In the
same way as in the one-dimensional case, there are two
limiting cases for r � λT . For g � 1 we have,

U 2D
Cas(r, T ) �

r�λT

− g2c

128πr5
+ 4g2

3
π2T 5 ln2

(
r

λT

)
.

At g = 1, the leading terms are

U 2D
Cas(r, T ) �

r�λT

−1

2

(
1

r ln ωcr
− 1

r ln2 ωcr

)

− π

6
T

ln
(

r
λT

)
ln2 ω2

c

.

Low-temperature corrections in three dimensions. For r �
λT , we again consider two cases. At g = 1, we have

U 3D
Cas �

r�λT

− c

8πr
Li2

(
1

r2π2

)
+ 2T

πrc
,

where Li2(x) is the polylogarithmic function. And g � 1
gives us

U 3D
Cas �

r�λT

− g2c

256π3r7
+ 2g2π2T 5

r2c4
− 2g2π3T 6

rc5
.

Casimir energy at nonzero temperature in the second order
of the perturbation theory. Here we evaluate the Casimir
energy at nonzero temperature in the second order in relation
to the parameter g. The energy is given by

U (2)
Cas(r) = T

∞∑
n=1

[
gG(0)

r (ωn)
]2

,

and Gr (ωn) is taken from Eq. (12).
In the one-dimensional case, the energy reads

U (2)
1D = T g2

∞∑
n=1

(
πnT

c

)2

e− 4πnTr
c = g2T 3π2

4c2

cosh
(

r
λT

)
sinh3

(
r

λT

) .
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(a) (b)

FIG. 8. The ratio of the 1D Casimir interaction in the continuum limit Ucont and the lattice model Ulattice. Here T = 0. (a) Dynamic
impurities. Red line, g = 0.01; blue line, g = 0.1; yellow line, g = 0.25; green line, g = 1. (b) Impurities localized in the external potential.
Red line, g = 0.01; blue line, g = 1; yellow line, g = 10; green line, g → ∞.

This expression is in accordance with the result given in the
Supplemental Material of [26].

In the three-dimensional case, the energy turns into

U (2)
3D = T g2

∞∑
n=1

(
πn2T 2

rc2

)2

e−2 r
λT

= g2π2T 5

4r2c4

cosh3
(

r
λT

)+ 2 cosh
(

r
λT

)
sinh5

(
r

λT

) .

APPENDIX D: INFINITELY HEAVY DYNAMICAL
IMPURITIES VERSUS IMPURITIES IN

AN EXTERNAL POTENTIAL

In this Appendix, we demonstrate the identity (31). For a
system with dynamical impurities, it means that their masses
M → ∞. For a system with impurities in the external poten-
tial, it means gω0 → ∞, so in both cases the impurities are
completely static. We consider our systems on a lattice with a
general spectrum and dimensionality.

For the ππ̄ interaction, the Green’s functions are given by
Eq. (17). For the ϕϕ̄ interaction, the corresponding Green’s
functions are

G̃(0)
r (ωn) = V D

c

∫
BZ

dDk
(2π )D

cos kr
ω2

0

ω2
n + ω2

k

,

G̃(0)(ωn) = V D
c

∫
BZ

dDk
(2π )D

ω2
0

ω2
n + ω2

k

.

The T1 and T̃1 matrices are defined by Eqs. (B1) and (28),
respectively. In the limit of static impurities they take form

T1 (ωn)|g=1 = 1

1 − V D
c

∫
BZ

dDk
(2π )D

(
1 − ω2

n

ω2
n+ω2

k

)

= 1

V D
c

∫
BZ

dDk
(2π )D

ω2
n

ω2
n+ω2

k

,

T̃1 (ωn)|g=∞ = − 1

V D
c

∫
BZ

dDk
(2π )D

ω2
0

ω2
n+ω2

k

.

Multiplying them by G(0)
r (ωn) and G̃(0)

r (ωn), respectively,
we have

T1 (ωn)|g=1G(0)
r (ωn) = −

∫
BZ dDk cos kr

ω2
n+ω2

k∫
BZ dDk 1

ω2
n+ω2

k

,

T̃1 (ωn)|g=∞G̃(0)
r (ωn) = −

∫
BZ dDk cos kr

ω2
n+ω2

k∫
BZ dDk 1

ω2
n+ω2

k

.

Therefore, these two expressions are identical.

APPENDIX E: PROOF OF EQUATION (31)

In this Appendix, we consider effects of the weak nonlin-
earities in the spectrum of phonons.

For this reason, we compare the 1D lattice model with a
continuum limit at T = 0. The spectrum in the lattice model
is ωk = 2c| sin k

2 |. We put the lattice constant δ = 1.
Considering dynamical impurities (ππ̄ interaction), we

need the Green’s functions for this spectrum. These Green’s
functions were found in [27]:

G(0)
r (ωn) = −

ωn
2c√

1 + (
ωn
2c

)2

(
ωn

2c
+
√

1 +
(ωn

2c

)2
)−2r

,

G(0)(ωn) = 1 −
ωn
2c√

1 + (
ωn
2c

)2
.
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In the low-energy limit, these expressions can be simplified as

G(0)
r (ωn) � −ωn

2c
e− ωn

c r,

G(0)(ωn) � 1 − ωn

2c
,

giving us the Green’s function for the linear spectrum.
For localized impurities (ϕϕ̄ interaction), the correspond-

ing Green’s functions read

G̃(0)
r (ωn) =

ω2
0

2ωnc√
1 + (

ωn
2c

)2

(
ωn

2c
+
√

1 +
(ωn

2c

)2
)−2r

,

G̃(0)(ωn) =
ω2

0
2ωnc√

1 + (
ωn
2c

)2
.

The low-energy limit Green’s functions (corresponding to the
case of linear spectrum) are

G̃(0)
r (ωn) � ω2

0

2ωnc
e− ωn

c r,

G̃(0)(ωn) � ω2
0

2ωnc
.

The ratios between the potentials for continuous [Ucont (r)]
and lattice [Ulattice(r)] spectra are given in Fig. 8. It demon-
strates that small corrections to the result (∼1% of poten-
tial for the linear spectrum) appear at r ∼ δ and quickly
vanish.
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