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System of correlation kinetic equations and the generalized equivalent circuit for hopping transport
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We derive the system of equations that allows to include nonequilibrium correlations of filling numbers into
the theory of the hopping transport. The system includes the correlations of arbitrary order in a universal way
and can be cut at any place relevant to a specific problem to achieve the balance between rigor and computation
possibilities. In the linear-response approximation, it can be represented as an equivalent electric circuit that
generalizes the Miller-Abrahams resistor network. With our approach, we show that nonequilibrium correlations
are essential to calculate conductivity and distribution of currents in certain disordered systems. Different types
of disorder affect the correlations in different applied fields. The effect of energy disorder is most important at
weak electric fields while the position disorder by itself leads to nonzero correlations only in strong fields.
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I. INTRODUCTION

Perhaps the most known tool for description of hopping
transport is the Miller-Abrahams resistor network [1]. It re-
duces the problem of hopping transport in small electric fields
to the equivalent electric circuit. Its nodes, which represent the
localization sites, are connected by resistors. The conductivity
of the circuit can be then analyzed within the framework of the
percolation theory [2] or calculated numerically as a solution
of Kirchhoff equations.

The Miller-Abrahams network is based on the mean-field
approximation. In this approximation, the averaged product
of two filling numbers nin j is considered to be equal to the
product of averaged filling numbers nin j . Therefore all the
correlations of site filling numbers are neglected. The simplest
neglected correlation can be expressed as the covariation of
two filling numbers ci j = nin j − nin j . The mean-field approx-
imation is uncontrollable as discussed in Ref. [2].

The most obvious reason for the presence of the corre-
lations ci j is the Coulomb interaction between electrons on
sites i and j. It is known that when this interaction dominates
the energy disorder, the system is strongly correlated and
shows a number of glassy features such as a number of pseu-
doground states and slow relaxations [3–5]. We would like
to note that even in this case the mean-field approximation is
widely applied. When the density of states with the Coulomb
gap is considered and self-interaction is excluded from the
energy of phonon participating in the hop, the mean-field
approximation leads to correct temperature dependence of
conductivity, the Efros-Shlkovskii law. However, even if the
Coulomb interaction is neglected, the correlations can appear
due to nonequilibrium response to applied electric field. The
present study is focused on these nonequilibrium correlations
and therefore we do not consider the Coulomb interaction
between electrons on different sites and the corresponding
physical phenomena. However, the on-site Coulomb repulsion
is considered to be strong preventing double occupation.

The contribution of nonequilibrium correlations to the
transport properties was first discussed by Richards [6]. In

Ref. [6], the chain of two kinds of sites was studied with
Monte Carlo simulation. The conductivity of the chain was
found to be substantially different from the result of Miller-
Abrahams model due to the contribution of nonequilibrium
correlations. The importance of correlations was confirmed by
Chase and Thouless [7]. To take the correlations into account
an analog of Miller-Abrahams network was proposed. A node
of network in Ref. [7] represents a many-electron configura-
tion. This method includes all the possible correlations but the
apparent network contains 2N nodes where N is the number
of sites in the system. It allows to apply the method to very
small systems only. The detailed study of correlations in one-
dimensional chain (both periodic and random) was made in
Refs. [8–10] where the effect of correlations on conductivity
and diffusion was estimated both analytically and with Monte
Carlo simulations.

Different opinions exist concerning the importance of
nonequilibrium correlations in strongly disordered systems
being in the Mott law regime. Levin, Nguen, and Shklovskii
[11] calculated the conductivity of a cubic system with 1000
sites with Monte Carlo simulation that automatically takes
into account all the nonequilibrium correlations. The results
of simulation were compared with numerical solution of
Kirchhoff equations for Miller-Abrahams resistor network.
The difference of the conductivities calculated with the two
methods was of order unity and was considered to be small
compared to the exponential dependence of current on tem-
perature and localization radius. The results of the simulation
were explained with the four-site model that was solved ana-
lytically. On the other hand, recently it was pointed out [12]
that correlations can substantially decrease the conductivity
of resistors between hoping sites compared to the prediction
of the Miller-Abrahams model. It occurs for the sites with
different sign of εi − μ, where εi is the site energy and μ is
the chemical potential. The authors of Ref. [12] concluded that
the current should form two separate percolation clusters with
quite rare connections. The two-color percolation model was
proposed to describe the conductivity. The approach applied
in Ref. [12] allows to consider pair correlations in close pairs
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of sites (and only them) and treat them as a modification of
Miller-Abrahams resistors.

Another reason to study the nonequilibrium correlations
appeared recently due to the development of organic semi-
conductors where transport usually occurs due to polaron
hopping. The correlations of site filling numbers in organic
materials were discussed in Refs. [13,14]. In particular, it was
understood that so-called organic magnetoresistance (OMAR)
[15–18] observed in many organic semiconductors with hop-
ping transport is absent in the mean-field framework [19].
This phenomenon is closely related to intersite correlations
[14,20,21]. It reappears in the conventional theory when at
least pair correlations in close sites are taken into account
[14]. The similar mechanism of magnetoresistance was also
proposed for ordinary semiconductors [22] but to the best
of the author knowledge was never observed in nonorganic
materials.

However, the further development of the theoretical as-
pects concerning the effect of the correlations on transport
is hindered by the absence of a general framework that al-
lows the theoretical description of these correlations. Only
the pair correlations in close pairs can be included in the
Miller-Abrahams network as a modification of its resistors.
However, this approximation is also uncontrollable and cannot
be used to describe all the correlation-related phenomena. For
example, it cannot be used to rigorously describe the effect of
spin relaxation on the conductivity when the spin relaxation
is due to a mechanism that is closely related to hops. The
examples of such mechanisms are the hyperfine interaction
with atomic nuclei and spin-orbit interaction. This interplay
between the spin relaxation and the current flow is the essence
of the organic magnetoresistance and should be described in
details before the quantitative theory of OMAR can be devel-
oped. It can be concluded that a new theoretical framework
should be developed allowing to effectively include arbitrary
correlations into the theory.

The main goal of the present study is to develop a new
method to take into account the nonequilibrium correla-
tions. The method is based on the Bogoliubov-Born-Green-
Kirkwood-Yvon chain of equations [23–25] and generalizes
the mean-field approximation to take into account the corre-
lations of arbitrary order. We derive the system of correlation
kinetic equations (CKE) that describes all possible correla-
tions of site filling numbers in a universal way and relate them
to the currents between sites. When the applied electric field is
weak CKE can be reduced to an effective electric circuit that
generalizes the Miller-Abrahams resistor network. The nodes
of the circuit in our approach represent the localization sites
and all the possible correlations of site filling numbers. When
all the correlations are included our method is as exact as the
resistor network [7] and also includes 2N nodes. However, we
show that correlations between distant sites and high-order
correlations are small. It allows one to cut the circuit at some
point and consider a number of nodes equal to const × N .
The simplest possible cutoff leads to the Miller-Abrahams
network. The next-to-simplest cutoff leads the approximation
exploited in Ref. [12]. In the present study, we will focus
on the simplest situation where Coulomb interaction between
distant sites and electron spin are not included into the theory.

The article is organized as follows. In Sec. II, we develop
the system of equations that describes the correlations. In
particular, in Sec. II A, we derive it for the small applied
electric field and represent as an equivalent electric circuit.
In Sec. II B, we derive a more general and complex system
of equations that should be used far from equilibrium. In
Sec. III, we use the developed method to study the effect of
correlations on the currents in different disordered systems. In
particular, in Sec. III A, we discuss the effect of correlations
on conductivity and current distribution in semiconductors in
the Mott law regime. In Sec. III B, we describe the effect of
correlations in strong electric fields and discuss the difference
between position and energy disorder. In Sec. IV, we compare
our method with Monte Carlo simulation. In Sec. V, we
present the overall discussion of the obtained results.

II. CORRELATION KINETIC EQUATIONS

In this section, we give a general framework for the de-
scription of the nonequilibrium correlations. We derive the
kinetic equations that relate the correlations to one another and
to the applied electric field. We do not consider long-range
Coulomb interaction between different sites. However, the
on-site Coulomb interaction is strong preventing the double
occupation of sites.

In the equilibrium, the averaged filling numbers are equal
to the Fermi function

ni = n(0)
i = 1

exp
(

εi
T

) + 1
. (1)

Here, index i enumerates the hopping site. εi is the site energy
related to the Fermi level. ni is its filling number that can be
equal to either 1 or 0. Line over ni indicates time or ensemble
averaging.

In the equilibrium, the filling numbers are independent. It
means that

nin j = nin j = n(0)
i n(0)

j . (2)

When the system is driven out of equilibrium, e.g., due to
an application of an external electric field, the average filling
numbers can be different from the equilibrium ones. We define

δni = ni − n(0)
i . The kinetics of δni is governed by charge

conservation law
d

dt
δni =

∑
j

Ji j . (3)

Here, Ji j is the electron flow from site j to site i. It can be
expressed as

Ji j = Wi j (1 − ni )n j − Wji(1 − n j )ni

+ (Wji − Wi j )(nin j − nin j ). (4)

Here, Wi j is the rate of hopping from site j to site i with
emission or absorption of a phonon. In our study, we adopt
the simplified expression for Wi j for definiteness:

Wi j = γ0|ti j |2 × min

[
1, exp

(
ε j − εi

T

)]
. (5)

Here, γ0 is the constant describing the electron-phonon in-
teraction, ti j is the overlap integral between the sites i and
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j and T is temperature. However, the details of expres-
sion (5) are not particularly important for the study pro-
vided that the detailed balance holds in the equilibrium
Wi j (1 − n(0)

i )n(0)
j = Wji(1 − n(0)

j )n(0)
i . The last term in (4) de-

scribes the effect of correlations on the currents. It is neglected
in the mean-field approximation and in the Miller-Abrahams
resistor network.

Rate equations similar to (3) can be written for pair cor-
relations. However, these equations will contain correlations
of higher orders. If all the correlations are taken into account
the apparent chain of equations will be the exact description
of system kinetics. The number of correlations is extremely
large. It is equal to 2N where N is the number of sites.
However, it is natural to assume that correlations of filling
numbers on distant sites are small and can be neglected. It
leads to the possibility to cut the chain.

The idea of the present study is to write the chain of
equations in a general form that allows to place the cutoff
at any place relevant for a given problem. We derive the
equations in two situations. In the first one, the applied electric
field and all the correlations are assumed to be small. In
the second situation, we consider an arbitrary nonequilibrium
state of the system that leads to more cumbersome equations.

A. Linearized equations

In this section, we consider the system that is close to
equilibrium. It is drawn from the equilibrium due to the small
applied electric field described by on-site electric potentials
ϕi = ri · E. We keep only first-order perturbations propor-
tional to ϕi.

The perturbations of averaged filling numbers δni are
proportional to applied field. To describe them, we linearize
equations (3) and (4):

d

dt
δni =

∑
j

Ti jδn j − Tjiδni + Di jδniδn j + Si j . (6)

Here, Ti j = W (0)
i j (1 − n(0)

i ) + W (0)
ji n(0)

i is the rate of transition

of additional charges from site j to site i. The index (0) in W (0)
i j

indicates that we consider equilibrium values of hopping rates.
Si j describes the currents generated directly by the applied
electric potentials ϕi

Si j = W (0)
i j

(
1 − n(0)

i

)
n(0)

j

eϕ j − eϕi

T
. (7)

The term Di jδniδn j describes the contribution of the
nonequilibrium correlations to the currents. Here, Di j =
W (0)

ji − W (0)
i j . Although the products of averaged corrections

to the filling numbers δniδn j are small ∝ϕ2
i and should be

neglected, we keep the averaged product δniδn j . In the linear
approximation, it is equal to covariation of the filling numbers
on sites i and j.

δniδn j = (
ni − n(0)

i

)(
n j − n(0)

j

) ≈ nin j − nin j . (8)

Note that the values (ni − n(0)
i )(n j − n(0)

j ) are not small with-
out the averaging even in the equilibrium. ni and n j are
equal to 0 or 1. Therefore the smallness of covariation (8) is

controlled not by the smallness of δni = ni − n(0)
i ∼ 1 but by

the close-to-equilibrium statistics of filling numbers.
The averaged product δniδn j describes the pair correlation

between sites i and j. However, we would like to consider
the correlations of arbitrary order. Therefore we introduce
notations that can be used for any number of the involved sites.
Let I be some set of sites I = {i1, i2, . . . , iK}, where K is the
number of sites in the set. We denote

δnI = δni1 · δni2 · . . . · δniK . (9)

In the linear approximation in terms of applied electric field,
δnI is equal to the K th-order covariation of the filling numbers
in the set I .

To derive the rate equation for δnI we note that these
covariations can be changed due to the hops involving at
least one site from I . Different hops are considered to be
independent. It means that the time derivative of δnI can be
expressed as follows:

d

dt
δnI =

∑
i∈I,k /∈I

(
d

dt

)
ik

δnI +
∑
i, j∈I

(
d

dt

)
i j

δnI . (10)

Here notation (d/dt )i j stands for the term in the expression
of a time derivative of some physical quantity related to hops
i ↔ j. Each pair of sites i j is included into summation only
once. We will show that the first term in (10) corresponds
to transitions between the correlation of the same order due
to electron diffusion. The second term corresponds to the
generation of higher-order correlations by the lower-order
ones.

To give the explicit expression for the terms in (10) let
us consider a term related to some given sites i and k in the
expression (6). Any quantity A independent of filing numbers
on the sites i and k is not changed due to these hops. It leads
to the expression(

d

dt

)
ik

δniA = TikδnkA − TkiδnkA

+ DikδniδnkA + SikA. (11)

Here, A is an arbitrary quantity that can depend on any filling
numbers besides ni and nk .

The general equation (11) allows derivation of the first term
(d/dt )ik with the selection A = δnI\i. Here notation I\i stands
for the set difference of sets I and {i}.(

d

dt

)
ik

δni∪I = Tikδnk∪I − Tkiδni∪I

+ Dikδni∪k∪I + SikδnI . (12)

Note that in most cases the term SikδnI is of the second order
in terms of applied electric field and should be neglected. The
only exception is the case I = ∅, which describes transitions
between corrections δni to occupation numbers. In this case,
δn∅ = 1 and the term SikδnI describes the usual contribution
of the electric potential to the currents.

To derive the second term in (10), we note that the averaged
product nin j cannot be changed due to hops i ↔ j. Naturally,
nin j is the probability of joint occupation of sites i and j, while
i ↔ j hops are impossible when both sites are occupied. It
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yields(
d

dt

)
i j

δniδn jA = −n(0)
j

(
d

dt

)
i j

δniA − n(0)
i

(
d

dt

)
i j

δn jA.

(13)

Here, similarly to Eq. (11), we added an arbitrary quantity A
independent of filling numbers ni and n j .

The expression (13) with A = δnI\i\ j leads to the following
expression for the second term in (10):(

d

dt

)
i j

δni∪ j∪I

= (
n(0)

i − n(0)
j

)
(Ti jδn j∪I − Tjiδn j∪I + Di jδni∪ j∪I + Si jδnI ).

(14)

The expressions (10), (12), and (14) compose the closed
system of correlation kinetic equations for the hopping trans-
port. To cut the system at some point, one should simply
neglect some correlations and consider δnI = 0 when I is the
set of sites with correlation neglected.

The linearized system of CKE (10), (12), and (14) allows
the simple representation with an equivalent electric circuit.
To construct it let us consider the correlation in some set
I of sites that are far away from each another so that the
direct hopping between sites within I is impossible. In this
case, only the term (d/dt )ik in (10) remains. One can see that
(d/dt )ikδnI∪i = −(d/dt )ikδnI∪k . Therefore, when the second
term in (10) is neglected, the sum of all the covariations of any
given order is conserved just like the sum of all occupation
numbers. It allows to introduce the “correlation currents”

J{I}
ik =

(
d

dt

)
ik

δni∪I = −
(

d

dt

)
ik

δnk∪I . (15)

Here, I is any set of sites that does not include i and k. When
I = ∅ the expression (15) gives the ordinary particle flow
between sites k and i.

It is also instructive to introduce the “correlation poten-
tials” uI , related to δnI as follows:

δnI = uI ×
∏
i∈I

n(0)
i

(
1 − n(0)

i

)
. (16)

When I contains only one site i, the potential ui is related to
the current-induces correction δμi to the chemical potential
on the site i [2], ui = δμi/T . The expression for currents J{I}

ik
in terms of potentials is

J{I}
ik = �

{I}
ik

[
uk∪I − ui∪I + s{I}

i j + (
n(0)

k − n(0)
i

)
ui∪k∪I

]
. (17)

Here, s{I}
i j is the source term caused by the applied electric

field: s{I}
i j = (e/T ) ri j · E if I = ∅ and zero otherwise. One can

consider correlations δni∪I and δnk∪I to correspond to nodes
of some electric circuit. �

(I )
ik corresponds to the conductivity

of resistor connecting these nodes.

�
{I}
ik = W (0)

ik

(
1 − n(0)

i

)
n(0)

k

∏
l∈I

n(0)
l

(
1 − n(0)

l

)
. (18)

For any correlations, �
{I}
ik = �

{I}
ki .

FIG. 1. Part of equivalent circuit representing five sites and pair
correlations between them (a). The connection between pair correla-
tion layer and charge layer is shown with blue triangles. The triangles
are explained in (b).

The hops inside the subset I lead to additional current J̃I

that enters the node δnI . This current can be calculated as
follows:

J̃I =
∑
i, j∈I

J̃ (i j)
I , J̃ (i j)

I = (
n(0)

i − n(0)
j

)
J{I\i\ j}

i j . (19)

Therefore the set of linearized CKE corresponds to an
equivalent electric circuit. It is divided into levels correspond-
ing to orders of correlations. Inside one level the circuit is a
resistor network. The potentials in upper level generate addi-
tion voltage sources at lower level according to Eq. (17). The
currents in lower levels generate additional currents J̃I that
flow from ground to the upper levels according to Eq. (19).
The part of this circuit representing a chain of five sites and
pair correlations of filling numbers of these sites is shown in
Fig. 1.

The total current flow into any node of the circuit is equal
to zero. It yields the system of Kirchhoff equations∑

i∈I, k /∈I

J{I\i}
ik +

∑
i, j∈I

J̃ (i j)
I = 0. (20)

Each pair of sites i j is included into summation only once
similarly to Eq. (10). I is any set of sites. It corresponds to
the node of the circuit representing the correlation inside this
set. If the currents are expressed in terms of potentials uI the
system (20) becomes the system of linear equations for these
potentials.

Even in an ordinary resistor network, the solution of
Kirchhoff equations has some degree of uncertainty. Any
constant can be added to all the potentials without changing
the currents and breaking the equations. In our case, the
uncertainty is even stronger. Each level of the circuit produces
the transformation of potentials that keeps all the currents.
The transformation related to the level K can be described as
follows. Arbitrary constant c is added to all the potentials uI

for all sets I with size K . At all the sets Ik = {i1, i2, . . . , iK−k}
with size K − k the potentials are also modified

uIk → uIk + c × (−1)kξ (k)
(
n(0)

i1
, . . . , n(0)

iK−k

)
. (21)

Here the notation ξ (k)(a, b, c, . . . ) stands for the sum of all
possible products of the values in the brackets with total power
equal to k. For example, ξ (3)(a, b) = a3 + a2b + ab2 + b3.

The uncertainty in potentials means that the Kirchhoff
equations should be supplemented with boundary conditions
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to calculate the correlations in a real physical system. The
most natural boundary condition state that correlation in any
set I should decrease to zero when the distance between sites
of this set tends to infinity. This condition is automatically met
when the system of kinetic equations is cut. In this case, the
only uncertainty is the arbitrary reference point of electrical
potentials.

B. Nonlinear equations

When the system is far from equilibrium, the separation of
averaged filling numbers ni into equilibrium values n(0)

i and
corrections δni is not instructive because the corrections are
not small. The hopping rates Wi j are substantially different
from W (0)

i j . However, the description of the system with cor-
relation kinetic equations is still possible. Also one can still
hope that correlations between distant sites are small and the
system of CKE can be cut.

The nonlinear system of correlation kinetic equations re-
lates the covariations of site filling numbers. We define the
covariation cI where I is some set of sites

cI =
∏
i∈I

(ni − ni ). (22)

Here, ni is the ensemble-averaged number of electrons on
site i. By definition cI = 0 when I contains only one site.
Therefore the variables of kinetic equations are the averaged
numbers of sites ni and the covariations cI for sets I containing
at least two sites.

The separation of rate equations into the terms correspond-
ing to different hops is still possible far from equilibrium:

d

dt
cI =

∑
i∈I,k /∈I

(
d

dt

)
ik

cI +
∑
i, j∈I

(
d

dt

)
i j

cI . (23)

The general expression is similar to Eq. (11) that allows the
derivation of different terms for correlations reads(

d

dt

)
ik

niA = Wik (1 − ni )nkA − Wki(1 − nk )niA, (24)

where A is independent of ni and nk . The right-hand side
(r.h.s.) of Eq. (24) should be decoupled into averaged values
and covariations.

With Eq. (24) we derive(
d

dt

)
ik

ci∪I = −
(

d

dt

)
ik

ck∪I = J{I}
ik , (25)

where we assumed that the set I does not contain sites i and k.
The expression for the correlation current is

J{I}
ik = (Wik (1 − ni ) + Wkini )cI∪k

− (Wki(1 − nk ) + Wiknk )cI∪i

+ (Wki − Wik )(ci∪k∪I − c{i,k}cI ). (26)

To derive the second term in (23), we recall that probability
of joint occupations of sites i and j cannot be changed due
to i ↔ j hops. Therefore (d/dt )i jnin jA = 0 when A does not
depends on the filling numbers of sites i and j. It leads to the

expression(
d

dt

)
i j

ci∪ j∪I = (ni − n j )J
{I}
i j

+ Ji j[(ni − n j )cI + cI∪i − cI∪ j]. (27)

Here, Ji j is the electron flow between sites i and j. In terms of
the averaged filling numbers and covariations, its expression is

Ji j = Wi j (1 − ni )n j − Wji(1 − n j )ni

+ (Wji − Wi j )c{i, j}. (28)

The currents Ji j control the rate equation for the averaged
filling numbers as usual

d

dt
ni =

∑
j 
=i

Ji j . (29)

Equations (23), (25), (26), (27), (28), and (29) compose
the nonlinear system of correlation kinetic equations. When
all the possible correlations are taken into account the system
is exact, however, in this case, it includes an extremely large
number of variables. When all the correlations are neglected
and only averaged filling numbers are considered, it is re-
duced to the well-known system of the mean-field equations.
In general case, the system can be cut at some point to
achieve the balance between correctness and computation
possibility.

III. SIGNIFICANCE OF THE NONEQUILIBRIUM
CORRELATIONS

In the present section, we use the correlation kinetic equa-
tions to calculate the dependence of correlations on distance
and order and the effect of correlations on the currents.
The equations are solved numerically for different disordered
systems.

We start from a simple system on a square lattice with 10 ×
10 sites. Only hopping between neighbor sites is allowed.
The tunneling integrals between neighbor sites are selected
with the distribution ti j ∝ 10−x, where x is randomly se-
lected in the (0,1) interval. The energies εi/T are randomly
selected in the interval (−3, 3). It allows us to consider both
energy and position disorder.

The results of the calculation in such a system are given
in Fig. 2. In Fig. 2(a), the structure of the system, i.e., the
distribution of the overlap integrals ti j and energies εi is
shown. The overlap integrals are shown with the width of grey
lines between neighbor sites and the energies by the colors of
the sites. The meanings of the site colors are shown by the
color bar. The dependence of the obtained total current on the
correlations included into calculations is shown in Fig. 2(b).
The labels (r, o) on x axis stand for these approximations. o
denotes the maximum order of the correlations included into
the computation. r is the threshold distance for the correla-
tions along the edges of the lattice. The correlations with a
distance larger than r are neglected. For example, x-axis label
(5,3) denotes that the correlation of the third and lower orders
were included provided that maximum distance between sites
along the lattice edges was not longer than 5. (0,1) point is
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(a) (b) (c) (d)

FIG. 2. Results of the calculation in 10 × 10 lattice. (a) The structure of the system. Overlap integrals ti j are shown as the width of grey lines
connecting the sites. Color gradient corresponds to site energy in units of temperature. (b) The dependence of total current on the correlations
included into the computation. (c) The distribution of currents in the sample. (d) The difference in current distributions when correlations are
neglected and are taken into account.

the Miller-Abrahams approximation. (1,2) point is the ap-
proximation adopted in Ref. [12]. The results in Fig. 2(b) are
averaged over 100 systems with identical statistics of energies
and overlap integrals but different disorder realizations. The
red line on the figure corresponds to the current calculated
with Monte Carlo algorithm (averaged over the same 100
systems). The figure shows that correlation kinetic equations
correctly reproduces the Monte Carlo simulations provided
that enough correlations are included into equations.

The distribution of currents across the system is shown in
Fig. 2(c). Figure 2(d) shows the difference in this distribu-
tion between Miller-Abrahams calculation and the calculation
including long-range correlations corresponding to the point
(5,4) in Fig. 2(b). The results provided in Figs. 2(b) and 2(d)
indicate that the effect of correlations both on the conductivity
and current distribution is relatively small (∼10%) for the
considered parameters.

Figure 3 shows how the correlations decrease with order
and intersite distance. In Fig. 3(a), we show correlation poten-
tials uI and in Fig. 3(b), we show the covariations. Different
colors correspond to the different orders of correlations. The
x axis corresponds to the maximum distance between sites in
the considered correlation along the lattice edges. Points are
numerical results averaged over 100 random system. Dashed
lines correspond to the exponential decay.

Both potentials and covariations decay with distance and
order. It justifies the cutoffs in the correlation kinetic equa-
tions. The decay of covariation with order is much faster than
the decay of potentials due to the product

∏
i n(0)

i (1 − n(0)
i ) in

Eq. (16).
How do the results provided in Fig. 2 indicating the rela-

tively small significance of correlation agree with the result
of Ref. [12] stating that a resistor with different signs of
site energies can grow exponentially due to the correlations?
We believe that what is important is the rate of correlation
relaxation due to its transfer to other sites of the system. In
Ref. [12], this rate was assumed to be comparable to the
rate of electron transition in the critical resistor. However,
usually the critical resistor that determines the conductivity
of the disordered system is connected to the rest of the
system with much more conductive resistors. It means that the
correlation can leave the critical resistor quite fast preventing
a large increase of the resistivity. To demonstrate this idea,

we construct a system where the correlations leave the critical
resistor slowly and their effect should be strong.

The system is shown in Fig. 4(a). The notations on this
figure are the same as in Fig. 2(a). The system is composed
of two reservoirs with relatively good conductivity connected
by the two bridges with small conductivity. However, the

(a)

(b)

FIG. 3. The dependence of correlations on distance and order.
(a) Averaged squared potential uI and (b) averaged squared covaria-
tions. The x axis (range) on both plots corresponds to the maximum
distance between sites in the correlation along the lattice bonds.
Different curves (ord) correspond to different orders of correlations.
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(a) (b) (c) (d)

FIG. 4. The system with two bridges where one bridge is sensitive to correlations and one does not. This system display a strong effect
of correlations on currents. (a) the structure of the system. Overlap integrals ti j are shown as the width of grey lines connecting the sites.
Color gradient corresponds to site energy in units of temperature. (b)–(d) The current distributions calculated in different approximations as
described in the text.

reasons for the small conductivity of bridges are different. In
the upper bridge, the overlap integrals ti j are relatively small
but the energies of the sites have the same sign. In the lower
bridge, ti j are larger and the small conductivity is controlled
by the hop between two sites with large energies with opposite
signs. However, the structure of the bridge, i.e. the relatively
small overlap integrals on the sides of the bridge, prevents the
correlations from leaving the bridge too fast.

In Fig. 4(b), we show the distribution of currents in this sys-
tem calculated in the Miller-Abrahams approximation. In this
approximation, the conductivity of the lower bridge is higher
than the conductivity of the upper one. Most of the current
is concentrated on this bridge. Figure 4(c) corresponds to the
approximation used in Ref. [12], when only pair correlations
on the neighboring sites are taken into account. In this case,
the calculated currents split between the bridges. Figure 4(d)
shows the current distribution calculated with taking into
account the correlations up to the fourth order and with the
distance between sites along the bonds of the lattice no longer
than 5. In this case, the resistivity of the lower bridge is ∼10
times larger than in the Miller-Abrahams approximation. Most
of the current is concentrated on the upper bridge in Fig. 4(d).

The results provided in Fig. 4 prove that the correlations
can be important for certain arrangements of site energies
and overlap integrals. The arrangement in Fig. 4 cannot be
considered as disordered. However, this system helps to un-
derstand the conditions that lead to a strong contribution of the
correlations to conductivity. First of all the conductivity of the
system should be controlled by the hops between sites with
a different sign of εi − μ. It ensures that current effectively
generates the correlations in the pairs responsible for resistiv-
ity. These correlations should not be able to relax easily due
to the transport to different parts of the system. Ideally, in a
pair i- j important for the resistivity of the whole system, both
the sites i and j should be parts of small groups that cannot
be leaved by the charge carriers easily. The possible “borders”
preventing the fast transition of the carrier outside such groups
are the hops between sites with a different sign of energy or
hops with small overlap integrals t � ti j .

In Fig. 5, we provide results for a random system where
these conditions are met. The system is composed of short
chains of 20 sites that randomly have positive energy +ε0 +
δε or negative energy −ε0 + δε. Zero energy corresponds to

the chemical potential. δε is a random energy with Gaussian
distribution with the width equal to 0.1ε0. The overlap in-
tegrals inside a chain are relatively large. Where the chains
overlap the interchain hopping is possible. Its rate is 10 times
smaller than the rate of hopping inside a chain. Positions of
chains in the numeric sample are random. The site energies
and overlap integrals of such a system are shown in Fig. 5(a).

(a)

(b)

FIG. 5. (a) The sample composed by the polymer chains. (b) The
results for this sample.
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We believe that such a system can be realized in polymers
randomly composed of two kinds of monomers.

In Fig. 5(b), we show the temperature dependence of con-
ductivity calculated in such systems in four approximations:
the Miller-Abrahams (MA) approximation, the approximation
(1,2) where only pair correlations in close pairs are taken into
account and two approximations (8,2) and (4,3) that take into
account the correlations on distant sites. The logarithm of
conductivity shown on 5(b) is averaged over 100 disordered
systems with similar statistics of site energies and overlap
integrals. The points are numerical results. The vertical bars
show the standard deviation of ln(σ ) in the ensemble averag-
ing. The dashed lines correspond to the Arrhenius law.

In all approximations, the temperature dependence of the
conductivity agrees with the Arrhenius law σ ∝ exp(−εA/T ).
However, the activation energies εA calculated in different
approximations are different. εA calculated in the Miller-
Abrahams approximation is equal to 2ε0. It is the energy of
the phonon required for the hop from the site with energy −ε0

to the site with ε = +ε0. Both approximations (8,2) and (4,3)
lead to the activation energy 3ε0. It is the result of nonequilib-
rium correlations. A similar result was obtained in Ref. [6] for
infinite one-dimensional (1D) chain where sites with positive
and negative are arranged in the alternating order. Here we
show that this result holds for random composition of chains
and for quasi-1D samples composed of finite chains.

The activation energy obtained in the approximation (1,2)
that takes into account only the close-range correlations is
between 2ε0 and 3ε0. Note that the results in MA, (8,2) and
(4,3) approximations are reproduced quite well in different
disordered samples [the standard deviations of ln(σ ) shown
with vertical bars in Fig 5(b) are small]. Nevertheless it
is not the case for (1,2) approximation. In some samples,
(1,2) approximation reproduces mean-field results while in
others it reproduces the results of approximations that take
long-range correlations into account. While our numerical
samples are large compared to the single chain, they are still
mesoscopic. The conductivity of a sample is controlled by a
small number of important chains that ensure the percolation.
The distribution of sites in these chains determines if (1,2)
approximation gives the correct result for conductivity or not.

A. Correlations in the Mott law regime

Two different opinions exist on the importance of the
nonequilibrium correlations for the hopping transport in the
materials in Mott law regime. Levin, Nguen, and Shklovskii
[11] calculated the temperature dependence of conductivity
in a cube with 1000 sites in this regime with Monte Carlo
simulation and within the Miller-Abrahams resistor model.
The first method takes the correlations into account while the
second method does not. The difference between the currents
obtained by the methods was of order unity and was consid-
ered negligible compared to the exponential dependence of
the current on temperature. Agam and Aleiner [12] pointed
out that the resistance between two sites with different signs
of energy can grow exponentially due to the correlations. It
was predicted that at low temperature, two parallel percolation
networks should exist. If it is the case the distribution of
currents in the system should be totally different from the one

predicted by the Miller-Abrahams network. The failure of the
Mott law was also predicted in Ref. [12] for the sufficiently
low temperatures.

To model a material in the Mott law regime, we con-
sider systems with 5000 sites randomly placed in square
numerical samples. The site concentration is equal to unity
and determines the units of distance. The overlap integrals
between the sites i and j depend on the distance between
sites ri j ,

ti j = t0 exp(−ri j/a). (30)

Here, a is the localization length. We consider two values
a = 0.2 and a = 0.3 to model different degrees of positional
disorder. The energies of sites were randomly selected in the
interval (−1, 1) that determine the units of energy. Therefore
the energy disorder was controlled by temperature T . T � 1
stands for the strong energy disorder. The Mott law should be
observed at sufficiently low temperatures.

The crucial parameter in this regime is the value of the
critical exponent ξc = (T0/T )1/3. Here, T0 = β2D/ga2. β2D ≈
13.8 is the numeric coefficient and g is the density of states
at the Fermi level [2]. This critical exponent determines the
maximum distance of the hop contributing to the current
rc = aξc/2 and the interval of energies −εmax < εi < εmax,
εmax = ξcT that includes all the sites relevant for conductiv-
ity. To simplify the numeric calculations, we excluded from
calculations all hops with the distances longer than a(ξc +
3)/2 and all the sites with |εi| > (ξc + 3)T . We solved the
system of Eqs. (10), (12), and (14) in three approximations:
in the Miller-Abrahams approximation, in the approximation
when pair correlations up to the distance 2rc are taken into
account (we denote it as “cor1” approximation), and in the
approximation when correlations up to the third order and
distance rc are calculated (“cor2” approximation). The results
are averaged over ten disorder configurations.

The results of our simulation are shown in
Fig. 6. Figure 6(a) is the comparison between the Mott
law and the numeric results. In the Mott law, the exponential
part of the temperature dependence of conductivity is
exp(−ξc). The pre-exponential part is governed by system
dimensionality and the pre-exponential part of dependence of
hopping rates on energies and distances [2]. In our case, it is
determined by Eqs. (5) and (30) and leads to pre-exponential
term 1/T in the temperature dependence of the total current
J (T ). Therefore T × J should follow the universal law
T J = const × exp(−(T0/T )1/3) independent on localization
distance a when the system is in the Mott law regime.
Figure 6(a) shows that the Mott law regime is achieved for
a = 0.3 when ξ � 12 and for a = 0.2 when ξ � 15.

Figure 6(b) shows the ratio of the current Jcor calculated
in cor1 approximation to JMA calculated in Miller-Abrahams
approximation. The points on the figure shows the value
Jcor/JMA averaged over ten numerical samples. The vertical
bars show the standard deviation of Jcor/JMA. This deviation is
due to the finite size of numerical samples. The ratio Jcor/JMA

decreases with increasing ξc, however, it does so rather slowly
and stays ∼1 in all the range of the parameters considered.
This ratio also should follow some universal dependence on ξc

in the Mott law regime. The figure shows that in this regime
the results for a = 0.2 and a = 0.3 are similar. We compare
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(a) (b) (c)

FIG. 6. Current in the Mott law regime calculated in three approximations: the Miller-Abrahams approximation (“MA”), approximation
where pair correlations up to the distance 2rc are taken into account (“cor1”) and with correlations up to the third order and up to the distance
rc (“cor2”). (a) the currents for two localization lengths compared to the Mott law, (b) the difference between “MA” approach and “cor1”
approach, and (c) the difference between “cor1” and “cor2” approaches. In (b) and (c), points correspond to disorder-averaged values and bars
to the standard deviation of this averaging.

the decrease with the exponential law α exp(−βξc) with
α ≈ 1.1 and β ≈ 0.02. Although the agreement is achieved
the small magnitude of decrease of Jcor/JMA with ξc does not
allow to reliably extract the asymptotic at large ξc from our
calculations for ξc � 22.

In Fig. 6(c), we show the ratio of the currents calculated
with different correlations included, in the approximations
cor1 and cor2. This ratio is close to unity. We believe
that it indicates that both approximations correctly describe
the effect of correlations on the transport in the considered
systems.

In Fig. 7, we show the distributions of currents calculated
in the three approximations in some part of one of our numeric
samples. We considered a = 0.2 and (T0/T )1/3 = 20, i.e., the
sample is nearly as deep in the Mott law regime as it is
possible with our computation capabilities. The difference
between the distribution of currents in the Miller-Abrahams
approximation and in “cor1” approximation is clearly visible.
The part of the sample where this difference is the strongest
is marked by a green (upper) rectangle. However, the current
distributions still have similar patterns. We do not observe
the two percolation networks predicted in Ref. [12]. The
difference in current distribution between “cor1” and “cor2”
approximation is much less pronounced. However, some dif-
ferences can be noted in the area of the sample marked with
a blue (bottom-left) rectangle. The area in these rectangles is
shown in larger scale in Figs. 7(d) and 7(e). In Ref. [26], we
provide similar current distribution pictures for the whole area
of ten numeric samples. All the samples have the parameters
a = 0.2 and ξc = 20.

The Mott law is observed in a number of quite different
materials. When it is observed the transport is controlled by a
small number of sites with energies close to the Fermi level.
In this case, the overlap integrals usually can be estimated
with Eq. (30) with some localization length a. Also the
density of states at the temperatures corresponding to Mott
law can be considered as a constant. All the results that follow
from this statistics should be universal for all the materials
that exhibit Mott law. Therefore the relative contribution of
nonequilibrium correlations to the conductivity in all such
materials should be the same.

B. Correlations far from equilibrium

In this section, we calculate the nonequilibrium correla-
tions of filling numbers in strong applied electric field when
the linear-response approximation is not valid. We discuss
the effect of correlations on transport in systems with two
types of disorder: position disorder related to random overlap
integrals ti j and energy disorder related to random energies εi

of sites. In most of materials, both types of disorder coexist.
However, in principle, they can exist and be modeled sepa-
rately. When the temperature is larger than the width of energy
distribution the energy disorder is not important for transport.
However, if the site concentration and localization length are
small n1/2a � 1, the system is still strongly disordered. This
regime is known as nearest neighbor hopping [2]. One can
also consider the opposite case when the sites are positioned
on some lattice and all the overlap integrals are the same.
The system is disordered only due to the distribution of site
energies that should be wider than temperature.

If only the position disorder is present in the system, the
correlations of filling numbers do not appear and do not affect
the transport properties at low electric field. It can be under-
stood from Eq. (19). The current J̃i j responsible for generation
of correlations is proportional to the difference of equilibrium
filling numbers n(0)

i − n(0)
j . This difference is equal to zero

without energy disorder. It leads to the absence of correlations
of filling numbers and their effect on the current in the linear
response regime. When the applied field is strong the position
disorder leads to different occupation numbers of different
sites and the correlations can appear and affect the currents.
The correlations, in this case, are proportional to E2 at small
applied fields E .

The situation in the system with energy disorder is re-
versed. At small applied fields the correlations are propor-
tional to E and affect the current in linear response regime.
However, in strong field E their effect on the current is sup-
pressed. It can be understood with the following arguments.
When the voltage on the neighbor sites is strong compared to
the temperature and energy disorder the hops can be divided
into two types. The hops in the direction of electric field
occur with phonon emission and in our approximations [see
Eq. (5)] are not sensitive to the energies of involved sites. The

014202-9



A. V. SHUMILIN AND Y. M. BELTUKOV PHYSICAL REVIEW B 100, 014202 (2019)

45 50 55 60 65 70

15

20

25

30

35
(b): "cor1" approximation

45 50 55 60 65 70

15

20

25

30

35
(c): "cor2" approximation

45 50 55 60 65 70

15

20

25

30

35
(a): MA approximation

(d): "cor1" approximation (e): "cor2" approximation

FIG. 7. Distribution of current in a system in Mott law regime
calculated in different approximations: Miller-Abrahams approxima-
tion (a), “cor1” approximation (b), and “cor2” approximation (c).
(d) and (e) show zoom of blue (bottom-left) rectangles in (b) and
(c) correspondingly.

backward hops against the field are impossible and again are
not sensitive to the site energies. Therefore the energy disorder
is not important in the limit of a strong applied electric field.
If no position disorder is present in the system it behaves
like an ordered one and displays no effect of correlations
on transport. However, the above arguments do not take into
account the hops exactly perpendicular to the electric field.
When the transport involves a significant number of these
hops (it occurs, for example, in the system shown in Fig. 2)
the correlations can affect transport in system with energy
disorder in a high electric field.

To simulate the difference between the two types of dis-
order we model a system of sites on the triangle lattice.
The electric field is applied along x-axis. The energies of
the sites are uniformly distributed in the interval (−�ε,�ε).
The overlap integrals between neighbors are equal to ti j =
t0 exp(−αxi j ) where the values xi j are uniformly distributed in
[0,1] interval. The parameter α controls the disorder in overlap
integrals that represents the position disorder in our model.
�ε controls the degree of energy disorder. The temperature is
considered to be equal to unity T = 1. The triangle lattice was
selected to exclude hops that are perpendicular to the applied
electric field.

The considered system with α = 3, �ε = 1 is depicted in
Fig. 8(a). In Fig. 8(b), we show the difference between current
JMF calculated in the mean-field approximation and current
Jcor calculated with correlations of the second order taken into
account for sites with distance along lattice edges up to 5.
We provide the results for the four types of disorder. For the
energy disorder (yellow curve, α = 0, �ε = 3T ), Jcor < JMF

at low field eEa � T . Here, a is the length of the lattice edge.
However, at large fields eEa � T , the currents are equal,
Jcor/JMF = 1. It means that correlations of filling numbers do
not affect the transport. The situation is different for position
disorder �ε = 0, α = 4, blue curve. Jcor/JMF = 1 at small
field E indicating that correlations are not important in the
linear response regime. However, at strong field the effect
of correlations appears. When the disorder has a mixed type
(�ε = 1, α = 3, green curve) the effect of correlations exist
for all the electric fields. Finally, the red curve corresponds
to an ordered system with α = 0, �ε = 0. The correlations
are absent and have no effect on the transport in an arbitrary
electric field in this case.

In Fig. 8(c), we show typical dependence of covariations
of filling numbers on neighboring sites on the electric field.
Lines in this figure correspond to CKE calculation. In this
calculation, the pair correlations were taken into account
for distance between sites �6 and the correlations of the
third order for distance between sites �3. The distance was
measured along the lattice bonds. The points correspond to
Monte Carlo simulation.

In a system with energy disorder, the dependence of co-
variation on electric field is linear at low field and asym-
metric with respect to reversion of the field direction.
In a system with position disorder the covariations in a
small field are proportional to ∝E2 and saturate at strong
fields.

The Monte Carlo simulation and CKE calculation agree at
relatively small electric field in Fig. 8(c). However, at strong
fields, there is a disagreement in estimate of correlations. It is
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(a) (b) (c)

FIG. 8. The correlations of filling numbers in high electric field. (a) The structure of the considered system. (b) The ratio of current
calculated with correlation to the current calculated in the mean-field approximation as a function of electric field. The results are averaged
over 100 disordered samples. (c) The dependence of a covariation of filling numbers in a close pair of sites on the applied field. Different
curves in (b) and (c) correspond to different degrees of disorder. �ε controls the disorder in site energies while α controls the disorder in
overlap integrals ti j as described in the text.

especially pronounced for position disorder. Nevertheless the
currents calculated with the two methods agree with precision
∼1%. It seems that in a system with position disorder in strong
electric field, a large number of correlations should be in-
cluded into the calculation to reliably estimate the correlations
in close pairs.

IV. COMPARISON WITH THE MONTE
CARLO SIMULATION

In this section, we compare the proposed method of corre-
lation kinetic equations with the Monte Carlo simulations that
are conventionally used when the mean-field approximation
is not sufficient. In Fig. 2, we have shown that Monte Carlo
simulation agrees with CKE provided that enough correlation
are included into the equations. Therefore the question of
applicability of CKE is the question Is the number of included
correlations sufficient?

In this section, we compare the methods for materials in
Mott law regime. We were not able to reproduce all the results
of Sec. III A with Monte Carlo simulations. Accordingly, we
focus on the small system with the site statistics described
in Sec. III A and a = 0.2n−1/2, ξ = 20. We compare “cor1”
approximation with Monte Carlo simulations.

The results of this comparison are shown in Fig. 9. In
Fig. 9(a), we show the dependence of nonlinear conductivity
J/E on the applied electric field calculated with the three
methods. Red curve is calculated in the Miller-Abrahams
approximations, blue curve is calculated in “cor1” approx-
imation. The blue points correspond to the Monte Carlo
simulation. The time of Monte Carlo simulation was ∼20
times larger than the time of CKE calculations. The difference
between results of Miller-Abrahams network and the more
precise methods is significant ∼2 times. The difference be-
tween “cor1” approximation and Monte Carlo simulation is
much smaller but is observable. It is related to the correlations
neglected in “cor1” approximation.

In Figs. 9(b) and 9(b), we show the current distribution
calculated for eEn−1/2/T = 0.05 with “cor1” approximation
and Monte Carlo simulation correspondingly. The current
distribution calculated with “cor1” approximation looks rea-
sonably. The distribution on Fig. 9(c) has several unexpectedly
large currents that break the charge-conservation law or form
circular currents. These artificial currents appear because of
fluctuations in Monte Carlo algorithm. Note that statistical
error of conductivity calculated with Monte Carlo algorithm at
this field is ∼2%. The time of a Monte Carlo calculation was
sufficient to reliably calculate the conductivity but the current
distribution obtained by this algorithm still is unreasonable. At

(a) (d)(b) (c)

FIG. 9. The comparison between CKE calculations and Monte Carlo algorithm. (a) The dependence of conductivity on the applied field
calculated in the Miller-Abrahams (MA) approximation, in “cor1” approximation and with Monte Carlo algorithm. (b) The current distribution
calculated in “cor1” approximation. (c) The current distribution calculated with Monte Carlo algorithm. (d) the averaged current between sites
and their standard deviations in Monte Carlo algorithm.
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the smaller field eEn−1/2/T = 0.01 that is close to the linear
response regime, the current distribution obtained with Monte
Carlo simulation is even much less accurate.

In Fig. 9(d), we show the standard deviations of local
currents �Ji j calculated with Monte Carlo algorithm versus
their averaged values. The standard deviations of most of the
small currents are usually larger or comparable with their
averaged values. It indicates that these currents are not reliably
estimated with our simulation. Even among the large currents
there are ones with large standard deviations �Ji j > Ji j .

The small electric field (i.e., the linear-response regime)
requires the largest times to calculate with Monte Carlo al-
gorithm because the current fluctuations are large compared
to field-induced currents. On the other hand, it is the best
situation for CKE approach. In this case, the correlation
equations are linear and can be solved more effectively than
the nonlinear equations that should be applied far from equi-
librium. To our opinion, the CKE approach is usually more
efficient than Monte Carlo at small electric field. At strong
electric fields Monte Carlo sometimes appears to be more
useful than CKE especially when the detailed information on
the system (the current distribution) is not required.

V. DISCUSSION

In the linear response regime, the nonequilibrium corre-
lations always decrease the current in comparison to one
calculated with Miller-Abrahams approximation. It can be
proved rigorously. The linear correlation kinetic equations are
equivalent to the following minimization problem

F = 1

2

∑
I, i, k
i < k

�
{I}
ik

[
uk∪I − ui∪I + s{I}

i j + (
n(0)

k − n(0)
i

)
ui∪k∪I

]2
.

(31)

Here, F is the function of potentials uI that should be min-
imized to find the correct potentials. I is any set of sites
including ∅ that does not contain sites i and k. The condi-
tions of minimum ∂F/∂uI = 0 yield the system of Kirchhoff
equations (20).

The term (n(0)
k − n(0)

i )ui∪k∪I in the definition of F is re-
sponsible for the interconnection of levels of the equivalent
circuit [Fig. 1(b)]. It simultaneously leads the to upward
interconnection, i.e., the currents J̃I that flow from ground to
the upper levels, and to downward interconnection, i.e., the
effect of high-order correlations on the currents of lower-order
ones. Without this term, the minimization of F yields a system
of Kirchhoff equations for the Miller-Abrahams resistance
network.

The current flow in the system is proportional to the
function F calculated with correct potentials uI that satisfy
the Kirchhoff equations. It can be shown that the derivative
∂F/∂E = eJL/T . Here the derivative ∂F/∂E is taken with
constant potentials uI . J is the total particle flow in the system.
L is the system size. J is proportional to electric field and F is
a bilinear function of the field. It leads to the expression

J = 2T

eEL
min
{u}

F. (32)

FIG. 10. The chain with resistance dominated by the hop be-
tween sites with different signs of energy. Blue arrows show the
hops that dominate the conductivity and generate the correlations.
Green arrows correspond to the hops that allow effective transfer of
correlations between different sites. Red arrows show the hops that
block this transfer.

Here, min{u} F is the minimum of the function F at given
field E .

When we cut the system of kinetic equations we artificially
set some potentials to be equal to zero. It imposes additional
conditions to minimum min{u} F and can only increase it.
Therefore, when one neglects some correlations the current
becomes overestimated and vice versa: each additionally in-
cluded correlation decreases the calculated current.

This result, however, is valid only in linear response
regime. When the electric field is strong the result depends on
system configuration. In some configurations, the mean-field
approximation overestimates the current, while in others it
underestimates the current.

The reason for the decrease of current due to correlations
is the fast recombination of electron-hole pairs that appear
after the hop from a site with negative energy to a site
with positive energy. Consider a chain of sites where the
conductivity is controlled by the hops i ↔ j between sites
with different signs of energy (Fig. 10). The rate of i → j
hops is controlled by the small value Wji. The backward hops
j → i have a much higher rate Wi j � Wji but occur only
when site i is free and site j is filled. Both of the events are
quite improbable. The current i → j makes the hops i → j
more frequent than hops j → i. After such a hops the electron
appears on site j simultaneously with hole on site i. It leads to
additional probability to find free site i, filled site j and (what
is important) to the positive correlation of the two events. The
appeared electron-hole pair can recombine with fast rate Wi j .
It creates “negative feedback” for the hopping between sites i
and j and can decrease the conductivity of the chain compared
to the prediction of the Miller-Abrahams theory.

There is an important condition for this decrease of con-
ductivity to be significant: the electron-hole pair should stay
on the pair of sites i- j at least for the time 1/Wi j . It is so
when the hops j → j + 1 and i − 1 → i are slow compared
to the hop j → i, Wi,i−1,Wj+1, j � Wi j . Otherwise if at least
one of this hops is fast the correlation i- j can be efficiently
transferred to the other sites. In this case, its effect will be
negligible at least in the theory that includes only the correla-
tions in close pairs of sites. This condition was understood in
Ref. [11] with analytical solution of the model of four sites.

However, if some other hop in the chain is slow the
correlation can return to the initial sites. For example, if
Wi−1,i−2 � Wi j the hole will stay on the pair of sites i − 1, i
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for quite a long time. There is also the second reason for
the electron-hole pair to stay close to the initial sites. Let us
consider the site j + 2 to have negative energy. In this case,
even if the hopping rates Wj+1, j and Wj+2, j+1 are high, the
electron cannot leave sites j and j + 1 until a hole appears on
site j + 2. However, the correlations at some distance should
be taken into account to catch such effects.

Finally what is important for the correlation transfer is the
branching of the hopping path. Consider that the correlation
was created on the pair i- j and that the site j has large number
of neighbors. If the rate of transition to at least some of these
neighbors is fast there is a high possibility for the electron to
leave the site j without recombination with the hole on the
site i. Therefore the effect of correlations on currents should
be the strongest in one-dimensional or quasi-1D systems.
The degree of branching should grow somehow with the
increasing dimensionality of the system. However, its growth
is not universal because the branching is more dependent
on the microscopic structure of disorder rather than on the
macroscopic dimensionality of the system.

In the present study, we developed the correlation kinetic
equations without taking the long-range Coulomb interaction
and electron spin into account. We believe that the theory can
be generalized to include the mentioned phenomena. To take
electron spin into account one should add the spin correlations
to the theory (see Refs. [14,22] where the spin correlations are
considered in the simplest approximation). The problem of
long-range Coulomb interaction is more delicate. The interac-
tion itself does not prevent the system from being described
by filling numbers and correlations. The correlations can
be related to one another by means of CKE. The kinetic
equations should include the effect of filling numbers on
hopping rates Wi j that does not exist in the present model.
However, it is known that when the Coulomb interaction

dominates energy disorder the system forms the Coulomb
glass [3–5]. We presume that in this state an extremely large
number of correlations can be required to reliably describe
the system. It can prevent one from making a reasonable
cutoff in the system of CKE and applying it to reasonably
large numerical samples. We still hope that CKE approach
can be useful for the description of materials where the long-
range Coulomb interaction is small compared to the energy
disorder.

In conclusion, we developed the system of kinetic equa-
tions that describes nonequilibrium correlations of site filling
numbers up to arbitrary order. In the linear response regime,
it can be reduced to an equivalent circuit that generalizes the
Miller-Abrahams resistor network. We show that correlations
decrease with order and distance between sites. It allows to
cut the system and achieve the balance between correctness
and computation capabilities. With our approach we show
that in some disordered materials (e.g., in quasi-1D systems
with two kinds of sites), the effect of correlations on the
current distribution is significant. However, it is not the case
for systems with Poisson distribution of sites in Mott law
regime. In such systems, the contribution of correlations to
currents is of order unity for (T0/T )1/3 � 20. The correlations
are absent in ordered systems. The different types of disorder
have different effects. Energy disorder makes correlations
important in small applied electric fields while the position
disorder makes them important in strong applied fields.
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