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Atomistic mechanisms of crack nucleation and propagation in amorphous silica
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This paper presents an atomistic understanding of the nanoscale processes that govern crack nucleation
and propagation in amorphous silica using a combination of theoretical calculations and molecular dynamics
simulations with the ReaxFF potential. We show that both crack nucleation and propagation are governed by
chainlike nanoscale virial stress-fibers formed by an intricate mixture of Si and O atoms. The stress-fibers are of
a few nanometers in length, aligned parallel to the loading direction, and spatially localized at the evolving
crack front at the nucleating site or a propagating crack tip. They form and break continuously during the
crack nucleation and propagation process and are responsible for localizing stress at the crack nucleation site
or propagating crack front. As soon as the stress-fibers reach a critical density the material starts nucleating
cracks or leads to the propagation of initial crack. Additionally, the virial stress fields in the domain is highly
heterogeneous and species-dependent—and the O and Si atoms play fundamentally distinct roles throughout the
deformation process. With increased loading, heterogeneity in virial stress for the Si atoms goes up, whereas
for the O atoms it goes down. Furthermore, from the virial and Hardy estimates of atomic stress, it is found
that the stress field emanating from the crack tip decays as 1/r. Also, presence of holes or pores within the
interaction distance of a crack tip intensifies the stress state of the stress-fibers near the crack front leading to an
improved effective toughness compared to the situation where the pore is far from the crack tip. Nucleation and
propagation of cracks are strictly mediated by a complex admixture of localized bond rupture processes across
a set of interacting stress-fibers. The details of the atomistic process regulating the underlying mechanisms are
undetectable from the macroscopic stress-strain data.
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I. INTRODUCTION

Silica is a widely used material with versatile applications
in microelectronics [1], photonics [2], sensing [3,4], ultra-
strong nanowires [5], chromatography [6], pharmaceuticals
[7], and structural materials [8,9]. In spite of decades long
research and multifarious technological applications of sil-
ica (whose projected global market is expected to increase
to $14.27 billion in 2019 from $9.26 billion in 2014), its
structural and mechanical behavior continues to puzzle sci-
entists and engineers [10–16]. Despite the widely observed
phenomena that silica fractures in a brittle manner, the fun-
damental atomistic mechanisms that govern fracture in silica
remain less understood [9,13,17–19]. In addition to a needed
fundamental understanding of how does crack nucleate and
propagate in an amorphous or inhomogeneous media at the
nanoscale, the rapid emergence of flexible electronics de-
mands a thorough understanding of the nanoscale conditions
that define the initiation of failure or irreversible deformation
in amorphous silica.

The key difficulty in elucidating the crack nucleation
and propagation mechanisms in amorphous silica arises
from its highly inhomogeneous elastic behavior [13] and
the amorphous character of the underlying atomic structure
[14]. Although there has been tremendous developments in
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understanding the atomic structures of silica, it remains un-
known how the individual species (Si and O) respond to
applied deformation and how do they distribute deformational
energy or carry applied deformation at finite temperatures,
particularly in the nonlinear regime of mechanical deforma-
tion. At the macroscopic scale, it is known that mechanical
properties of amorphous silicates are sensitive to structural
transformations mediated by deformation and pressure. At
high pressure, amorphous silica exhibits an order of mag-
nitudes reduction in strength due to transformation of its
fourfold coordination to sixfold coordination [20,21]. Also,
structural rearrangement of silica rings has been shown to
induce anisotropy and non-Newtonian behavior [22] governed
by the topography of enthalpy disorder [23–27]. Furthermore,
a number of investigations have been performed in assessing
silica structure under a variety of processing conditions in-
cluding cooling rate, melting temperature, and annealing rate.
There is a qualitative consensus among the findings of these
investigations that structural configurations of amorphous sil-
ica are independent of the processing condition, highlighting
the prevalence and retainment of tetrahedral networks in silica
[28,29]. While these studies provide critical information on
atomic scale structure of silica under undeformed condi-
tions, there is a knowledge gap in understanding how the
constituents of the tetrahedra respond to finite deformation
and form the basis for strength and toughness reduction in
presence of a nanocrack, an edge, or a nanopore.
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In the context of mechanical properties, a wide body of
literature is focused on determining the macroscopic stress-
strain behavior of amorphous silica [27–41]. They reveal the
implications of cooling rate, melting temperature, and strain
rate on atomic scale structure and macroscopic mechanical
properties such as stiffness and strength. It is found that both
stiffness and strength can be strain-rate dependent, whereas
fracture strain is independent of the strain rate, and strength
is found to depend weakly on the cooling rate [31,39,42].
Regardless of the deformation intensity, the material main-
tains the SiO4 tetrahedra, and the bond angle between Si-O-Si
triplets changes during deformation. Furthermore, topological
heterogeneity has been proposed to cause nanoductility in
silicate glasses [43]. While these studies provide useful infor-
mation on the material behavior of amorphous silica, species-
dependent atomistic mechanisms governing nucleation or
propagation of nanocracks remain less understood. Because
of the intricate nature of the atomic structure and long-range
structural correlations formed by its sustained tetrahedral
units at finite deformation and temperatures, understanding
the condition of fracture in silica is a nontrivial task particu-
larly with the available theoretical resources that are mostly
developed for homogeneous solids at the continuum scale
[44–46]. While the physics of mechanical deformation under
extreme conditions in amorphous materials are very different
from crystalline solids, existing explanations on the deforma-
tion mechanisms rely on continuum scale theories that are
designed to describe mostly isotropic materials and the role
of atomistic disorder remains largely ignored in describing the
underling physics. As a result, there is a limited understanding
of the atomistic processes that form the basis for effective
toughness and strength in amorphous solids.

Toughness and strength are a set of mechanical properties
that govern the robustness of the material and their correlation
with nanoscale structural features remain underdeveloped.
The ideal strength in defect free material is characterized
by the maximum stress and toughness is the defined as the
highest elastic energy density that a solid can sustain prior to
the onset of propagation. There can be two types of toughness
[47]: nucleation toughness and fracture toughness. Nucleation
toughness of a brittle solid can be obtained by integrating the
area under the stress-strain curve, �c = ∫ εf

0 σdε, where εf is
the fracture strain. Fracture toughness is defined by the ability
of a material to resist the propagation of a pre-existing crack.
It is characterized by the critical energy release rate (denoted
by Gc) introduced by Griffith in 1921 [46], or the critical
stress-intensity factor (denoted by KIC) introduced by Irwin
in 1957 [45], or the critical driving force (denoted by the J
integral) introduced by Rice [44].

Despite the success in defining toughness in homogeneous
materials, its notion and relation with microscopic variables
remain elusive for amorphous materials. Under the linear
elastic fracture mechanics (LEFM) treatment, the foundation
for the equivalence of these definitions is built upon the
understanding that the stresses in the vicinity of the tip exhibit
an inverse square-root dependence on the distance (r) from
the crack tip: σi j = KI

(2πr)1/2 fi j (θ ), where, σi j is local stress, KI

is stress intensity, and fi j (θ ) is a geometric function. Com-
plexity arises when the material is heterogeneous, wherein
square-root singularity ceases to hold. For example, a crack

propagating from a compliant material to a stiff material
exhibits weak singularity: σi j ∝ r0; whereas, in propagating
in the opposite direction it exhibits stronger singularity: σi j ∝
r−1 [48–54]. Furthermore, along a bimaterial interface the
singularity becomes complex, and stresses show logarithmic
dependence: σ ∝ r−λ cos(b ln r) with 0 � λ � −1 [48]. Nev-
ertheless, there is no information on how a singularity plays
out in amorphous material.

Here we investigate the stress fields and atomistic pro-
cesses that govern failure of amorphous silica with or without
an initial crack. Our aim is to understand: (i) the atomistic
mechanisms that regulate the condition for nucleation of
nanocracks in silica; (ii) determine the role of O and Si atoms
on the condition of crack nucleation; (iii) explore the atomistic
principles that regulate the propagation of an initial crack;
(iv) obtain a measure of stress singularity at the crack tip; and
(v) determine how the interaction of stress fields emanating
from the crack tip and pore edge affects the fracture criteria
in an amorphous material setting. In the following sections,
we first describe the computational procedure to model the
mechanical behavior of silica, and then we discuss the atomic
scale mechanisms that regulate the condition for nucleation
and propagation of nanocrack.

II. COMPUTATIONAL APPROACH

While first-principles based methods such as the density
functional theory (DFT) are the most reliable ones to study
the behavior of a system of interacting atoms, it is computa-
tionally unfeasible to apply DFT for large systems contain-
ing thousands of atoms containing finite cracks. Among the
alternatives, interatomic potential based molecular dynamics
(MD) simulations produce reliable outcomes, and there are
a number of interatomic potentials available including BKS
[55], ReaxFF [56]. The ReaxFF potential has been widely
used for a number of studies related to crystalline and amor-
phous silica as well as silicates [27–29,39–41,57–60]—it has
been demonstrated that ReaxFF produces experimentally con-
sistent disordered structure, elastic properties, and dynamics
of supercooled liquid.

The MD simulations are carried out using LAMMPS [61].
To create an amorphous configuration of silica from its crys-
talline phase, we first relax initial atomic structure using the
conjugate gradient relaxation scheme with a force tolerance of
1.0 × 10−10 Kcal mole−1 Å−1, and then follow three thermo-
dynamic steps that involve: (i) raising the temperature of the
statically relaxed domain to 8000 K at constant volume and
holding it for 100 picoseconds, (ii) annealing the system from
8000 to 1 K at a cooling rate of 5.0 K/ps at constant volume,
and (iii) relaxing the system under the microcanonical ensem-
ble for 50 picoseconds. At the end of the three thermodynamic
steps, the system reaches a steady-state thermodynamic condi-
tion. The system is then dynamically relaxed to zero pressure
and 300 K temperature following the NPT thermodynamic
ensemble. This step removes any residual stress in the domain
and prepares the target at the desired room temperature. The
cooling rate chosen here is reasonable enough to obtain a
realistic description of glass structure [28,40,41,62,63]. The
density of the amorphous target is found to be 2.19 g/cc3,
which matches well with the reported computational values
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of 2.18–2.22 g/cc3 [28,32,39,64] from atomistic simulations
as well as with the experimental value of 2.22 g/cc3 [65]. We
choose 0.25 fs as the time step for all the three thermodynamic
steps. In the literature a number of values of time step,
ranging from 0.5 to 1.6 fs [39,60,62,66], have been used
for making amorphous silica and studying its deformation
behavior. For our study we found 0.5 fs to obtain converged
stress-strain behavior throughout the entire deformation his-
tory of the domain covering both the linear and nonlinear
regimes of mechanical deformation (including the fracture
process).

To model uniaxial stress deformation, uniform displace-
ment y(t + �t ) = y(t )(1 + ε̇yy × �t ) is applied over the en-
tire domain along the y direction with a strain rate of ε̇yy =
1.0 × 10−6 fs−1. Using the aforementioned setup, the elastic
properties of silica is calculated from the stress-strain data,
which are obtained directly from the MD simulations through
tensorial description of system pressure. For uniaxial load-
ing along the y direction, the macroscopic stress-strain data
(obtained directly from the MD simulations) are fitted to a
fourth-order polynomial:

σyy = β1εyy + β2ε
2
yy + β3ε

3
yy + β4ε

4
yy, (1)

where βi’s are the elastic moduli of different orders and
they are calculated by fitting this fourth-order polynomial to
the stress-strain data and differentiating the polynomial with
respect to strain and evaluating the expression at εyy = 0.
The strength is calculated from the maximum of the stress-
strain curve, the crack-nucleation toughness is calculated by
integrating the area under the stress-strain curve, and the
fracture toughness is computed from the stress-intensity factor
and the J-integral. To examine the mechanical behavior of
the individual atoms during the deformation and fracture
processes, we use the virial stresses of the atoms, and for
exploring the continuum scale features (such as the fracture
toughness) and effective behavior of the oxygen and silicon
atoms in the domain we employ the Hardly stress frame-
work. The details of stress calculation are described in later
sections.

III. RESULTS AND DISCUSSION

Our results and discussions are divided into two main
sections. First we describe the atomistic processes that govern
crack nucleation, and then we explain the propagation behav-
ior of an initial crack in the domain.

A. Constitutive behavior of amorphous silica

The condition for crack nucleation is investigated from
the uniaxial stress response of SiO2, obtained by applying
uniaxial stress to the domain and allowing relaxation along
the lateral directions due to the Poisson’s contraction. The
deformation simulations are conducted under the NPT ther-
modynamic condition. The loading is applied along the y
direction and the domain is allowed to relax along the x and
z directions. For our investigation on crack nucleation we
considered a domain of dimension 46.88 × 33.79 × 2.65 nm3

containing 345 000 atoms. The domain considered for the
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FIG. 1. (a) Amorphous silica domain subjected to a uniaxial
stress loading along the y direction. (b) Stress-strain response of the
domain. (c) The Poisson’s ratio of the domain at different strain
states. The vertical dashed line drawn at ε = 0.21 indicates the
activation of stress saturation, and the vertical solid line drawn at
ε = 0.325 indicates onset of catastrophic material separation.

study is displayed in Fig. 1, along with its stress-strain
response and Poisson’s ratio over the entire deformation
history.

The Poisson’s ratio is calculated from ν = −εxx/εyy, where
εyy is the applied strain along the loading direction and εxx is
the strain along the lateral direction. In the low-deformation
regime, 0.0 � εyy � 0.15, silica shows small monotonous
increase in its Poisson’s ratio from 0.25 to 0.32; for 0.15 �
εyy � 0.21 it starts to continuously decrease its magnitude;
and for 0.21 � εyy � 0.325, the Poisson’s contraction reduces
from 0.32 to 0.25. For εyy � 0.325, the domain undergoes
drastic reduction in Poisson’s ratio and experience mate-
rial separation in a few loading steps. Moreover, from the
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FIG. 2. Effect of domain-size on (a) ideal strength and (b) nucleation toughness in amorphous silica at 300 K.

stress-strain curve, it is seen that the domain shows a linear
correlation between stress and strain up to a strain level of
15%. Beyond this strain the domain starts exhibiting nonlinear
stress-strain response up to 32.5% strain, followed by a 2%
strain window within which nanocracks form and evolve
rapidly to separate the domain. To quantify the elastic moduli,
we fit the stress-strain relationship presented by Eq. (1) to the
MD-generated stress-strain data shown in Fig. 1, and obtain
the Young’s modulus as 69.1 GPa and the higher-order moduli
as β2 = 102.7 GPa, β3 = −818 GPa, and β4 = 887.8 GPa.
In literature the reported values of Young’s modulus ob-
tained from computational studies range from 53 to 220 GPa
[30–33,39] and the experimental values range from 69 to
73 GPa [34–37]. From our MD data, the maximum stress
or the ideal strength is found to be 11.42 GPa. The reported
values of strength obtained from computational studies range
from 10.8 to 65 GPa [30–33], and the available experimental
values range from 3.4 to 12.9 GPa [34,36,38,67]. It is evident
that our results on the Young’s modulus and ideal strength
agree reasonably well with the available experimental data.

To determine size dependence of the stress-strain response
of aSiO2, we considered four different domain sizes and
compared their strength and toughness. As shown in Fig. 2,
we find that both strength and toughness are well converged
for domains larger than 300 000 atoms. For smaller domain
size, the nanocracks nucleating in the domain interact with
its periodic images, which reduces its strength and toughness.
As size increases, the nucleating sites act as isolated sites and
the behavior of the domain becomes insensitive to the domain
size. The size-dependent mechanical behavior can thus be
attributed to the elastic interactions that take place across the
domain’s periodic directions.

B. Crack nucleation in amorphous silica

To understand the crack-nucleation process, we investigate
the atomistic fields of the potential energy, the components of
the virial stress tensor for each atom in the domain as well
as their kinetic energy—both of which are directly obtain-
able from MD simulations. The virial stress tensor compo-
nents and potential energy fields do not clearly indicate any
nucleation event, until a nanocrack of around 1 nm length is

formed. Due to the presence of highly heterogeneous stress
states and amorphous atomistic structure, it is difficult to
identify any signatures of the nucleation process from the
atomistic information on energy or force. However, a clear
thermal blueprint appears at the onset of the crack nucleation
process, as illustrated in Fig. 3. A diagonal thermal pattern
evolves at the onset of crack nucleation—and the temperature
surrounding the nucleating site is much higher than that in the
remainder of the domain.

The gradient in thermal state surrounding the nucleation
site evolves from the bond rupture process that releases elastic
energy in the form of heat and creates new surfaces con-
sisting of atoms with dangling bonds and higher potential
energy. Although the thermal pattern developed during the
deformation process does not show any strong correlation
with the composition or deformation field, the wider spatial
distribution of the thermal patch shows the possibility of a
spatially distributed breeding ground for the formation of
one or a series of nanocracks (if the domain is bigger).
As soon as one nanocrack emerges in the thermally active
regime, a rapid bond-breaking event emerges surrounding the

FIG. 3. Thermal map during the localized nucleation of nanoc-
rack at random location in the domain. The images represent the
temperature fields at (a) εyy = 0.325, (b) 0.335, and (c) 0.340. The
temperature range in the domain is 298–305 K, with the maximum
appearing along the material edge at the crack-nucleation site.
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FIG. 4. Tension-compression asymmetry in the radial distribution function g(r) in Si-O bond distribution around the average nearest-
neighbor bond distance of 1.60 Å: (a) at the undeformed amorphous state and (b) at the 30% strain state. The tensile and compressive regions
are indicated by σ > 0 and σ < 0, respectively. The vertical dashed line indicates the median Si-O bond length of 1.60 Å of the undeformed
state.

nanocrack. Initiation of nanocracks reduces the elastic energy
at the nucleating site followed by an elastic relaxation that
extends rapidly into the neighboring regime, triggering a
catastrophic material separation process (as evident in the
stress-strain response of the domain in Fig. 1).

To investigate the bond deformation process (involving
stretching or contraction in length), we calculate the radial dis-
tribution function (RDF) at two strain states. As illustrated in
Fig. 4, at 30% strain (close to the crack nucleation strain state),
the distribution in RDF becomes notably asymmetric, indicat-
ing a higher number of bonds in the tensile state than in the
compressive state. The minimum and maximum bond lengths
at this deformed state are around 1.50 and 1.81 Å, respec-
tively; whereas at the undeformed state, εyy = 0, the distri-
bution is near-symmetric around the equilibrium bond length
indicating the equivalence of the tensile and compressive
stress states of the Si-O bonds. The minimum and maximum
bond lengths are around 1.47 and 1.74 Å, respectively, which
are around 7.5% on either side of the equilibrium Si-O bond
length. The average bond length is 1.599 Å at εyy = 0 and
1.613 Å at εyy = 30% indicating a net increase in the average
bond length with increased deformation. The net alteration of
the bond lengths is tensile as such the domain exhibits a small
volumetric expansion. At the onset of nanocrack nucleation,
the bond length distribution reaches the widest distribution,
with only a fraction of the bonds reaching the maximum
bond length at the nucleation site. As the domain relaxes
the elastic energy surrounding the nucleation site, the bond
lengths start approaching the equilibrium value at the site.
Moreover, during the nucleation process the tetrahedral units
retain their tetrahedral structures but undergo reorientation at
their connecting sites. To elucidate the role of the individual
atoms on the deformation process and explain the nucleation
events, we explore the mechanical state of the atoms in
terms of atomistic variables and develop a species-dependent
picture of the underlying mechanisms in the following
section.

1. Atomistic mechanisms governing crack nucleation

a. Determining stress state at the atomic scale. From the
MD simulations information is available on both the temporal
and spatial evolution of the classical phase space constructed
by the position and momenta of all the particles. The micro-
scopic formula used to describe the pressure or average stress
of a classical (or quantum) system of interacting particles is
known as the virial stress, which is defined mathematically as
the following:

σvirial = 1

V

⎛
⎝−

∑
i

mi�vi ⊗ �vi +
∑
i �= j

(1/β )�ri j ⊗ �Fi j

⎞
⎠, (2)

where mi and vi are the atomic masses and velocities, respec-
tively, ri j and Fi j are distance and force between the atoms at
i and j, respectively; β = 2, 3, 4 for pairwise, three-body,
and dihedral interactions, respectively [68,69]; and V is the
volume of the entire domain. Equation (2) provides an average
measure of stress for the entire domain. It accounts for the
velocities and interaction forces of all the atoms in the sum.
The first part of the expression involves the kinetic energy of
the individual atoms and the second the “virial” or interaction
force of each atom with its neighbors. We denote them as σ k

virial
and σ

p
virial, respectively.

The virial stress formula has a strong statistical mechanical
foundation and served inarguably as one of the key formulas
in describing the mechanical behavior of a collection of
interacting particles [70–78]. Nonetheless, its application in
describing a continuum measure of stress, σ (r), (also known
as the Cauchy stress) at an arbitrary material point of the
atomistic domain has been a subject of active research and
debate [69,74–76,79,80]. Determination of the Cauchy stress
involves averaging of the properties of the particles at the
neighborhood of observation point r at time t [72,73,80].
There exists some arbitrariness in selecting the neighbor-
hood in extracting a continuum scale description of stress
from the atomic quantities [76,80]. Irving and Kirkwood [71]
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suggested to consider “a spatial average over a microscopi-
cally large though macroscopically small domain” and Hardy
[73] offered a practical guide for many-body potentials “the
range of inter-particle interactions should be less than the
range of the spatial averaging.” While averaging of atomic
properties at a material point has been shown to be powerful in
obtaining a thermodynamically and mechanically consistent
continuum description of local stress, it comes at the cost of
smoothening out local characteristic features that may play
a crucial role in situations (such as around dislocation cores
or a propagating or evolving crack tip) wherein sharp stress
gradients at the atomic scale governs the macroscopic behav-
ior of the system, particularly under deformed condition. This
has been elaborated in greater details recently for a number of
defective atomistic systems [74,81].

Since the material system under consideration in this ar-
ticle is amorphous and the focus of our study is to extract
atomic scale processes that regulate crack nucleation and
propagation, we employ both the virial and Hardy descriptions
of atomic and continuum stress respectively. The former is
used to construct a detailed atomistic picture of the nucleation
process in terms of the kinetic and potential energy parts of
virial stress, and the latter is used to develop a continuum scale
understanding of the crack propagation process. The virial
stress is calculated from the virial stress components of each
atom: σ virial = ∑N

i σ virial
i /(Nv), σ virial

i is the virial stress at
atom i, N is the total number of atoms in the domain, and v is
the effective atomic volume per atom (such that V = Nv). We
obtain σ virial

i directly from LAMMPS simulation. The effective
atomic volume v is computed by satisfying the condition that
the MD-given macroscopic stress σ macro is equal to σ virial.
To determine a Hardy estimate of the Cauchy stress (that
represents an average measure of the atomic stress at each
atomic site), a set of neighbors within a cutoff distance Rc is
considered, which gives the mathematical expression for the
Hardy stress at atomic site i as the following:

σ
Hardy
i =

M∑
i=1

σ virial
i

M
, (3)

where M is the number of atoms within the cutoff distance
Rc. The average macroscopic Hardy stress computed over
the entire domain is thus σ Hardy = ∑

i σ
Hardy
i /(Nv). Follow-

ing Hardy’s recommendation [73], an approximation for the
cutoff distance Rc can be made by calculating the interatomic
distance beyond which the interaction energy is zero. With the
ReaxFF potential for silica this distance is 3.2 Å, as shown in
Fig. 5.

To assess the accuracy of Rc in reproducing the continuum
scale behavior of the domain, we perform the coordination
analysis for all the bonds in the domain as well as for the O-O
and Si-Si bonds separately, up to a distance of 9 Å. As shown
in Fig. 6, the atomic correlation approaches a constant value at
r > 5.0 Å, indicating insensitivity of the atomic scale features
beyond this length. It is thus reasonable to conclude that for a
distance of Rc = 5.0 Å, the Hardy approximation of Cauchy
stress at the atomic sites provides a converged estimation. (We
show later that this value of Rc holds even for the domain
under crack propagation.)
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FIG. 5. Interaction potential energy of the amorphous domain
containing as a function of the average bond length obtained by ap-
plying hydrostatic deformation to the domain. The loading condition
is shown in the inset.

To determine the applicability of virial stress and Hardy
stress in obtaining macroscopic stress-strain behavior of the
domain, in Fig. 7, the uniaxial stress-strain relation of silica
obtained from the system pressure pyy, the virial stresses of
the atoms σ virial

i and the Hardy stresses at the atomic sites
σ

hardy
i are compared. It is seen that for an “effective atomic

volume” of 13.1 Å3 both the virial and Hardy stresses provide
consistent macroscopic stress of the domain suggesting the
equivalence of the following relationship: σ macro = σ virial =
σ Hardy, where the ingredients of σ virial are virial stresses at
the atoms and the ingredients of σ hardy are the spatial average
of the virial stresses at each of the atomic sites integrated
over a spherical volume of 4πR3

c/3. Our results therefore
suggest that for amorphous silica

∑N
i σ virial

i = ∑N
i σ

Hardy
i ,

although σ virial
i �= σ

Hardy
i . It is noteworthy that, in spite of the

differences in virial and hardy stresses at the atoms or atomic
sites, their ensemble spatial and temporal averages give an
identical measure of macroscopic stress state of the domain.
Thus either of the virial stress or Hardy stress estimates can
be used to obtain the macroscopic stress-strain behavior of
the domain. Nonetheless local atomic scale features are better
reflected in the virial structure, as it directly correlates with
the momentum of the particles and their interactions with
neighbors. Spatial averaging can wash out species-dependent
attributes of atomic interactions as we shown in the next
section.

b. Species-dependent stress state. One of our primary ob-
jectives is to explore the role of Si and O atoms on the
physics of mechanical deformation in amorphous silica. The
number of O atoms is twice the number of Si atoms in the
domain. Each tetrahedron is composed of one Si atom and
four O atoms, and each O atom connects two tetrahedrons.
While Si atoms are the nearest neighbors of O atoms and
vice versa, their second nearest neighbors differ in terms of
number and species type. The Si atoms have O as their second
nearest neighbors, whereas the O atoms have O as the second
nearest neighbors, as evident from the RDF plots shown in
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FIG. 6. (a) Radial distribution function in a domain containing
around 1 million atoms. The vertical dashed lines indicate the inter-
atomic distances at the first-nearest-neighbor and the second-nearest-
neighbor distances, denoted by r1nn and r2nn, respectively. The blue
solid line denotes the value of the interatomic distance above which
the atomic structure behaves like a continuum media. (b) RDF for the
individual species (Si and O) in the domain.

Fig. 6. Thus the second-neighbor interactions at the Si and
O atoms are markedly different. While the Si-O interactions
produce identical force along the Si-O bonds, the dissimilar
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FIG. 7. Stress-strain response of amorphous silica obtained from
system pressure, virial atomic stress, and Hardy stress at the atomic
sites.

second- and third-nearest-neighbor interactions have the po-
tential to produce distinct interaction forces for the O and Si
atoms. It is thus important to determine how the O and Si
atoms carry or share load at different stages of the deformation
process so that the macroscopic failure of silica can be altered
by invoking species-dependent treatments at the atomic scale.
To determine the role of the individual species on the overall
deformation behavior of the silica matrix, we explore the virial
and hardy descriptions of stresses at the atoms and atomic
sites, respectively. (To distinguish them, we used “virial stress
at atoms” and “Hardy stress at an atomic site,” following the
methodology applied to determine them.)

To assess the tensile versus compressive stress state at a
macroscopic strain state of εyy, the atoms are classified into
four groups:

N tension
i (εyy) =

∫ ∞

0
ni(σ > 0, εyy)dσ, (4)

Ncompression
i (εyy) =

∫ ∞

0
ni(σ < 0, εyy)dσ, (5)

NSiO2 =
2∑

i=1

∫ ∞

0
ni(σ )dσ, (6)

where i is the species index—it is either Si or O; and σi is
the virial/Hardy atomic stress, and NSiO2 is the total number
of atoms in the domain. As shown in Fig. 8, both virial
stress and Hardy stress estimates show the stress states to
be highly heterogeneous (under deformed and undeformed
configurations), indicating a larger fraction of the Si and O
atoms to carry moderate stresses and smaller fraction to carry
higher/lower stresses. Nevertheless distinct stress states for
the virial and Hardy estimates are notable in terms of the
proportions of the atoms or atomic sites representing the
tensile versus compressive states.

At the undeformed state, the atomic stresses are nonzero
in the domain, although the macroscopic stress in the do-
main is zero (as can be seen in Fig. 7). This is due to
the thermodynamic processing that the domain underwent
in the amorphization process which breaks the crystallinity
of the solid and makes some bonds elongated and some
contracted (as evident from Fig. 4). As expected, the Hardy
estimate eliminates the local stress structure of the atoms
through averaging over a spherical volume of 4πR3

c/3, within
which both Si and O atoms are present. Since it produces
an average stress-measure over multiple species (which in
this case are O and Si), it makes it difficult to interpret the
average measure in terms of the individual species and their
species-dependent atomic structure. For monocomponent and
crystalline materials, the averaging may not die out any atomic
properties, but for materials like silica (which has a notable
difference in terms of its specifies-dependent atomistic struc-
ture and long-range interactions) it is important to retain the
heterogeneous atomic attributes fully to understand atomic
interactions and their macroscopic consequence. In complex
heterogeneous media, the virial scheme can thus offer a robust
pathway for uncovering the role of individual species and their
interaction details on macroscopic deformation. However, the
Hardly estimates can serve as a powerful tool for developing
a continuum scale understanding deformation behavior, as we
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FIG. 8. [(a) and (b)] virial stress estimates at the Si and O atoms under tension and compression, shown in terms of the percentage of the
total atoms, at εyy = 0 and εyy = 30% macroscopic strain. [(c) and (d)] Hardy stress-estimates at the Si and O atomic sites decomposed into
tensile and compressive stress states at εyy = 0 and εyy = 30% macroscopic strain.

demonstrated later in Sec. III C in the context of calculating
fracture toughness.

Based on virial stress structure of atomic interactions, the
Si atoms are the majority tensile stress carriers and the O
atoms are the majority compressive stress carriers at both of
the strain extrema: εyy = 0 and 30%. While some fraction
of Si atoms are in tension and some in compression, the
number of Si atoms in tension is substantially higher than
that in compression. Conversely the number of O atoms in
compression is substantially higher than that in tension. At a
given loading state, the highest percentage of Si or O atoms
stay at an intermediate stress level, a few percentage carry
the highest stress, and the remaining atoms carry a range of
lower stress. For the O atoms, the stress levels of the atoms in
the intermediate-to-higher stress range go up with increased
loading, while the atoms at lower stress levels are less affected
by applied deformation. On the other hand, for the Si atoms,
most of them substantial alteration of their stress state. In can
be argued if atoms under stress has any meaning, considering
bonds are usually referred to having extension or contraction
representing the state of tension and compression. As each
atom has multiple bonds (first, second, third nearest neigh-
bors, etc.) form with different neighbors within the interaction
distance and the bond lengths are distributed over a range, it is
a nontrivial task to compute stretching and contraction of each

bond and describe the deformation process in terms of those.
The virial stress components of the atoms can be interpreted
as an effective measure of tensile and compressive stress states
of all the bonds of an atom. Thus in the remainder of the article
we use the term “stressed atom” to denote the resultant effect
of bond contraction and stretching for the atom.

c. Understanding nucleation from virial stress structure
(VSS). Analyzing the stress fields, one of the striking fea-
tures that we observe at the higher deformation states and
during the nucleation process is the appearance of nanoscale
fibrous patterns in the virial stress fields, as illustrated in
Fig. 9. NF9We call them stress-fibers, as stress serves as the
underlying basis. These stress-fibers are comprised of atoms
with highest stress states in the domain. It is evident that
they are finite in length (of less than a few nanometers).
Also, they are aligned along the loading direction and made
of alternating assembly of Si and O atoms. The atoms in
between the stress-fibers are at a lower energetic states than
those in the fibers. Their intensity is the highest at the growing
nucleated crack front. The atoms in the upper and lower
sides of the nanocrack, marked by “stress relaxation regime,”
relaxes the elastic energy substantially and do not form stress-
fibers. The evolving nanocrack interacts with the fibrous
stress field continuously throughout the material separation
process.
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FIG. 9. The stress field of the normal atomic stress σyy at a
macroscopic strain state of 30%. Middle plot shows zoomed in
view of fibrous stress patterns around the incipient nanocrack. The
corresponding composition map is shown on the right.

With an aim of identifying a distinctive atomistic feature
that connects directly to the condition of crack nucleation and
propagation in amorphous silica we explored the atomistic
fields of potential energy, kinetic energy, virial stress fields,
components of the forces, and hardy stress fields. We found a
well-identifiable feature only from the virial stress. While the
kinetic energy was indicative of the region where the crack
starts to form, the virial structure indicated species-dependent
atomic features that connect to the nucleation process. The
Hardy stress field however did not show any evidence of
species-dependent atomistic attributes that could be used to
describe definitively the nucleation process.

To build a quantitative and structural understanding of the
virial stress-fibers, we compute the average length of these
fibers in the domain as a function of its macroscopic strain
state. As illustrated in Fig. 10, the length of the virial stress-
fibers increases with strain followed by a saturation in length
of around 2.0 nm around the maximum macroscopic stress
state of the domain. The density of the stress-fibers however
continues to increase until the nucleation process kicks in. The
density is calculated by counting the number of fibers in the
domain and dividing it by the volume of the domain. It is noted
that at around 0.9 fibers per nm−3 the domain undergoes a
rapid atomistic bond process, leading to fracture.

The stress-fibers are the majority of the load carriers and
their finite lengths allow accommodation of deformational
energy through rotation of the adjoining tetrahedral units.
Since the domain preserves the structure of the tetrahedral
units, alteration of Si and O bonds that configure the backbone
of the tetrahedral units enables reorientation of the units at the
connecting sites when loaded along the longitudinal axis of
the fibers. This highlights an important point that the silica
tetrahedra are highly stable and maintain their coordination
number. They play a significant role in absorbing and dis-
tributing the elastic energy and transfer load through a com-
plex intermingled network of tetrahedra assembled in spatially
distributed interacting stress-fibers. Furthermore, computing
N tension

i (εyy) and Ncompression
i (εyy), with i denoting Si or O, at

15 different macroscopic strain states with a regular interval
between εyy = 0 to 0.3, we find that there’s a smooth and
continuous trend in load sharing by the stress carriers, as
shown in Fig. 11. Throughout the entire deformation history,
Si atoms are the majority tensile load carriers, whereas the O
atoms act as the majority compressive load carriers. Also, the
difference in the number of O atoms carrying the tensile and
compressive stresses reduces dramatically at higher loading,

FIG. 10. Stages of virial stress-fiber formation at different strain
states of the domain. (a) εyy = 7.5%, (b) 10%, (c) 12.5%, (d) 15%,
(e) 17.5%, and (f) 20%. Blue atoms represent O and red atoms
Si. Atoms with stresses higher than a are shown to highlight the
highly stressed atoms. (g) Average stress-fiber length as a function of
applied strain εyy. (h) Average fiber density as a function of applied
strain εyy. Regimes A, B, and C correspond to the strain windows of
0.0 � ε � 0.21, 0.21 � ε � 0.32, and 0.32 � ε, respectively.

whereas for the Si atoms, the difference keeps growing, as
evident from as shown in Fig. 11(b).

Heterogeneity in atomic stress is thus higher for O at
the undeformed state and it reduces substantially with in-
creased loading. On the other hand, for Si heterogeneity in
its atomic stress grows with increased loading. The tensile
and compressive stress states of the Si atoms becomes less
sensitive to deformation beyond εyy = 15%, while the number
of O-atoms carrying tensile (compressive) load continues to
change up to εyy = 21%. Nonetheless, for deformation larger
than εyy > 0.21, the number of tensile and compressive stress
carrier Si and O atoms reach a saturated value. This feature is
directly connected with the corresponding macroscopic stress
states (shown in Fig. 1). The energy coming from continued
loading at the remote boundary during 21% � εyy � 32.5% is
absorbed by the reorientation or reorganization of the tetrahe-
dral units in the stress-fibers. Formation of stress-fibers takes
place during 15% � εyy � 21%, and rotation of the tetrahedra
takes place during 21% � εyy � 32.5%.

Although the description of virial stress as a continuum
measure of stress has been a matter of active debate, our
results and analysis show that it is possible to exploit the virial
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FIG. 11. (a) Fraction of the atoms, N tension
i (εyy ) and

N compression
i (εyy ), taking tensile and compressive stress at different

loading states, respectively; where i is Si or O. (b) Differential atomic
fraction, �Ni(εyy ) = |(N tension

i (εyy ) − N compression
i (εyy )|, representing

the difference in number of atoms in tensile and compressive
stress states. The vertical dashed line at εyy = 0.21 indicates the
activation of the irreversible deformation process, and the solid line
at εyy = 0.325 indicates onset of crack nucleation.

stress structure as an atomistic ingredient for characterizing
the condition for bond rupture process leading to fracture.
Unlike homogeneous materials (wherein virial stress is uni-
form among the specie), in amorphous silica virial stress is
distributed in a discontinuous manner, particularly at higher
deformation. Interestingly these virial stress-fibers have a
direct connection to the condition of crack nucleation and
propagation. The fibrous pattern in virial stress fields reveals
how the interatomic forces at the Si and O atoms evolve over
the deformation process.

To check the possible effects of cooling rate and melting
temperature, we investigated both of these effects for a num-
ber of cooling rates: 0.24, 0.12, 0.024, and 0.012 K/fs and
melting temperatures: 3000, 5000, 8000, and 12 000 K. In
all cases, heterogeneity or inhomogeneity in atomic stress is

present in the domain that induces distributed locations of
high-stress pockets at random locations in the media. The
highly heterogeneous stress distribution configures the stress-
fibers. Moreover, investigation of the atomic stress distribu-
tion indicates that the cooling rate and melting temperature
have negligible effect on both the compressive and tensile
stress states of the O atoms; whereas for the Si atoms, their
compressive stress states are unaffected but their tensile stress
states are affected by the melting temperature. From these
observations, we conclude that crack nucleation manifests as
a rich atomistic process that involves formation of highly
heterogeneous stress-fibers, followed by reorientation of the
tetrahedral units aligned along the stress-fibers. Next we ex-
plore these mechanisms in the context of crack propagation.

C. Crack propagation in amorphous silica

In this section, we focus on determining the role of indi-
vidual species on propagation of an initial crack in a domain,
with or without the presence of a nanopore. Although the
macroscopic stress-strain behavior of pristine silica has been
reported widely in the literature (as discussed in the introduc-
tion section), analogous studies on crack propagation remain
inadequate [82–85]. To unveil the atomistic mechanisms gov-
erning crack propagation criteria, we consider an initial crack
of finite length a0 in the domain and included small-diameter
porosities to predict its role on crack propagation.

1. Crack propagation in pristine aSiO2

The condition for crack propagation is investigated by (a)
placing a straight crack of length a0 at the left edge of the
amorphous domain, (b) applying a monotonically increasing
uniform load σ∞ at the remote boundary, and (c) identifying
the maximum stress at which the crack starts propagating
in the domain. Before conducting simulations with an initial
crack, we perform uniaxial stress test in the domain containing
the edges only, to assess the relative influence of edge and
crack on effective mechanical properties of amorphous silica.
The configurations along with their stress-strain curves are
shown in Fig. 12. For either configurations, the simulation
domain is taken periodic along the loading direction and the
out-of-plane direction and an empty space is added along
the third direction to avoid interactions between the periodic
images of the domain.

From the macroscopic data, the maximum stress point is
located to appear at εyy = 0.12. The effective stiffness of the
domain “with the edges only” (but no crack) is 68.952 GPa.
For the “domain with the edges and a crack” of length 100 nm
stiffness is 65.581 GPa. The strengths of the domains for
the corresponding configurations are 11.22 and 6.902 GPa,
respectively. Compared to bulk amorphous silica (which has
stiffness and strength of 69.0 and 11.42 GPa, respectively),
the domain “with edges but no initial crack” shows very
similar elastic behavior in the linear regime of mechanical
deformation—but the presence of an initial crack reduces the
stiffness of the domain by around 5% only and the strength
by 39%. The highest elastic energy density or the integrated
area under the stress-strain curve, denoted here as �c =∫ εfracture

0 σ (εyy)dσ is found to be 0.632 J m−3 for the “domain
with the crack,” 1.606 J m−3 for the “domain with the edge but
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FIG. 12. Comparison of the stress-strain curves obtained from
the uniaxial tensile test of an amorphous silica domain (962.1 ×
832.8 × 16.3 Å3, which contains 1 080 000 atoms) “with two edges”
and “with two edges and a crack” of length 100 Å, as defined
in schematics in the inset. The maximum stress state appearing at
ε = 12% is identified by “X’.

no crack,” and 3.143 J m−3 for the “domain without any crack
or edge.” These numbers suggest that the presence of edge
makes no significant effect on strength—but it has a sizable
effect on �c. An edge reduces �c of pristine amorphous
silica by 50% and an initial crack of length 100 nm reduces
it by around 80%. To explore the atomistic events that lead
to fracture of the domain, we investigate the atomic scale
processes in the domain and its evolution near the maximum
stress point “X” (identified in Fig. 12). To capture the first
bond rupture event, we calculate the Lagrangian displacement
of all atoms over the entire deformation history and determine
the maximum change in the first-nearest-neighbor distance for
each species (Si and O), as illustrated in Fig. 13.
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FIG. 13. (a) Evolution of maximum bond strain at different
stages of the macroscopic loading for 0.0 � εyy � 0.15. Four distinct
fracture stages are identified by stages A, B, C, and D. (b) The
corresponding atomic configurations of stages A, B, and D along
with the atomic stress field σyy in the bottom panel. The circles
identify the process zone at the crack tip.

The results show that a small number of the nearest-
neighbor bonds for both Si and O at the neighborhood of the
crack tip are subject to rupture at a much earlier stage in the
deformation history than what is apparent from the macro-
scopic stress-strain data. Yet such localized bond rupture does
not immediate lead to a propagation of the initial crack. Based
on how far the atoms configuring the first bond rupture event
go, we identify four distinct failure stages at the atomic scale:
they are marked by A, B, C, and D. In stage A, denoted
by 0.0 � εyy � 0.07, bonds are stretched uniformly in the
domain; in stage B, denoted by 0.07 � εyy � 0.109, a few
bonds fracture locally and subject to reconstruction in front
of the crack tip; in stage C, denoted by 0.109 � εyy � 0.12,
a number of bonds undergo rapid failure. The macroscopic
stress-strain data (Fig. 12) show the onset of the fracture event
at around εyy = 0.12, whereas the bonds at the crack tip starts
breaking at a rapid rate in regime C at εyy = 0.109, which is
much earlier than what is visible in the macroscopic stress-
strain curve. Also, a small number of bonds rupture locally
in stage B—yet it is only stage D, denoted by εyy � 0.12,
wherein fracture of the domain becomes noticeable in the
macroscopic stress-strain behavior.

Although in stage B a limited number of bonds (2 to 3
around the crack tip) locally fracture much earlier, at εyy =
0.06, they do not release sufficient elastic energy for continued
breaking of the bonds ahead of the crack tip. Newly formed
stress-fibers offer resistance to the continued propagation, so
we attribute the appearance of stage B as a direct consequence
of the formation of stress-fibers and their increased inten-
sity surrounding the crack tip. Analyzing the atomic stress
fields and composition maps, we find that the stress-fibers
of lengths around 1 nm are formed by an assembly of Si
and O atoms at higher deformation during stage B, as shown
in Fig. 14.

Due to the fibrous stress patterns, the matrix in front
of the crack tip ruptures sequentially—and when sufficient
number of links between the tetrahedral units are broken,
the elastic energy at the crack tip becomes large enough to
lead a rapid growth of the initial crack. The rapid growth
process takes place in stage C, and in stage B, the virial
stress-fibers continue to form and break, mediated by a spon-
taneous reconstruction process at the crack tip. This unveils
an important point that the onset of crack nucleation is a
localized event and undetectable from the macroscopic data.
Unlike crystalline brittle solids (which undergo rapid growth
of the bond rupturing process), silica takes some time between
the onset of nanocrack nucleation and the time at which the
macroscopic failure becomes detectable.

To determine the role of O and Si atoms in the deformation
process, we explore the distribution of their stresses at two
different loading states that cover the elastically deformed
state (stage A) and the transition state (stage B), as shown
in Fig. 15. It is found that the virial stress fields exhibit
heterogeneity in atomic interaction, whereas the Hardy stress
distribution averages out the species-dependent stress distri-
bution features of the domain. The difference in percentage
of atomic sites at the Si and O atomic sites can be attributed
to the number of Si and O atoms. While it preserves the
heterogeneous character of the stress-fields at the continuum
scale, the local atomic characters are lost in the process.
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crack-tip

FIG. 14. (a) Composition map of atoms with higher virial stress
at the crack tip, showing formation of nanoscale chains comprising
alternate assembly of Si atoms (shown in blue) and O atoms (shown
in red). (b) Normal stress states at the crack tip. Only the atoms with
virial stresses higher than 50 GPa (shown in blue) is used to construct
the image to reveal primary tensile stress carrier atoms. The highest
stress in the stress-fiber is around 60 GPa (shown in red).

a. Fracture toughness. To estimate a measure of fracture
toughness we use two approaches. First we use the Irwin’s for-
mula that relates the critical stress-intensity factor with frac-
ture strength: KIC = σmax

√
πa0 f (a0/w) [86], where σmax is

the maximum macroscopic stress, a0 is the initial crack length,
and w is the width of the domain normal to the loading direc-
tion. From our MD simulations (as exhibited in Fig. 12), we
find the maximum stress to be equal to 6.9 GPa, the effective
stiffness of the domain is 65.5 GPa, the ratio between half of
the height and width at the highest stress state is around 0.51,
and the ratio between the crack-length and the width is 0.11.
These values give KIC = σmax × √

πa0 f (a0/w) = σmax ×√
πa0(1.122 − 0.231a0/w) = 1.22 × 1.09 = 1.32 MPa

√
m.

The available experimental values of KIC of silica include
0.77 ± 0.16 MPa

√
m [87] in thin-film silica (with a fracture

strength of 0.81 GPa) and 1.0 MPa
√

m for silica fiber (with a
fracture strength of 3.5 GPa) [36]. The disagreement among
the values of KIC may originate from the discrepancy in
values of fracture strength and approximations in the empir-
ical factor f (a0/w). Furthermore, from the classical theory
of linearly elastic fracture mechanics, the relation KIC =
σmax

√
πa0 f (a0/w) is built on the crack tip stress profile that

varies as 1/
√

r from the crack tip [88], and the fracture
strength varies as 1/

√
a0 with respect to the crack length a0.

Next we investigate these two relations in details.

Figure 16 shows a continuum representation of the normal
stress field σyy(x, y) over the entire domain at the onset of
crack propagation. The stress field is obtained by averaging
the stresses of the atoms in the xy plane over a uniformly
discretized a 5-Å mesh. We separately use the virial and Hardy
estimates of stresses at the atomic sites to determine a spatial
description of the stress field. In both estimates, it is found that
the crack tip has the highest stress intensity and the remainder
of the material ahead of the crack tip experiences rough stress
profiles, highlighting the amorphous character of the domain.
Behind the crack tip the domain has much lower stress due
to the presence of the traction-free surfaces and associated
relaxation of the elastic field. The bonds surrounding the rup-
ture location undergo nonlinear elastic deformation involving
continuous breaking at the intersection of tetrahedral units.

At the continuum scale, the mathematical expression for
the stress field at the crack tip in linearly elastic material is
known to follow the following form [89]:

σyy(r, θ ) = KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
, (7)

where θ is the angle of a spatial point relative to the projected
crack propagation direction. Fitting the stress field data points
of aSiO2 by a surface described by the following equation:

σyy(r, θ ) = Kic

(2πr)β
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+ c∞, (8)

we find the exponent β = 1.0 (with a 95% confidence level of
the fit) for each of the stress-estimates. Here, c∞ = σyy(∞, θ )
is the uniform normal stress far from the crack tip). This
observation highlights that the stress field at the crack tip is
highly localized and it decreases much more rapidly from the
crack tip compared to what is obtained from the analytical
solution. We attribute the sharp decay in stress field as a direct
consequence of the stress-fibers that break the long-range
character of the elastic field and confine it at the propagating
crack front. Next we examine how does a nanopore interacts
with the crack tip and affects its propagation in the domain.

To determine the relation between initial crack length a0

and fracture strength σmax, we conducted continuum scale
simulations with the same domain size, loading conditions,
and material properties using the finite element software
named ABAQUS [90]. The constitutive law obtained from
our MD-ReaxFF stress-strain data is used as input to the
continuum scale simulations, and the MD stress-strain curve
obtained with 10-nm crack was used to fit the FEM stress-
strain curve. The goal of this study was to check σmax − a0

correlation in MD versus FEM calculations. The strength
values obtained from the FE simulations for different a0 are
plotted in Fig. 17, and the data points are well fitted to a
nonlinear equation of the form C1 + C2an

0, where the fitting
parameters are C2 = 14.25, n = −0.482, and C1 = 2.19 with
a R2 value of 0.997 as the goodness of the fit. As expected
the continuum simulation reproduced the exponent to be very
close to −0.5 (the small difference comes from finite size
effect or the empirical factor a0/w). The atomistic results
on the other hand shows the fitting parameters to be C1 =
2.07, C2 = 25.68, and n = −0.73, indicating sharper decay
of the fracture strength with a0. Different sensitivity of the
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FIG. 15. (Top) Species-dependent virial stress distribution at (a) εyy = 0.06660 during stage A and (b) εyy = 0.11290 during stage-B.
(Bottom) Species-dependent Hardy stress distribution at (a) εyy = 0.06660 during stage A and (b) εyy = 0.11290 during stage B.

relation between σmax and a0 motivates determination of KIC

from a second approach.
To obtain a second measure of KIC, we used the formula:

KIC = √
GcE , which relates the critical stress-intensity factor

KIC with the critical energy release rate Gc. We calculate Gc

for our atomistic domain by using the Rice’s J integral [44],
which is defined as

J =
∫

�

(
W dy − T · ∂u

∂x
ds

)
, (9)

where W = σi jεi j/2 is the elastic energy density and T is the
traction vector and � is the contour enclosing the crack tip. For
uniform remote loading along the y direction and the initial
crack aligned along the x direction, in finite domains (wherein
the contour behind the crack tip is not sufficiently far),
the equation for the J integral reduces to J = ∫

�right
W dy +∫

�left
W dy, where the elastic energy density is written as

W = σ
Hardy
i j εi j . We perform the integration along the contour

identified in the inset of Fig. 18, showing the evolution of
the J integral for different values of Rc (used to obtain
Hardy stresses at the atomic sites) as a function of applied
loading.

It is seen that a converged value of Jmax = 7.21 J m−2

results from Rc > 5.0 Å (which is consistent with our previous

RDF-based estimation). The stress-intensity factor is thus:
KIC =

√
EJmax × 1.0 × 10−3 = 0.70 MPa

√
m, where E is in

GPa and J in N m−2. Compared to the fracture-strength-based
estimation of KIC the J-integral-based estimation is much
closer to the experimental value. Since the J integral is path in-
dependent and converged for the domain under consideration,
the influence of the finite size effect on J can be considered
negligible. Although the relation KIC = √

JmaxE relies on the
approximation that crack tip stress field decays as 1/

√
r, the

measure of fracture toughness may not be affected much by
the finite size effect of the domain (as long as the J integral
is converged, as is the case for the present study). It is thus
reasonable to conclude that the J-integral-based estimation
of KIC offers a better estimate of fracture toughness, and the
Hardy measure of stress plays a crucial role for obtaining the
J integral from the virial stresses of the atoms.

2. Crack propagation in porous silica

Porosity in silica is inevitable and it is critical to determine
its implication on mechanical properties for understanding
the mechanisms of crack propagation and its interaction with
porosity. Typical size of nanopores in silica is reported to vary
from 1 to 20 nm [83,91]. As the size of the pore increases,
the minimum domain size required for modeling an isolated
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FIG. 16. (a) Spatial variation of the average virial stress field σyy(r, θ ) surrounding the crack tip at the onset of crack propagation.
(b) Analytical stress function fitted through the virial stress fields with a R2 measure of 0.96 as the goodness of fit. The lengths are normalized
by the respective dimensions of the domain. (c) Spatial variation of the average Hardy stress field σyy(r, θ ) surrounding the crack tip at the
onset of crack propagation. (d) Analytical stress function fitted through the Hardy stress fields with a R2 measure of 0.97 as the goodness
of fit.

pore-crack interaction increases dramatically, making the in-
vestigation unfeasible due to large computational require-
ments. Thus we limit our study to a smaller size range that

FIG. 17. Variation of strength as a function of crack length in
the domain. The blue data point represents the MD-ReaxFF data and
the remaining data points are obtained from finite element method
simulations of the same domain with its constitutive relation and the
cohesive energy being equal to the integrated area of the stress-strain
curves obtained from the MD-ReaxFF simulation.

vary from 1.07–2.55 nm, and we focus on understanding the
effects of single pore on the elastic fields emanating from
the crack tip and ascertaining its implication on the criteria
for crack propagation. The length of the crack (denoted by
a0) is kept fixed at 100 Å. The distance from the crack tip

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

R
c
=2.0

R
c
=4.0

R
c
=5.0

R
c
=6.0

FIG. 18. J integral as a function of applied strain εyy for different
values of Rc, which denotes the volume surrounding each atom over
which averaging of the virial stress is performed to obtain a Hardy
estimate of atomic stress.
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FIG. 19. Effect of pore size dp = QR (defined in the inset
schematic) on stress-strain behavior of porous silica containing one
pore of diameter dp = 10.7, 15.0, 18.2, 20.8, or 25.5 nm and an
initial crack of length a0 = 10 nm. The distance between the crack
tip P and the nearest pore-wall Q is kept at λ = 10 nm. The figures
on the bottom panel showing the stress-fiber pattern at the crack tip at
the onset of crack propagation highlights the difference in stress-fiber
densities between states A and B and their heterogeneous character.

to the pore wall (denoted here as λ) and the diameter of the
pore (denoted by dp) are varied separately, to determine their
relative effects on the atomistic mechanisms that govern the
propagation criteria. It has been reported [91] in an array of
voids under dilatation to form voids from their edges and
coalescence of voids that ultimately lead to failure of the
domain. Here we focus on the interaction of a single void with
a propagating crack under mode-I loading condition.

At λ = 1.0 nm, a variation in size of the pore diameter from
1.07 to 2.55 nm (representing 1% to 7% volume fraction of
the silica domain), indicates an inverse relationship between
the effective stiffness and the pore diameter. As illustrated in
Fig. 19(a), the domain with larger dp shows smaller stiffness.
Also, the strength of the domain reduces with increased pore
diameter.

From a continuum scale analysis of the stress fields sur-
rounding an isolated hole in an infinite plate under uniaxial
tension σ∞, the maximum stress at the hole edge can be
computed analytically from σmax = W σ∞

(W −d ) f ( d
W ); where d is

the hole diameter; w is the domain width; and f ( d
W ) is

a dimensional stress-intensity factor expressed as f ( d
W ) =

(3 − 3.14d/W + 3.667d2/W 2), which is an empirical law
obtained from a continuum scale stress-analysis of a circular
hole in a finite plate [92,93]. The ratio d/W in our calculation
varies from 0.11 to 0.27. For our domain with a hole of
radius a = 10 nm and width of W = 96 nm, application of
the continuum scale formula yields the maximum stress σmax

to be 2.97 times higher than the stress on the symmetry plane
far from the hole. For a hole diameter of 25 nm, the maximum
stress σmax is 3.36 times higher than the macroscopic stress.
Thus, from the continuum analysis, the strength of the domain
with the smallest pore considered is 13% higher than the
domain with the largest diameter pore. However, our atomistic
data shows that the domain with the smallest pore is around
40% than stronger that the domain with the largest pore. The
effect of pore size is therefore much more pronounced at
the atomic scale that what is predicted from the continuum
scale formulations. The difference can be attributed to the
amorphous character of the lattice, formation of stress-fibers,
and localized atomistic information (such as bond coordina-
tion, crystal structure) which are not taken into account in
the continuum scale analysis. It is thus important to explore
the atomistic information to correctly ascertain the effect of
nanopores on the effective properties of a porous complex
media such as amorphous silica.

Furthermore results show that there are two stress peaks in
the stress-strain data: the first peak (denoted here by σmax-1)
corresponds to the maximum macroscopic stress at the onset
of the crack propagation, and the second peak (denoted here
by σmax-2) corresponds to the maximum macroscopic stress at
the onset of crack re-nucleation at the pore wall on the right
hand side of the pore. The first peak stress decreases with pore
size, while the second stress peak does not show any specific
trend except that it is smaller than the first peak stress for suffi-
ciently larger pores. Reduction of the maximum macroscopic
stress with larger pores indicates the influence of the pore on
the crack-propagation criteria: the larger the pore size is, the
higher is the average stress on the symmetry plane. As a result,
for a given volume of the material, with larger pores the crack
tip reaches its local bond breaking stress earlier compared to
the smaller pores. Also, at a given macroscopic strain, the
stress field of the pores interact with the stress field emanating
from the crack tip affecting the criteria for crack propagation.
The overall maximum macroscopic stress is thus higher for
the smaller pores due to crack-pore interaction.

Similar to the effective strength of the domain, the effective
toughness is also substantially affected by the presence of
the pore. To compute toughness of the domain, we resort
to the energy based definition of toughness and evaluate it
through integrating the area under the stress-strain curve:∫ ε f

0 σdε, where ε f is the fracture strain. Results show no clear
correlation between effective toughness and pore size. As the
pore size increases from 1.0 to 1.5 nm, the effective toughness
gradually goes down. For a 20-nm pore, it goes up; and for a
25 nm pore, it reduces again. Such behavior can be attributed
to the complex interplay between the stress fields of the pore
and the crack tip; the distance between the crack tip and the
pore wall; and the curvature of the pore, which affects the
criteria for renucleation of the secondary crack at other end
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FIG. 20. Effect of λ (defined in the inset schematic in the top
figure) on the stress-strain behavior of the porous domain. The initial
crack length is a0 = 10 nm and the distance between the crack tip
and the pore wall is λ = 10 nm.

of the pore. With much higher pore size, however, the criteria
for crack renucleation can be deemed to converge to a single
value as dp → ∞.

Moreover for a given pore size, variation in distance be-
tween the pore wall and the crack tip (denoted here by λ)
shows substantial effects on effective strength and toughness
of the domain. Figure 20 compares two situations wherein
λ = 10 and 20 nm. The stress-strain curve shows only one
peak when λ = 20 nm, which is similar to what we have seen
for the domain with a crack but no pore. On the other hand,
the stress-strain curve for λ = 10 nm shows two peaks with
much higher toughness. The strength of the domain remains
the similar but there is a sizable difference in terms of their
strength. The behavior of domain with λ = 20 nm suggests
that for a sufficiently large distance between the crack tip
and the pore the stress field of the crack tip is unaffected by
the presence of the pore. Yet the domain exhibits only one
peak in its strain curve. We propose that this happens for the
following reason. By the time the crack tip reaches point Q
upon satisfying the local fracture criteria at point P, the edge

on the other side of the pore obtains sufficiently large elastic
strain energy so that renucleation happens at that edge without
requiring any additional energy. Continued propagation of
the crack is thus energetically favorable. On the other hand,
for smaller choice of λ, the edge R does not reach at its
renucleation energy level when the crack arrives at point Q.
With continued loading, macroscopic stress thus continues to
increase giving rise to a second peak. The simulations were
conducted with a maximum domain width of 95 nm along the
crack-propagation direction which gives the ratio between the
crack length and the domain width as 0.1. Thus we consider
the width to be sufficiently large to assume the factors involv-
ing λ/w (appearing in the equations for the stress-intensity
factors) as negligible. Yet is obvious that propagation of crack
in porous silica is affected by the interacting elastic fields—
and the stress-fibers play an important role in modulating the
elastic fields.

IV. CONCLUDING REMARKS

To conclude, we have demonstrated several important
atomic scale features of crack nucleation and propagation in
amorphous silica using the virial stress fields. First, we show
that virial stress structure is highly heterogeneous in silica,
and its species-dependent structure shows the Si and O atoms
to play distinctive roles in carrying the macroscopic load.
From the virial stress structure it is found that the Si atoms
are the majority tensile stress carriers, whereas the O atoms
are the compressive stress carriers. Second, localized rupture
starts much earlier than what is noticeable from the macro-
scopic stress-strain data. Third, at the crack nucleation site or
the propagating front of an initial crack tip exhibits formation
of virial stress-fibers of finite length which upon reaching a
critical density triggers the crack nucleation and propagation
processes in silica. The formation of the virial stress-fibers
and atomic rearrangement and reorientation offer resistance
for propagation of bond rupturing surrounding the nucleating
site or propagating crack tip. The strength and toughness of
the domain with and without crack and with and without a
pore unambiguously depict a clear virial stress structure that
can be exploited to explain the atomistic processes governing
fracture. The density of stress-fibers intensifies at the crack tip
when it interacts with the elastic fields of a neighboring pore.
Fourth, the crack-tip stress field vary as 1/r from the crack tip.
Formation of nano stress-fibers localizes the stress fields at the
evolving crack front and limits its long-range elastic tail into
the far-field domain. And fifth, presence of nanopores within
an interaction distance of 20 nm substantially improves the
effective toughness of the domain. Overall, the results unam-
biguously demonstrate strong heterogeneous character of the
amorphous material and the distinctive roles of the individual
species that make it behave very differently from what is
seen in homogeneous and crystalline materials. We also show
that virial stress structure can be used to examine the atomic
scale features governing nucleation and propagation events
from the atomic scale, while the Hardy stress fields provide
robust framework to examine continuum scale quantities such
as fracture toughness.

It is expected that the fundamental understanding out-
lined in this paper will find critical applications in exploring
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pathways for controlling crack nucleation and propagation
by promoting the formation the stress-fibers and engineering
their mechanical behavior by incorporating doping or alloying
with a different species. Also, we believe the results and
discussions presented here would create a new dimension to
our understanding fracture in important class of amorphous
materials such as silica. By assessing the behavior of the

individual species and their load carrying capability at dif-
ferent states of mechanical loading, a new class of mate-
rials could be produced. It is also expected that this work
would promote development of new theories that can capture
the rapid decay in elastic field and yet construct a robust
framework for calculating effective toughness and strength of
amorphous solids.
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