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We report a type of structural phase transitions in dielectric materials: the triggered incommensurate (IC)
transition. We demonstrate evidence for such a transition in the perovskite antiferroelectric PbHfO3 by means
of single-crystal x-ray diffraction, diffuse, and inelastic-scattering experiments, which we interpret using the
Landau theory of phase transitions. This transition is not driven by an IC soft mode, as is the case for the
majority of IC dielectrics, but by the soft mode associated with a different, coexisting order parameter related to
antiferrodistortive (AFD) tilts of the oxygen octahedra. When cooling from the high-temperature cubic phase
these two order parameters are established simultaneously and discontinuously at TIC ≈ 468 K. Two lattice
instabilities are present in the cubic phase: AFD instability with critical temperature T0 ≈ 441 K and ferroelectric
instability with T0 ≈ 408 K. The IC instability is absent. The analysis of the transition mechanism within the
Landau theory of coupled order parameters indicates that the transition is of triggered character, conditioned
upon the attractive biquadratic coupling between the IC modulation and the AFD octahedral tilts, and is driven
by the AFD soft mode.
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I. INTRODUCTION

Incommensurate (IC) phases are a fascinating subject in
solid-state science. They are characterized by the presence
of an additional periodicity in the crystal, which coexists
with the basic, standard crystalline periodicity, and evolves
independently of it on changing external conditions, such as
pressure or temperature [1,2]. Phase transitions leading to
incommensuration are so unusual and counterintuitive that
one of their pioneering theorists, Lifshitz, initially discarded
the very possibility of their existence in the form, by which
we mainly know them today [2].

The mechanisms driving the formation of IC structures
can be very different for different kinds of IC systems and
normally present substantial scientific challenges [3]. Espe-
cially difficult appear the cases of IC dielectrics, in which
the atomic-level mechanisms of formation are highly complex
and often controversial [2,4–6]. However, on the level of
phenomenological description, which is an upper layer of the
theory, the IC transitions in dielectrics are known to follow
the universal route [2]. This route implies that the high-
symmetry (usually high-temperature) phase is characterized
by an IC soft mode. This mode can be of phonon character
in displacive systems, such as K2SeO4 [7], or of pseudospin
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character in order-disorder systems [8], such as NaNO2 [9].
It is associated with a maximum of generalized susceptibility
(minimum of generalized stiffness [10]) at finite wave vector.
The formation of IC modulation is preceded by the divergence
of susceptibility at its maximum (decrease of stiffness down
to zero) at the transition temperature. Apart from the very
few exceptions [11], the IC transitions take place in a highly
continuous way, being the transitions of the second order.

Here we report on a conceptually different type of IC tran-
sition in dielectrics: the triggered IC transition. This transition
becomes possible when, apart from the IC displacement wave,
there is another (second) order parameter present. The two
order parameters appear simultaneously at the transition tem-
perature in a highly discontinuous manner (first-order phase
transition). In contrast to the standard route of IC transitions,
there is no IC soft mode in the high-symmetry phase, but there
is a soft mode associated with the second order parameter.
The softening of this mode drives the composite transition, in
which the IC modulations appear as a result.

We demonstrate evidence for such a transition in per-
ovskite antiferroelectric PbHfO3 [12] using complementary
x-ray diffraction, diffuse, and inelastic-scattering experi-
ments. PbHfO3 has three phases at ambient pressure: low-
temperature antiferroelectric (AFE) phase A1, defined by
antipolar Pb2+ cation shifts and antiferrodistortive (AFD)
oxygen octahedral tilts, the intermediate AFE phase A2
[13–18] (433 K < T < 478 K [17]), which is similar to A1,
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but with antipolar displacements organized in a wave of larger
period [19], and the high-temperature cubic phase. We show
that the A2 phase is an IC phase, which forms as the result
of a triggered IC transition driven by the AFD soft mode.
The finding bridges the research areas of triggered structural
transformations [20–24], IC phase transitions in dielectrics
[2], and antiferroelectricity in functional perovskites [25].

The paper is organized as follows. First, using single-
crystal x-ray diffraction, we demonstrate that the long-period
modulation in the A2 phase is an IC modulation, as evidenced
by highly continuous evolution of the modulation wave vector
with temperature. Second, on the basis of an exhaustive inves-
tigation of possible lattice instabilities in the cubic phase using
diffuse and inelastic x-ray scattering (IXS), we establish the
absence of an IC soft mode, but the presence of FE and AFD
soft modes. Finally, invoking the analysis of the present lattice
instabilities within Landau theory, we outline the transition
scenario, discuss and conclude the paper.

II. METHODS

A. Single-crystal sample preparation

PbHfO3 single crystals were synthesized by means of
spontaneous crystallization from the high-temperature solu-
tion in a Pb3O4-B2O3 solvent. The composition of the melt
used in our experiments was as follows: 2.4 mol % of PbHfO3,
77 mol % of PbO (re-counted to Pb3O4) and 20.6 mol % of
B2O3. The Pb3O4 was used instead of PbO to avoid coloration
of the as-grown crystals caused by oxygen deficiency. The
crystallization was carried out in a platinum crucible covered
with a platinum lid under conditions of a low-temperature
gradient. After soaking at 1473 K for 24 h the melt was cooled
down to 1200 K at a rate of 3.5 K/h and after decantation
the furnace was cooled to room temperature at a rate of
10 K/h. As-grown PbHfO3 single crystals were etched in
diluted acetic acid to remove residues of the solidified flux.
For use in diffraction, diffuse scattering, and IXS experiments
we have prepared samples in the form of needles with 40 × 40
micron cross section.

B. Diffraction and IXS characterization

We have used high-precision single-crystal x-ray diffrac-
tion to study temperature dependence of modulation wave
vector, energy-integrated diffuse scattering—to characterize
static susceptibility with respect to transverse modulations in
cubic phase, and energy-resolved IXS experiment to study
oxygen-related modes that are inaccessible in diffuse scatter-
ing (DS) experiment due to comparably weak scattering by
oxygen ions.

The diffraction and IXS experiments were carried out at the
two experimental stations of ID28 beamline of the European
Synchrotron Radiation Facility (ESRF) [26]. The diffrac-
tion side station was operating at the wavelength 0.6583 Å.
The diffraction images were collected using Dectris Pilatus
1M detector (172 × 172 micron pixel size) positioned at the
distance of 32.6 cm from the sample position. The data were
collected with angular step of 0.1◦ rotation per 0.1 s of
exposure. The same setup has been used for diffraction and
diffuse scattering measurements. The data collection has been

performed in the energy-integrating mode. The DS analysis
has been performed near the reciprocal-lattice node (−1 2
0), which has very weak structure factor for Bragg scatter-
ing and, consequently, negligible contribution from acoustic
phonons to the DS signal. The reciprocal space maps of
scattering intensity were constructed using CRYSALIS PRO soft-
ware and custom-built MATLAB codes. Additional diffraction
measurements in the IC phase have been carried out using
a SuperNova (Oxford Diffraction) laboratory diffractometer
in order to reliably reconstruct the modulation wave-vector
temperature dependence in the whole IC phase stability range
(see Appendix A for details).

The IXS station was operating Si (9 9 9) backscattering
monochromator reflection which corresponds to the wave-
length 0.6968 Å and energy resolution about 3 meV (full
width at half maximum). For each IXS scan the spectra at nine
different positions in the reciprocal space were simultaneously
recorded due to the use of an array of analyzer-detector pairs.
Analysis of IXS spectra has been performed using a standard
model composed of a damped harmonic oscillator response
function [27], to account for phonon peaks, and a Lorentzian-
shaped peak, to account for the central component in the
spectra. The sum of these components was convoluted with
the standard pseudo-Voigt resolution function.

Temperature control during diffraction and IXS measure-
ments was achieved using heat blowers.

III. RESULTS

A. Proof of incommensuration

Diffraction images show the superstructure reflections cor-
responding to two order parameters: transverse modulations
and AFD tilts. Figure 1(a) shows the intensity distribution
in two reciprocal space planes: (H, K, 0) and (H, K,−1.5)
at T = 453 K (A2 phase). The former plane shows a series
of satellite reflections with wave vectors of the form �Q =
(H + nξ0, K + nξ0, L), where H , K , L, and n are integers and
ξ0 ∼ 0.15 is the component of the modulation wave vector
�q0 = (ξ0, ξ0, 0). The positions of these satellites, as well as
their conditions of observability in different Brillouin zones,
indicate their origin as transverse displacive modulation anal-
ogous to the one of the low-temperature A1 AFE phase,
but with different modulation wave vector. The (H, K,−1.5)
plane contains the reflections at the R points of the Bril-
louin zone of the form �Q = (H + 1

2 , K + 1
2 , L + 1

2 ) and their
satellites at �Q = (H + 1

2 + nξ0, K + 1
2 + nξ0, L + 1

2 ). The R-
point reflections indicate the presence of antiphase oxygen
octahedral tilts, analogous to the ones characteristic to the A1
phase.

In contrast to the previous results [19], which imply a
long-period commensurate structure, our data clearly indi-
cate incommensuration. We have performed the diffraction
measurements on a fine temperature grid (�T = 1 K, from
T = 475 K down to T = 453 K) and traced the behavior of
the highest order satellites, which are the most sensitive to
the changes in the modulation wave vector. Figure 1(b) shows
the temperature dependence of the intensity distribution along
the [1 1 0] direction. An interesting observation is that the
satellites with order pairs such as (2 and −5) or (3 and −4)
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FIG. 1. Single-crystal x-ray-diffraction results. (a) Reciprocal
space map of PbHfO3 in (H, K, 0) plane in pseudocubic coordinates
at T = 453 K. Arrows denote satellite reflections of orders up to
7. The inset shows the map for (H, K, −1.5) plane containing the
R-point reflection and its satellite reflections. The intensity scale is
logarithmic. (b) Temperature dependence of the diffraction pattern
along the series of superstructure reflections located between (−2
1 0) and (−1 2 0) pseudocubic reflections. (c) The same, but with
the emphasis on the 2nd- and −5th-order superstructure reflections
(the −6th-order satellite is not visible due to the overlapping with
the strong signal from the 1st-order satellite). Solid lines denote
the positions of satellites of different orders corresponding to the
single continuous approximation to ξ0(T ). (d) Temperature depen-
dence of the component ξ0 of the modulation wave vector �q0 =
(ξ0, ξ0, 0).

are merging close to the transition temperature between the
A2 and cubic phases. The enlarged area of the map [Fig. 1(c)]
shows that this merging takes place solely at a particular
temperature (as opposed to an extended temperature range),
where the trajectories of the relevant satellites intersect with
each other. At this temperature (≈463 K), the modulation
wave-vector component ξ0 has a commensurate value 1

7 . Such
low-order rational values are known to be potential hosts for
temporary commensuration in “incomplete devil’s staircases”
[2,28], but our data show that this is not the case for PbHfO3.
The overall continuity of ξ0(T ) is very high. Figures 1(c)
and 1(d) show this dependence by solid lines. It increases
monotonically on cooling, and approaches saturation at about
0.149 before experiencing a discontinuous increase to ξ0 =
1/4 (not shown) on the lock-in transition to the commensurate
AFE phase. Refer to Appendix A for more details on deter-
mining ξ0(T ) dependence.

B. Two lattice instabilities

How does it occur that the two order parameters appear
jointly on cooling? AFD transitions in perovskites are typi-
cally due to the AFD lattice instability associated with AFD
soft mode [10]. IC transitions in dielectrics are typically
driven by the IC soft mode condensation [2]. It naturally
follows that PbHfO3 has to possess these two soft modes
in the cubic phase. We show that this is not the case: there
are only FE and AFD instabilities instead, the latter being
characterized by the highest critical temperature.

Generalized static susceptibility associated with the IC
order parameter is linked to diffuse scattering intensity as
I ( �Q, T ) ∝ T χ ( �q, T ) [10], where the wave vector �q is the
difference between wave vector transfer �Q and a reciprocal-
lattice vector. Figure 2(a) shows the DS intensity distribu-
tion in the (H, K, 0) reciprocal space plane for T = 473 K,
which is just above the transition temperature of 468 K. The
largest intensity values reside along the lines of the form �q =
(ξ, ξ , 0), which include the wave vector �q0 of the modulation
in the IC phase.

Interestingly, the DS intensity distribution does not have
a maximum or any specific feature at the wave vector �q0,
at which the IC superstructure reflection appears on cooling.
This contrasts with the picture recently reported in PbZrO3

under pressure [29], and with diffuse scattering studies of
classical IC dielectrics [9,30,31], where the finite wave-vector
critical scattering maximum has been observed.

To guarantee the absence of any critical behavior associ-
ated specifically with �q0, we have performed the joint numer-
ical analysis of DS distributions corresponding to different
temperatures using the simplest possible Taylor expansion of
generalized static stiffness. Along the direction of interest,
�q = (ξ, ξ , 0), this expansion should assume the form [2]

χ−1(ξ, T ) = A(T − T0) + D(ξ − ξm)2, (1)

where A and D are constants and ξm is the wave vector of stiff-
ness minimum. In the case of the IC soft mode present, this
expansion would be valid in a relatively narrow wave-vector
range around ξm = ξ0. Obviously, this is not the case, because
the susceptibility has a large nonzero slope at ξ0 [Fig. 2(b)].
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FIG. 2. Diffuse scattering distribution in the cubic phase and
its evolution with changing temperature. Panel (a) shows the two-
dimensional distribution in the (H, K, 0) plane, panel (b) shows one-
dimensional profiles along [1 1 0] direction together with fit results as
described in the text. The DS intensity increases on cooling towards
the transition temperature of about 468 K. Vertical dashed lines show
the positions of the first-order IC satellites in the IC phase. In the
cubic phase, the DS maxima would be expected at these positions in
the case of the IC soft mode being present.

Vertical dashed lines show the positions of expected maxima.
On the other hand, the experimental DS distributions are
consistent with Eq. (1) for ξm = 0, implying the presence of
a ferroelectric soft mode. The corresponding susceptibility
distribution takes the form

χ ( �q, T ) = 1

D

1

ξ 2 + (A/D)(T − T0)
, (2)

which enters the formula for DS intensity as [10]

I ( �Q, T ) = T |F ( �Q)|2χ ( �q, T ) + IBackground, (3)

where �Q is the scattering vector and F ( �Q) is the structure
factor [32]. Notably, the DS profiles have Lorentzian shape
and do not tend to diverge on approaching the zone center.
This indicates a negligible contribution from scattering at
acoustic phonons to the DS signal, compared to the scattering
at the fluctuations of the order parameter.

The above equations (2) and (3) describe I ( �Q, T ) consis-
tently in a broad wave-vector range including ξ0. Furthermore,
the critical temperature T0 = 408 K is quite consistent with
the ferroelectric critical temperature obtained by dielectric
measurements [33]. Considered together, these facts indicate
that the moderate temperature dependence of DS at ξ = ξ0 is
conditioned upon the softening of ferroelectric soft mode, and
not an IC soft mode. The IC soft mode is absent in the cubic
phase.

Albeit there is no IC soft mode, the dispersion of ferro-
electric soft mode in PbHfO3 is more favoring the formation
of IC modulations than in other ferroelectrics. Indeed, the
D coefficient in PbHfO3 is several times smaller than in
normal ferroelectric PbZr0.6Ti0.4O3. Andronikova et al. have
determined the A/D ratio for that crystal [34], which turns out
to be about 4.5 times smaller than we have found in the present
study for PbHfO3 (A/D = 3.2 × 10−4(r.l.u.)2/K). Provided
that the A parameters for PbHfO3 and PbZr0.6Ti0.4O3 are sim-
ilar [35], the difference in A/D is mainly due to the difference
in D coefficients. Therefore, in PbHfO3 the D coefficient is
several times smaller. As long as this coefficient controls the
energy cost of creating polarization inhomogeneities [36],
these inhomogeneities are created more easily in PbHfO3

than in ferroelectrics. The specifics will be useful later in the
discussion of the transition scenario.

C. AFD instability

When there is no IC soft mode, what is the driver for the IC
transition? We show that the AFD instability is characterized
by the highest critical temperature and the corresponding soft
mode creates the necessary condition for the incommensura-
tion to appear.

AFD tilts correspond to the R point of the pseudocu-
bic Brillouin zone and are described by the �25 irreducible
representation (IR) in the notation of Cowley [37]. Char-
acteristic IXS spectra obtained by us at different temper-
atures and at different R points are shown by circles in
Figs. 3(a)–3(c). The spectra comprise two relatively broad
and temperature-independent sideband peaks and a highly
temperature-dependent central peak located at zero energy
transfer. The energy width of the central peak profile is deter-
mined largely by the width of the resolution function; the peak
appears resolution limited. In the wave-vector space the cen-
tral peak is also relatively narrow, as detailed in Appendix B.
The sideband phonons are characterized by energy h̄ω =
7.3 ± 0.4 meV and damping constant � = 5.8 ± 1.1 meV and
are temperature independent within the accuracy of parameter
determination. These properties of sideband peaks are con-
sistent with the ones obtained in previous study [38], which,
however, did not allow identifying the relevant lattice modes
and tracing the central peak temperature dependence, which
is proven essential by the present results.

First, we identify the lattice modes responsible for side-
band and central peak components of the spectra. The primary
candidate is the oxygen tilt (AFD) mode, which corresponds
to the �25 IR [37]. Indeed, this mode has been found the most
unstable in first-principles study of similar crystal PbZrO3

[39]. To check whether the observed sideband and central
peaks correspond to �25 representation, we have performed
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FIG. 3. Inelastic x-ray scattering results at the R points of the Brillouin zone. Panels (a)–(c) show evolution of the IXS spectrum with
temperature at the R point (1.5, 2.5, 0.5) by circles, fit results by solid lines. Panel (c) shows, in addition, the spectrum at the R point
(1.5, 1.5, 1.5) by squares, in which the central peak is nearly absent.

the IXS measurements at two distinct R points, (1.5, 1.5, 1.5)
and (1.5, 2.5, 0.5). These two R points differ in the possibility
of observing the signal due to the oxygen octahedral tilts [40].
In the case when all three coordinates have the same absolute
value, which is true for the point (1.5, 1.5, 1.5), the scattering
due to tilt modes is forbidden due to zero structure factor.
When the coordinates are different, as it is the case for the
point (1.5, 2.5, 0.5), the structure factor for tilts is nonzero
and one may register the relevant scattering signal. In the case
when sideband and central peaks would correspond to the
same �25 representation, both these spectral features should
disappear from the spectrum on going from (1.5, 2.5, 0.5)
to (1.5, 1.5, 1.5). Experimentally it is not the case, as is
clear from Fig. 3(c). Only the central peak disappears, while
sideband peaks remain the same. Therefore, the central peak
corresponds to the oxygen octahedral tilts (�25 AFD mode),
while the sideband peaks correspond to some other lattice
mode. The obvious candidate for sideband peaks is the �15

mode, which has been also found unstable, alongside with the
�25 mode, by first-principles study of Ghosez et al. [39]. The
scattering at the �15 phonons is not systematically forbidden
at any of the R points. Furthermore, since the motion in the
�15 mode is expected to be dominated by Pb-ion displace-
ments [39], the inelastic structure factor is expected to be
similar in magnitude at different R points characterized by
similar magnitudes of scattering vector | �Q|. This is in good
agreement with nearly identical sideband peak intensities in
(1.5, 1.5, 1.5) and (1.5, 2.5, 0.5) points. This leads to the
conclusion that the central and sideband peaks in the spectra
correspond to the �25 and �15 modes, respectively.

In principle, the sideband phonon peaks due to the
�25 AFD mode should be also present in the spectra at

(1.5, 2.5, 0.5). Experimentally, we do not distinguish them. A
tentative explanation is that the �25 sideband peaks are much
weaker than the �15 sideband peaks (the atomic scattering
factor for oxygen is much smaller than the one for Pb), and
become indistinguishable on top of the latter [41].

Strongly temperature dependent and narrow in energy,
central peaks are known to manifest the softening of AFD
modes in perovskites [10,42]. The dominating role of a very
sharp central peak in the AFD critical dynamics is well
known for AFD transition in SrTiO3 [43–46]. In that crystal,
on approaching the AFD transition, the soft-mode dynam-
ics experiences a crossover from a classical behavior with
soft phonon resonances following Cochran’s law ω2

AFD(T ) ∝
(T − T0) to the regime, where the temperature dependence
of these resonances is largely saturated at a finite nonzero
value and the critical slowing down of the soft mode becomes
represented by the central peak rapidly increasing in inten-
sity [44]. This picture is consistent with our observations in
PbHfO3. By analyzing the central peak integral intensity as
a function of temperature we estimate the critical tempera-
ture associated with the AFD soft mode. Assuming that this
intensity is representative to the AFD static susceptibility, we
have fitted its temperature dependence by the standard relation
[10] I (T ) ∝ T χ (T ) with χ (T ) = 1/(T − T0)γ and obtained
critical temperature T0 = 441 K and index γ = 1.26. The
index value is only slightly above unity (which would indi-
cate the standard Curie-Weiss behavior), and can be possibly
consistent with nonclassical behavior anticipated for this type
of order parameter [10].

AFD instability is clearly present in PbHfO3. It is man-
ifested by the AFD static susceptibility diverging at about
T AFD

0 = 441 K, which is only slightly below the actual
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transition temperature of about 468 K and is substantially
higher than the ferroelectric critical temperature of about
408 K. Comparison of temperature trends associated with
different susceptibilities (AFD, FE, IC) is shown in Fig. 4. The
dependence T χFE(T ) = CT/(T − T FE

0 ) (dashed line), which
is related to dielectric susceptibility, is substantially less sharp
than the same relation for AFD susceptibility. The dependence
T χ IC(T ) (dotted line), calculated using χ (T ) of Eq. (2) with
ξ = ξ0, is very weakly temperature dependent (low critical
temperature T IC

0 = 340 K), compared to AFD and dielectric
susceptibilities. This weak temperature dependence is due to
the finite wave-vector tail of the FE soft mode. The AFD
critical temperature is the highest.

D. Transition scenario

How does the strong AFD instability result in the IC
modulation despite the absence of finite wave-vector stiff-
ness minimum? We show that the mechanism of their for-
mation corresponds to a triggered transition, in which two
order parameters appear simultaneously, similarly to the trig-
gered ferroelectricity, which was initially identified by Ho-
lakovsky [20] and later discovered in BiFeO3 using ab initio
methods [23].

The simplest expansion of the thermodynamic potential
that is allowed by cubic symmetry, involves the relevant order
parameters and allows first-order transitions is [47]

Gξ (Aξ , η) = αξ (T )

2
|Aξ |2 + βξ

4
|Aξ |4 + α′(T )

2
η2 + β ′

4
η4

+ γ ′

6
η6 + δξ

2
|Aξ |2η2. (4)

Here, Aξ is the amplitude of the complex wave Aξ exp(i �q �r),
the real part of which is proportional to the components of
ionic displacement vectors of the form (u,−u, 0). Wavevector
�q is directed along [1 1 0]. η is the amplitude of the AFD order
parameter. The coefficients αξ (T ) and βξ describe the stiffness

and anharmonism related to Aξ , while the coefficients α′(T ),
β ′, and γ ′ correspond to η. The δξ coefficient describes the
wave-vector-dependent biquadratic interaction between the
two order parameters.

Simultaneous formation of IC and AFD order parameters
implies a minimum of Gξ at nonzero Aξ and η. This requires
negative biquadratic coupling constant δξ . Indeed, invoking
the equation of state with respect to |Aξ |,

0 = ∂Gξ /∂ (|Aξ |) = |Aξ |(αξ + βξ |Aξ |2 + δξη
2), (5)

and discarding the nonrelevant solution Aξ = 0, we obtain

|Aξ |2 = −δξη
2 − αξ

βξ

. (6)

Since βξ is positive, the solution exists if −δξη
2 > αξ . As long

as αξ > 0 (from the experiment), this can be only possible
when δξ < 0.

With negative δξ , the condition 0 = ∂Gξ /∂ (|Aξ |) is ful-
filled at nonzero Aξ only for amplitudes of AFD tilts exceed-
ing the limiting value η2 > −αξ/δξ . This shows that when
IC stiffness is finite at the transition temperature, the whole
transition can be only of the first order. The value of η at
the transition temperature is obtained by analyzing Eq. (4),
in which |Aξ |2 is replaced by the right-hand side of Eq. (6),
resulting in the sixth-degree polynomial in η,

G′
ξ = − α2

ξ

4βξ

+ α′′(T )

2
η2 + β ′′

4
η4 + γ ′

6
η6, (7)

with renormalized coefficients α′′(T ) = α′(T ) − α(T )δξ /βξ

and β ′′ = β ′ − δ2
ξ /βξ . The value of η at the transition tem-

perature is extracted from Eq. (7) using standard treatment of
the first-order phase-transition theory, after which the value of
|Aξ | is recovered using Eq. (6).

The visual comparison of Gξ (Aξ , η) in the cases of negative
and zero biquadratic coupling constant is shown in Fig. 5.
For simplicity it is assumed that IC stiffness is temperature
independent and the triggered transition is purely due to the
AFD softening.

The IC nature of the transition requires, additionally, that
the minimum in Gξ (Aξ , η) corresponding to modulation wave
vector (ξ0, ξ0, 0), should be deeper than the similar min-
ima corresponding to neighboring wave vectors with ξ �= ξ0.
Therefore, the potential G, when considered as a function of
three independent variables (ξ , |Aξ |, η), shall have an absolute
minimum in these three variables, and this minimum shall
correspond to ξ = ξ0, |Aξ | �= 0, and η �= 0 at the transition
temperature.

The above mechanism of selecting modulation wave vector
[G(ξ, Aξ , η) = min] is different and more complex than the
one in second-order IC transitions, where the wave vector
is merely determined by the minimum in IC stiffness in the
high-symmetry phase [α(ξ ) = min]. The necessary condition
for a minimum, ∂G/∂ξ = 0 at ξ = ξ0, cannot be fulfilled with
only αξ being wave-vector dependent. Therefore, we have to
assume wave-vector dependence for some of the anharmonic
coefficients. It is known that AFD tilts tend to affect FE
and AFE modes differently, suppressing ferroelectricity [48]
and enhancing antiferroelectricity [49]. This implies that δξ

should be wave-vector dependent, being positive near the
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FIG. 5. Comparison of free-energy landscapes in the cases of negative and zero biquadratic coupling constant. In the case of negative
constant (left side), decrease of AFD stiffness, α′(T ), results in the formation of a minimum at nonzero IC and AFD order parameters, while
for zero constant (right side), the minimum corresponds to purely AFD phase transition. The coefficients used in the plots are αξ = 0.5,
βξ = 1.6, β ′ = −0.8, γ ′ = 1.

Brillouin-zone center and negative near the zone boundary.
Considering that only αξ and δξ are wave-vector dependent,
we can estimate the ξ dependence of δξ on the basis of exper-
imentally determined αξ = A(T − T0) + Dξ 2. Assuming that
η attains its spontaneous nonzero value η0, and substituting
this value into G(ξ, Aξ , η), we find the latter function trans-
formed to

G′′
ξ (Aξ ) = α

η

ξ (T )

2
|Aξ |2 + ξ independent terms, (8)

where α
η

ξ (T ) = αξ + η2
0δξ is the renormalized IC stiffness.

Requiring the renormalized stiffness to have a minimum that
is touching the zero level at ξ = ξ0 (αη

ξ = 0, ∂α
η

ξ /∂ξ = 0,
∂2α

η

ξ /∂ξ 2 > 0), we obtain the following expectations on δξ :

δ(ξ0) = −[
A(T − T0) + Dξ 2

0

]
/η2

0, (9)

∂δ

∂ξ
= −2Dξ0/η

2
0, (10)

∂2δ

∂ξ 2
> −2D/η2

0. (11)

Since T − T0 is relatively small near the transition temper-
ature, and D is also relatively small, we find these expectations
not very demanding. δξ has to be moderately negative at
ξ = ξ0 and its derivative has to be moderately negative. The
curvature can be positive or negative, but in the latter case, its
absolute value should not be too large. Importantly, δξ is not

required to have a minimum at or near ξ0. These characteris-
tics of δξ are quite consistent with the ones envisaged from
the atomistic considerations [48,49] and, therefore, indicate
the fitness of the scenario.

The model predicts an increase of the modulation vector
length on cooling. Equation (10) implies ξ0 = Const × η2

0,
from which it follows that an increase of the AFD order-
parameter amplitude on cooling leads to the increase of ξ0.
This is in agreement with the experiment.

IV. DISCUSSION

The difference between triggered incommensuration in
PbHfO3 and classical Holakovsky triggering of ferroelec-
tricity [20] is not only in the nature of order parameter,
which is IC modulation and FE polarization, respectively,
but also in the possibility of formally defining the primary
order parameter [21]. In the Holakovsky scenario the only
temperature-dependent susceptibility is AFD susceptibility,
while in PbHfO3 the IC susceptibility depends on temperature
as well. However, the strong quantitative difference in critical
temperatures together with the absence of susceptibility max-
imum at the IC wave vector allow identifying the AFD soft
mode as the driver of the triggered transformation.

It is instructive to address the difference between tran-
sition scenarios in PbHfO3 and PbZrO3 crystals, which are
similar from the crystallochemical point of view [50]. In
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PbZrO3, at ambient pressure, the transition goes directly to the
commensurate AFE phase, which is determined by stronger
influence of the terms commensuralizing the modulation, such
as Umklapp interaction [47] and interaction with minor addi-
tional distortions [51,52]. The AFD susceptibility has been re-
ported only weakly temperature dependent in PbZrO3 [47,53].
Therefore, the simultaneous appearance of AFE and AFD
modulations in that crystal can be attributed to the triggered
transition driven primarily by the softening of IC stiffness in
the presence of commensuralizing interactions. In PbHfO3,
in contrast, the dominating instability is the AFD instability,
which enables the triggered formation of IC phase before the
commensuralizing effects lead to the lock-in transition to the
commensurate AFE phase. The suppression of the FE phase
transition, in both cases, has to be understood as the result
of repulsive biquadratic couplings to IC and/or AFD order
parameters.

V. CONCLUSION

We have identified a triggered IC transition. In contrast
to the classical route of IC soft-mode-driven transitions, a
triggered IC transition occurs due to the presence of another
structural instability associated with the soft mode. In PbHfO3

the role of this instability is the well-known and widely
studied AFD instability linked to antiphase oxygen octahedral
tilts. Approaching the soft-mode-driven AFD transition on
cooling results in the creation of a minimum in free-energy
landscape at nonzero IC and AFD order parameters, which
enables the combined IC + AFD phase transition instead of
the sole AFD transition.

Interestingly, purely AFD phases have not yet been iden-
tified in lead-based antiferroelectrics, but our present results
suggest that they could be eventually found at conditions
inhibiting the antipolar cationic shifts.

Understanding the interplay between the cation ordering
and oxygen octahedral tilts in AFE perovskites has been
challenging, especially at high temperatures, where the ab
initio based theory is yet only starting to be developed. Such
a specific behavior as triggered incommensuration should
provide a very useful benchmark for that development.
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APPENDIX A: DETERMINATION OF ξ0(T ) DEPENDENCE

Temperature dependence of the modulation wave-vector
component ξ0 has been characterized independently in the
two measurement cycles. The first cycle, diffraction at the
ID28 side station, has been carried out at temperatures from
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FIG. 6. IC wave-vector component ξ0 as a function of tempera-
ture, as determined in two independent measurement cycles. Circles:
data points obtained in the synchrotron experiment at ID28 side
station, in the cooling run. Solid line: smooth approximation built on
those data points. Triangles: data points obtained in the experiment
using SuperNova laboratory diffractometer, in the cooling run. Dots:
those points shifted by 13 K in temperature and by 0.0005 r.l.u. in ξ0.

468 K down to 453 K with �T = 1 K and an additional
point at T = 423 K, which corresponds to the bottom of the
stability range of the IC phase. The corresponding points are
shown by circles in Fig. 6. The smooth dependence shown
by a solid line, which is also shown in Fig. 2(d), has been
constructed in a way to provide the best approximation to
the ID28 points. The second cycle of measurements has been
performed using a SuperNova laboratory diffractometer and
has been intended to cover the gap in the ID28 data set. The
results are shown by triangles. The trend is largely similar,
but one notes two quantitative differences. On the one hand,
the transition temperatures are different (by about 13 K) for
synchrotron and laboratory measurements. On the other hand,
the level at which ξ0 tends to saturate at low temperatures
appears slightly lower (by about 0.0005 r.l.u.) for laboratory
measurements. Presently, we do not have a reliably verified
explanation of these differences.

As to the temperature of the transition between the cubic
and A2 (IC) phases, its value has been reported previously
with the relatively wide spread of about 20 K: from about
468 K [18] to 488 K [12]. The difference in transition temper-
atures registered by us does not exceed this spread. As a pos-
sible source of the difference we can suggest different rates of
excess heating due to x-ray absorption [54] in synchrotron and
laboratory experiments. Also, the effect could be due to the
different mechanical clamping conditions: in the synchrotron
experiment the sample was a free-standing needle, while in
the laboratory experiment the illuminated area of the sample
has been partially covered by the high-temperature glue. Apart
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from the above-mentioned differences, the temperature trends
of ξ0 are consistent with each other. Dots show the laboratory
data shifted to lower temperatures by 13 K and towards higher
ξ0 by 0.0005. With these adjustments the synchrotron and
laboratory dependencies coincide nearly perfectly.

APPENDIX B: WIDTH OF THE R-POINT CENTRAL PEAK
IN THE WAVE-VECTOR SPACE

The central peak at the R point appears rather narrow in
the wave-vector space. The nearest points, for which we have
recorded IXS spectra (due to the use of multianalyzer setup)

are (1.5, 2.5, 0.5) ± (0.06, 0.06, 0.01). They are away from
the R point by about 0.085 r.l.u. in the direction ∼[110].
The spectra at these points do not contain a central peak
component, indicating that its width in the wave-vector space

should be less than 0.085 r.l.u. (≈0.125 Å
−1

). Also we have
checked whether the central peak is present along the R-M
line, for which in a similar crystal, PbZrO3, there is an
increased intensity of diffuse scattering associated with disor-
dered oxygen tilts [55]. There is no central peak at the middle
of this line, at (1.25, 2.5, 0.5). Our results indicate that the
central peak does not extend far from the R point, but are of
lower precision in the wave-vector space than is required for
quantitative assessment of the relevant mode dispersion.
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