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On-the-fly machine learning force field generation: Application to melting points
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An efficient and robust on-the-fly machine learning force field method is developed and integrated into an
electronic-structure code. This method realizes automatic generation of machine learning force fields on the
basis of Bayesian inference during molecular dynamics simulations, where the first-principles calculations are
only executed, when new configurations out of already sampled datasets appear. The developed method is applied
to the calculation of melting points of Al, Si, Ge, Sn and MgO. The applications indicate that more than 99%
of the first-principles calculations are bypassed during the force field generation. This allows the machine to
quickly construct first-principles datasets over wide phase spaces. Furthermore, with the help of the generated
machine learning force fields, simulations are accelerated by a factor of thousand compared with first-principles
calculations. Accuracies of the melting points calculated by the force fields are examined by thermodynamic
perturbation theory, and the examination indicates that the machine learning force fields can quantitatively
reproduce the first-principles melting points.
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I. INTRODUCTION

The quantitative prediction of first-order phase transitions
of real materials from first-principles (FP) calculations is a
long-standing issue in condensed matter physics. The phase
transition point is simply located at a temperature-pressure
point where Gibbs free energies of two phases become iden-
tical. Its prediction is, however, quite challenging. Direct
simulations using molecular dynamics (MD) and Monte Carlo
methods are not computationally tractable because of the long
timescale nature of the phase transitions. Several approaches
were proposed in order to solve this timescale issue. One
is an indirect approach on the basis of the thermodynamic
integration method [1–3]. In this approach, the Gibbs free en-
ergy of a single phase is calculated by integrating a chemical
potential derivative along a reversible thermodynamic path
that connects from a simple statistical models to a realistic
interacting model. Another one is a direct approach, where
the coexistence point of the solid-liquid interface is directly
explored by MD [4–9]. There is an alternative approach [10]
that transforms this out-of-equilibrium direct simulation to an
equilibrium simulation by introducing a bias potential pinning
the system in an interfacial state. In this third approach, the
coexistence point is determined by using the free energy
difference obtained from the mean force of the bias potential.
However, all these methods need significant computational
resources.

Recently developed machine learning force field (MLFF)
techniques [11–15] have the potential to solve this problem.
In those techniques, the potential energy of the system is
described as a function of structural descriptors that map the
3N-dimensional structural information onto a lower-
dimensional descriptor space, and the function is optimized

to reproduce the FP data. High flexibility of the descriptors
and this function allow for an accurate reproduction of the FP
data, and the simulations are orders of magnitude faster using
the generated force fields than the FP simulations.

However, applications of machine learning (ML) ap-
proaches are still limited to few simple materials. The difficul-
ties are mainly in the force field generation process. Carefully
selected reference datasets and a tremendous amount of FP
calculations on typically 2000–12 000 structures [11,15–19]
are needed in order to train force fields. Furthermore, the data
selection and parameter optimization are complex and involve
a quite large number of trial and error steps.

On-the-fly force field generation [20–24] has the poten-
tial to overcome these limitations. In this method, energy,
forces, and/or the stress tensor as well as their uncertainties
are computed by Bayesian inference or relevant statistical
methods during an MD simulation. If the uncertainties are
judged to be small, the computed energy, forces, and the
stress tensor are used to integrate the equations of motions.
If the uncertainties are judged to be large, FP calculations
are executed in order to obtain new data that are then used
to refine the force field. This error estimation and judgment
step can realize efficient explorations of wide phase spaces
and systematic data selection.

In this paper, we present an efficient and robust algorithm
that can be applied to liquid-solid phase transitions of a
wide variety of materials. In Sec. II, theories and equations
used in our on-the-fly algorithm are presented. In Sec. III,
method and parameters used in the simulations of the phase
transitions are described. In Sec. IV, the calculated melting
points are presented before we finally conclude the paper in
Sec. V.
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FIG. 1. Flowchart of our on-the-fly machine learning force field
generation scheme.

II. METHOD: ON-THE-FLY FORCE FIELD GENERATION

In this section, after describing an outline of our on-the-
fly MLFF generation scheme, the necessary methodologies
composing this scheme are presented. For a concise pre-
sentation of the methodologies, we define structure datasets
and local configurations. A single structure dataset consists
of the Bravais lattice, the atomic positions, the total energy,
the forces and the stress tensor for one specific structure
calculated by the FP method. We will label these datasets
using the superscript α. For each atom in the structure, a local
configuration around this atom can be determined. This local
configuration is mapped onto a set of descriptors describing
the local environment around each atom as will be explained
later. Local structures and the central atom in a local structure
are labeled using indices i or iB. Several structure datasets and
local configurations are selected, and the ML force field is
fitted to those. The selected datasets and configurations are
referred to as reference structure datasets and local reference
configurations, respectively.

A. Outline of the on-the-fly force field generation

Figure 1 shows the flowchart of our on-the-fly force field
generation scheme. In our scheme, a force field is generated
during MD simulations, as outlined below.

(1) The machine predicts the energy, forces, stress tensor,
and their uncertainties on a given structure using the yet
available force field.

(2) The machine decides whether to execute the FP calcula-
tion or not. The decision is done on the basis of the uncertainty
in the prediction and a history of previous samplings. If
the machine decides not to execute the FP calculations, the
algorithm skips to step 5. Otherwise, it continues with step 3.

(3) The FP calculation is executed on the given structure,
and the obtained structure dataset is stored as a candidate for
a new reference structure dataset.

(4) If the number of the newly collected structures reaches
a certain threshold, or if the uncertainty in the prediction
becomes too large, the machine updates the set of reference
structure datasets and local reference configurations and gen-
erates a new force field.

(5) Atomic positions and velocities are updated. If the
machine judges that the force field is unreliable, the FP energy,
forces and stress tensor are used. Otherwise those provided by
the force field are used. Afterwards the machine returns to step
1 until the end of the MD simulation is reached (I = NMD in
Fig. 1).

This scheme needs several key methodologies: an accurate
description of the potential energy surface, an optimization of
the parameters in the force field, evaluation of the uncertainty,
setting of the threshold for the uncertainty, sparsification,
and data selections. All these ingredients were implemented
within the Vienna ab initio simulation package (VASP) [25,26].
Their details are explained in the following sections.

B. Descriptor

Our description of the potential energy surface is similar to
that adopted in the Gaussian approximation potential (GAP)
[12] with the smooth overlap of atomic positions (SOAP) [27]
as a similarity measure. Several new features are, however,
introduced to make the on-the-fly force field generation pro-
cess more efficient and robust. In order to explain them in
a concise manner, we formulate the energy and descriptor
in this section. Here, we show for simplicity the equations
only for single element systems, however, the extension to
multi-element systems is straightforward.

In the method presented in this work, the potential energy
U of a structure with Na atoms is approximated as a summa-
tion of local energies Ui as

U =
Na∑
i=1

Ui. (1)

Each local energy Ui is assumed to be fully determined by
the local environment around atom i. To represent the local
environment, the distribution of other atoms around the atom i
is an obvious starting point. This distribution is represented by
the probability density ρi to find another atom j at the position
r around the atom i within a radius Rcut. It is defined as

ρi(r) =
Na∑
j=1

fcut (ri j )g(r − ri j ), (2)

where fcut is a cutoff function that smoothly removes the
information outside the radius Rcut. The position vector of
the atom i is denoted by ri, and ri j = |ri j | = |r j − ri| is the
distance between two atoms, and g(r) is the delta function
δ(r). In SOAP, the delta function is replaced by a normalized
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FIG. 2. (a) Radial and (b) angular descriptors.

Gaussian function as

g(r) = 1√
2σatomπ

exp

(
− |r|2

2σ 2
atom

)
. (3)

The local energies Ui are functionals of the density ρi,
Ui=F [ρi(r)]. So the simplest numerical approach to imple-
ment this procedure would be to develop ρi(r) into a finite
basis set and express F as a function of the coefficients.
The drawback of this is that F would not possess rotational
invariance. Therefore, it is expedient to introduce interme-
diate functions—usually called descriptors—that depend on
ρi(r). These intermediate functions should be invariant under
rotations (as well as translations). The simplest rotation-
ally invariant descriptor is the radial distribution function
defined as

ρ
(2)
i (r) = 1

4π

∫
ρi(rr̂)d r̂, (4)

which measures pairwise distances from the atom i within
Rcut as schematically shown in Fig. 2(a). Here, r̂ denotes the
unit vector of r. This function, however, cannot accurately
describe the potential energy surface because of the lack
of angular information. Specifically two different probability
densities ρi can yield an identical ρ

(2)
i , which would then yield

the same local energy Ui. The necessary angular information
can be incorporated by using the probability to find an atom
j at a distance r from the ith atom and another atom k at
a distance s from the ith atom along the angle ∠ki j = θ as
schematically shown in Fig. 2(b). Starting from ρi(r), this
probability can be determined as

ρ
(3)
i (r, s, θ ) =

∫∫
δ(r̂ · ŝ − cosθ )ρi(rr̂)ρ∗

i (sŝ)d r̂d ŝ. (5)

This function, commonly referred to as angular distribution
function, is equivalent to the power spectrum used in practical
applications of the GAP [16,28–30]. In order to show this
equivalence, ρi is expanded as

ρi(r) =
Lmax∑
l=1

l∑
m=−l

Nl
R∑

n=1

ci
nlmχnl (r)Ylm(r̂). (6)

Here, {χnl |n = 1, . . . , Nl
R, l = 0, . . . , Lmax} denote radial ba-

sis functions that satisfy the following orthonormal relation

4π

∫ ∞

0
χnl (r)χn′l (r)r2dr = δ(n − n′). (7)

Ylm are the spherical harmonics. By using Eq. (6), Eqs. (4) and
(5) can be rewritten as

ρ
(2)
i (r) = 1√

4π

N0
R∑

n=1

ci
nχnl (r), (8)

ci
n = ci

n00, (9)

ρ
(3)
i (r, s, θ ) =

Lmax∑
l=1

Nl
R∑

n=1

Nl
R∑

ν=1

√
2l + 1

2

× pi
nνlχnl (r)χνl (s)Pl (cosθ ), (10)

pi
nνl =

√
8π2

2l + 1

l∑
m=−l

ci
nlmci∗

νlm, (11)

where Pl is a Legendre polynomial of order l . Equation (11)
is the same as the equation for the power spectrum described
in Refs. [27,31]. Equations (10) and (11) indicate that pi

nνl

corresponds to the expansion coefficients of ρ
(3)
i with respect

to the orthonormal radial and angular basis functions. Thus
pi

nνl contains the same information as the angular distribution
defined in Eq. (5).

C. Potential energy and Gaussian approximation potential

In our ML algorithm, we use the distributions ρ
(2)
i and ρ

(3)
i

to parametrize the potential energy surface U . This means that
Ui is described as a functional of ρ

(2)
i and ρ

(3)
i ,

Ui = F
[
ρ

(2)
i , ρ

(3)
i

]
. (12)

Obviously, it is not generally a simple matter to find a suitable
functional form, although neural networks and the moment
tensor potentials (MTP) have been found to yield an excellent
approximation for total energies [11,32,33]. In the present
work, we adopt the Gaussian approximation potential as pi-
oneered by Bartók and coworkers [12]. In this approach, a
set of NB local reference structures {ρiB |iB = 1, . . . , NB} are
chosen. These reference configurations are converted to a set
of coefficients in the descriptor space {XiB |iB = 1, . . . , NB}
and the potential energy is approximated by fitting a set of
coefficients {wiB |iB = 1, . . . , NB}:

F
[
ρ

(2)
i , ρ

(3)
i

] =
NB∑

iB=1

wiB K (Xi, XiB ). (13)

Here each vector Xi collects all coefficients ci
n and pi

nνl for
a specific local configuration ρi(r) [Eqs. (9) and (11)]. The
function K is supposed to measure the similarity between a
local configuration of interest ρi(r) and the reference config-
urations ρiB (r). It usually approaches unity if two configura-
tions are similar and decays towards a small value if the two
configurations are different.

In the present case, the following polynomial function is
used:

K (Xi, XiB ) = β (2)
(
X(2)

i · X(2)
iB

) + β (3)
(
X̂(3)

i · X̂(3)
iB

)ζ (3)

. (14)

Here, X(2)
i and X(3)

i are the vectors containing ci
n and pi

nνl ,
respectively. The vector X̂(3)

i denotes a normalized vector
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of X(3)
i , β (2) and β (3) are weighting parameters, and ζ (3)

is a parameter to control the sharpness of the function K .
Phenomenologically, the first term in Eq. (14) can be re-
garded as a pairwise linear interaction term, which is suited
to describe long-range radial interactions, such as Coulomb
and Lennard-Jones interactions. In contrast, the second term
provides nonlinear many-body interaction terms as discussed
by Glielmo et al. [34]. The latter term is known as the SOAP
[27]. The name SOAP relates to the fact that the dot product
X(3)

i · X(3)
iB

can be related to the Haar integral [35] of the square
of an overlap between two probability distributions as

X(3)
i · X(3)

iB
=

∫ ∣∣SiiB (R̂)
∣∣2

dR̂, (15)

SiiB =
∫

ρi(r)ρiB (R̂r)dr, (16)

where R̂ denotes the rotational operator, and the integral in
Eq. (15) needs to be performed over all possible rotations
defined by this operator. In this sense, SOAP measures the
structural similarity between the structure i and the reference
structure iB as an overlap of two probability distributions.
Similarly, the dot product X(2)

i · X(2)
iB

can be rewritten as an
overlap integral between the radial distribution functions as

X(2)
i · X(2)

iB
= 4π

∫ Rcut

0
ρ

(2)
i (r)ρ (2)

iB
(r)r2dr. (17)

In this study, in order to examine the efficiency of the on-the-
fly scheme in a manner comparable to previous publications
using the SOAP scheme, we only use the SOAP K (Xi, XiB )
by setting β (2) = 0 for all materials. An application including
the radial descriptor is presented elsewhere [24].

Before ending this section, we briefly explain some key
points where our implementation differs from the previous
SOAP implementations. At every MD step, the expansion
coefficients ci

nlm and their partial derivatives with respect to
the atomic positions need to be calculated in order to compute
the potential energy U and its partial derivatives. In the SOAP
[27], ci

nlm can be analytically formulated using the Gaussian
function of Eq. (3) as

ci
nlm =

Na∑
j=1

hnl (ri j )Y
∗

lm(r̂i j ), (18)

hnl (r) = 4π(√
2σ 2

atomπ
)3 fcut (r)

∫ ∞

0
χnl (r

′)

× exp

(
− r′2 + r2

2σ 2
atom

)
ιl

(
rr′

σ 2
atom

)
r′2dr′, (19)

where ιl denotes the modified spherical Bessel function of
the first kind. However, the calculation of hnl and dhnl/dr by
Eq. (19) would be computationally rather demanding. In order
to accelerate the calculations, we adopt a spline interpolation.
In this method, hnl (r) is calculated on a radial mesh over r
once at the beginning of the training or MD simulation. The
calculated function is spline-interpolated, and the interpolated
function is used to calculate the coefficients ci

nlm and their
derivatives later. This method allows us to avoid evaluating
the integral in Eq. (19) at each MD step and accelerates
the computation of the expansion coefficients ci

nlm and their

derivatives by roughly a factor of ten, and accelerates the
entire calculation of the function K by a factor of two. Another
difference to previous implementations is in the choice of the
radial basis functions. In our method, normalized spherical
Bessel functions χnl = jl (qnl r) are used as the radial basis
functions, because their mutual orthogonality allows for a
systematic improvement by simply increasing the number Nl

R
of the radial functions as described in Appendix A. Finally,
we use the cutoff function proposed by Behler and Parrinello
[11] defined as

fcut
(
ri j

) =
{

1
2

[
cos

(
π

ri j

Rcut

)
+ 1

]
if ri j � Rcut

0, otherwise
. (20)

This cutoff function weights atoms close to the central atom
i more strongly. This radially scaled weight enables the de-
scriptor to efficiently describe the structural differences that
strongly influence the potential energy of atom i similarly to
the radially scaled kernel proposed by Willat and co-workers
[36]. In Table S1 in Ref. [37], all parameters described in
Secs. II B and II C are tabulated.

D. Fitting of energy, forces, and stress tensor
and their uncertainty

In order to determine the fitting parameters wiB , the ener-
gies, forces and stress tensor for a set of reference structural
datasets labeled by a superscript α = 1, . . . , Nst must be fit-
ted. Here, Nst denotes the number of the reference structure
datasets. Combining Eqs. (1), (12), and (13) yields for the total
energy per atom the following equation that must be fulfilled
in a least square sense:

U α

Nα
a

!=
Nα

a∑
i=1

U α
i

Nα
a

=
NB∑

iB=1

wiB

Nα
a∑

i=1

K
(
Xα

i , XiB

)
Nα

a

∀α = 1, . . . , Nst . (21)

Here, U α
i is the local energy of atom i in the structure α, and

Xα
i is the vector of coefficients in the descriptor space for atom

i in structure α, and U α is the actual FP energy. In practice, we
simultaneously fit the energy per atom, forces and the stress
tensor for reference structures α, for which FP calculations
have yet been performed (see below for details). The previous
equation indicates that the total potential energy U α is a linear
function of the coefficients wiB . It is also straightforward
to see that the forces and the stress tensor components are
described as linear functions of the coefficients wiB . These
linear equations can be collected into a matrix-vector form as

yα != φαw ∀α. (22)

Here, {yα|α = 1, . . . , Nst } denotes column vectors containing
the dimensionless FP potential energy per atom in the first
line, the forces and the components of the stress tensor in
the subsequent lines for a single structure α in the reference
structure dataset, in total

mα = 1 + 3Nα
a + 6 (23)

components for Nα
a atoms. The entries are made dimension-

less by dividing their values by the standard deviations of the
FP energies per atom, forces and stress tensors in the reference
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structure datasets. The column vector w is comprised of the
NB coefficients wiB , and φα is a mα×NB matrix. The first line
of the matrix is made up by

∑
i K (Xα

i , XiB )/Nα
a , the second

line is made up by the derivative of the energy with respect to
the first atomic coordinate in the structure α and so on.

After the fitting, the energies and forces of a new structure
with the descriptor Xi can be efficiently obtained calculating

y = φw, (24)

where φ comprises
∑

i K (Xi, XiB ) in the first row, and the
partial derivatives of the function K with respect to the co-
ordinates in the structure in the subsequent rows.

In the conventional schemes, FP calculations are carried
out on a wide variety of structures in advance, local con-
figurations are chosen from each structure in the dataset,
and the coefficients w are optimized to optimally reproduce
the reference structure datasets. In our scheme, the FP data
generation, selection, and parameter optimization are carried
out on the fly during the MD simulations. A key component
that makes this algorithm extremely efficient is the evalu-
ation of the uncertainty in the prediction. This is used to
decide whether the FP calculations are necessary or not at
step 2. In our scheme, both the optimization of w and the
uncertainties are estimated by a Bayesian linear-regression
method [38].

The Bayesian linear regression assumes the presence of a
set of the coefficients that exactly reproduce the exact energy,
forces and stress tensor without any numerical noises. Then,
this method determines the probability to find this exact set
of coefficients at w on the basis of the observation of a
limited number of FP datasets {yα|α = 1, . . . , Nst } contain-
ing numerical noises. In practice, the FP data usually carry
comparatively small errors, however, the finite cutoff Rcut

implies that the model can never exactly describe the FP
data. In other words, as the atoms outside the cutoff radius
move, the local energies and forces should change, but since
the model assumes that the local energy depends only on
the position of the atoms inside the cutoff sphere, residual
errors are introduced as shown by Ref. [29]. We assume
that these errors can be modeled by the presence of noise
with a Gaussian distribution in the FP data. This assumption
also implies some errors in the model parameters w. The
so-called posterior distribution p(w|Y) is determined as a
Gaussian distribution written as (see necessary assumptions in
Appendix B):

p(w|Y) = N (w̄,�), (25)

w̄ = 1

σ 2
v

��T Y, (26)

�−1 = 1

σ 2
w

I + 1

σ 2
v

�T �. (27)

Here, Y is a supervector with size M = ∑
α mα [compare

Eq. (23)] collecting all FP energies per atom, forces, and
stress tensors {yα|α = 1, . . . , Nst } in the reference structure
datasets. Similarly, the M×NB design matrix � is a collection
of all matrices φα on all reference structure datasets, and
I denotes the unit matrix. The symbols σ 2

v and σ 2
w denote

parameters optimized to balance the accuracy and robustness

of the evolving force field as explained later on. The symbol
N (w̄,�) is a multidimensional normalized Gaussian centered
at w̄ and defined as

N (w̄,�) = 1√
(2π )NB ||�||

× exp

[
− (w − w̄)T �−1(w − w̄)

2

]
, (28)

where ||�|| means the determinant of the matrix �. The
desired optimal coefficients are determined at the center of the
Gaussian distribution w = w̄, where the posterior probability
is maximized. It is straightforward to show that the vector
w̄ is identical to the vector obtained by the ridge regression,
with the ratio of σ 2

v to σ 2
w being equivalent to the Tikhonov

regularization parameter.
The uncertainty in the predictions is provided from the

probability to find the exact FP energy per atom, forces
and stress tensor at y. This posterior distribution p(y|Y) is
obtained from the posterior distribution p(w|Y) as (see also
Appendix B)

p(y|Y) = N (φw̄, σ ), (29)

σ = σ 2
v I + φT �φ. (30)

The mean vector φw̄ contains the results of the predictions on
the dimensionless energy per atom, forces and stress tensor.
The diagonal elements of the covariance matrix σ provide the
variance of the marginal distribution of each dimensionless
component. Note that two terms are present, where the first
term usually dominates and quickly grows towards the mean
difference between predicted and actual first-principles data.
Since the term varies very slowly over time, it is not suit-
able to detect configurations that have not yet been visited
and learned. However, the second term in Eq. (30), which
corresponds to the uncertainty in the regression coefficient
w, can be used to determine configurations where additional
training data are required, as discussed below. To estimate the
error that the machine most likely makes, the square root of
this dimensionless variance is multiplied with the standard
deviation of the training data, which was used to generate the
dimensionless training data Y.

As in the ridge regression, the optimization of the param-
eters σ 2

v and σ 2
w is important to prevent overfitting. In our

algorithm, they are optimized by the evidence approxima-
tion [39–41]. In this scheme, the parameters σ 2

v and σ 2
w are

determined by maximizing the marginal likelihood function
called evidence function. This evidence function corresponds
to a probability that the regression model with specific pa-
rameters σ 2

v and σ 2
w provides the reference data Y, and it is

calculated as

p
(
Y

∣∣σ 2
v , σ 2

w

) =
(

1√
2πσ 2

v

)M(
1√

2πσ 2
w

)NB

×
∫

exp[−E (w)]dw, (31)

E (w) = 1

2σ 2
v

||�w − Y||2 + 1

2σ 2
w

||w||2. (32)
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FIG. 3. Errors during a finite temperature simulation of rocksalt
MgO containing 64 atoms at 300 K. (a) Actual difference between
the FP forces and the forces calculated by the MLFF. Solid line
shows the root mean square difference averaged over all atoms, and
the dashed line shows a quarter of maximum difference on a single
atom. (b) The maximum Bayesian error [the second term of Eq. (30)]
of the force on a single atom. (c) The maximum spilling factor on a
single atom. Open circles and black small dots indicate steps 3 and 4,
respectively. Dark gray triangles indicate the Bayesian errors stored
as σmax,I . These are used to determine the threshold for the Bayesian
error εBE as explained in Sec. II E. Gray dashed lines indicate the
threshold for the Bayesian error.

Hence, the optimization over σ 2
v and σ 2

w can be regarded as the
maximization of the probability to provide the correct answer
Y at any regression coefficient w. Details of the maximization
method are documented in Appendix C.

In addition to the Bayesian error, we also calculate the
spilling factor suggested by Miwa and Ohno [42]. The spilling
factor is a measure of the density of local reference configu-
rations iB near the new local configuration X in the descriptor
space, and its equation is formulated as

s = 1 −
∑NB

iB=1

∑NB

i′B=1 K
(
X, XiB

)
K−1

(
XiB , Xi′B

)
K

(
Xi′B , X

)
K (X, X)

.

(33)

The equation was slightly modified from its original equation
in order to make it applicable to a non-normalized similarity
measure such as the one used by us, see Eq. (14). If the density
of the reference configuration is great enough to provide com-
plete overlap among the configurations, s approaches zero,
otherwise s approaches unity.

Trends of these two estimated errors are illustrated in
Fig. 3, where the real errors, Bayesian errors and spilling

factors are shown as a function of the MD simulation time
during on-the-fly force field generations for the MgO solid at
300 K. Note again that we use only the second term in Eq. (30)
to determine regions where additional first-principles data are
required. As already mentioned, the first term quickly grows
towards the total average error, but varies only slowly in time
and is fairly insensitive to the configurations. The second term
alone is unfortunately one order of magnitude smaller than
the real error for the forces, but it turns out to follow the real
errors rather precisely. Ideally, the total predicted error (sum
of both terms) should closely follow the real error, but that is
not the case. The cause for this issue is not yet entirely clear.
However, we speculate that the regression may not be accurate
enough to quantitatively predict the uncertainty (i) because of
difficulties in the simultaneous description of the prior dis-
tribution of the dimensionless energy, forces and stress tensor
components by a single Gaussian function written as Eq. (B2),
or (ii) because the evidence approximation fails to predict ac-
curate parameters for σ 2

v and σ 2
w individually. Concerning (i),

the error in the second term more accurately resembles the real
error in the forces, if the training weights forces more strongly,
as shown in Appendix D. However, weighting the forces more
strongly does not entirely resolve the issue. Concerning (ii)
we note again that the first term very quickly grows towards
the average real error, so it essentially accommodates all the
uncertainties, in turn reducing the second term. In practice
the second term, although too small in magnitude, is able to
robustly determine under-represented regions of the configu-
ration space, which suffices for our purpose. So in practice
the underestimation of the real error has little consequences,
since we determine the thresholds automatically as described
below.

Concerning the spilling factor we note the following issues.
Although, the spilling factor also resembles the shape of the
real error, it fails to reproduce the large uncertainties at the
beginning of the training simulation. Furthermore, its absolute
value is very system and materials dependent, e.g., 10−6–10−5

for MgO solid and 10−3–10−2 for MgO liquid. This strong
dependence causes difficulties to set a criterion for the spilling
factor, in particular, for simulation where we train on the
liquid and solid. Furthermore, we found numerical instability
in its computation, since the matrix K is not regularized and is
potentially nonpositive definite unlike the covariance matrix
� for the Bayesian error.

Details of the decision scheme at step 2 are explained in
the following section. Here we briefly note that the criterion
for the spilling factor is set to a relatively large value of
0.02 as in Ref. [38]. For the applications reported here, the
threshold for the spilling factor is hardly ever passed. Only
for liquid and interfacial MgO, the calculated spilling factors
exceeded this criterion. However, even then only 2% of the
total FP calculations are executed because of the spilling
factor criterion. So in the present work, the Bayesian error
criterion is more relevant.

During the training MD simulations, the total energy is not
conserved when FP calculations are performed or when the
force field is retrained. However, the discontinuous potential
energy changes are small, and we did not observe any numer-
ical instability in our training MD simulations, at least when
using a Langevin thermostat [43] with a friction coefficient of
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FIG. 4. Total (black), kinetic (light gray), and potential (dark
gray) energies of solid MgO containing 216 atoms at 300 K during
the first 1 ps MD simulation with the microcanonical ensemble using
the generated force field. The energies were shifted to provide zero
at the beginning.

10 ps−1. When only the generated force field is used without
any retraining, the total energy is conserved as demonstrated
in Fig. 4, because the forces and stress tensor components
are formulated consistently as the partial derivatives of the
potential energy.

Before ending this section, we note the similarities and
differences between our approach and the GAP [12]. Both
methods adopt the Gaussian process and assume that the error
in the data Y follows a Gaussian distribution. Differences are
in the regression method. In our work, we use Bayesian linear
regression to solve Eq. (13), in combination with a nonlinear
map describing the similarity between two configurations with
descriptors Xi and X j [see Eq. (14)]. Contrary to this, GAP
adopts the kernel ridge regression. Kernel ridge regression
transforms the linear ridge regression to the kernel ridge
regression [44] using a nonlinear kernel that closely resembles
our map. In kernel ridge regression, the final equation for the
optimal regression coefficients is given by the equation (for
simplicity, we disregard derivative information, e.g., forces
here)

w̄ = (
KT K + σ 2

v

/
σ 2

wK
)−1

KT Y = (
K + σ 2

v

/
σ 2

wI
)−1

Y,

(34)

whereas in our case, the solution can be written as [substitut-
ing Eq. (27) into Eq. (26)]

w̄ = (
KT K + σ 2

v

/
σ 2

wI
)−1

KT Y. (35)

In the limit of no regularization, these two equations are
equivalent, however, they are clearly distinct after regulariza-
tion (I or K). Bayesian regression essentially regularizes the

squared problem (KT Y != KT Kw), whereas in kernel ridge

regression the original problem (Y != Kw) is regularized.
A deeper analysis of the advantages and disadvantages of
both approaches is beyond the scope of the present work,
although we note that the inclusion of forces and stress tensor
components (multivariate regression) seems simpler and more

FIG. 5. Flowchart of the decision step whether to perform FP
simulations or not. The symbols �σ and �s denote the vectors contain-
ing the Bayesian errors in the forces and spilling factors, respectively,
for all atoms. ||�x||∞ denotes the infinity norm (also called supremum
norm) of the vector �x, εBE denotes the criterion for the Bayesian error,
and Var(x) and E(x) refer to the variance and the average of the data
x. At the beginning of every training simulation, the criterion εBE is
set to zero.

efficient using Bayesian regression. Otherwise, we expect
both approaches to posses roughly similar performance.

E. Decision to perform FP calculation

The decision whether to perform a FP calculation in step 2
or not (see Sec. II A) is obviously an important one. Figure 5
shows the flowchart of our decision scheme. As shown in
the dark gray square in this figure, the decision is done
on the basis of the estimated errors and the history of the
previous samplings. First, the machine examines the estimated
errors. If the maximum Bayesian error in one of the forces or
the spilling factor is larger than twice the chosen threshold
described later, the machine performs FP calculations. This
avoids instabilities in the MD simulation caused by very
inaccurate forces. Next, the machine checks the previous data
sampling step. If the current step is within 10 MD steps
from the previous sampling step, the machine skips the FP
calculations. This process avoids too dense sampling within a
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narrow phase space. If more than 10 MD steps have passed
since the previous sampling, the machine examines the esti-
mated errors. If the maximum Bayesian error in one of the
forces or the spilling factor is larger than the chosen threshold,
the machine performs the FP calculation, otherwise the FP
calculation is skipped.

The threshold for the spilling factor is set to 0.02 following
Ref. [42]. For the Bayesian error, which exhibits a descriptor-
and materials-dependent nonzero value, the threshold εBE

is automatically determined on the fly. The corresponding
scheme is shown in the light gray square in Fig. 5. At the MD
step I just after the refinement of the force field (shown as
the gray triangles in Fig. 3), the machine stores the maximum
value σmax,I of the Bayesian errors of the forces predicted
for the new structure I . Because this new structure does not
significantly differ from the structure sampled at the training
step, the calculated Bayesian errors are nearly identical to the
Bayesian errors on the previously sampled structure. Hence,
this maximum Bayesian error σmax,I can be regarded as a
measure of the lowest currently attainable Bayesian error
and can provide a reasonable threshold for the future. In our
algorithm, the threshold is updated to be the average of the last
10 σmax,I , if their relative standard deviation is smaller than 0.2
(empirically set). The dashed gray lines in Fig. 3(b) illustrate
the criteria determined by this on-the-fly scheme during the
training on the MgO solid as an example.

F. Sparsification and data selection

As previously explained, whenever the machine decides
that for a specific structure insufficient information is stored in
the machine, FP calculations are performed for that structure.
To reduce the computational demands, the machine is not
retrained after each FP calculation, but instead retraining is
done typically after n = 5 FP calculations or when the esti-
mated errors are twice larger than the determined criteria. This
allows to block many of the computationally expensive steps
in the training. When n FP calculations have been performed,
the reference structure datasets and local reference configu-
rations are selected, and the force field is refined. Figure 6
shows the flowchart corresponding to this data selection. As
shown in the dark gray square, the data selection is done
in a two step procedure. First, the machine selects those
local configurations that exhibit Bayesian errors on forces and
spilling factors that are larger than the threshold. Although this
step is already a sparsification process, numerical instabilities
sometimes occur because of the overcompleteness among the
remaining local configurations. In order to avoid those numer-
ical instabilities, another sparsification process is performed
using a CUR algorithm [29,45]. In our implementation, the
machine examines correlations between the local configura-
tions and eigenvalues of the matrix K smaller than 10−10

using leverage scoring ωi. For details we refer to Appendix E.
Starting from the largest ωi in descending order, Nlow config-
urations are discarded, where Nlow denotes the number of the
eigenvalues smaller than 10−10. Finally, as shown in the light
gray square in Fig. 6, the machine discards those structure
datasets that do not provide any local reference configurations
to speed up the computations and to reduce the memory
usage.

FIG. 6. Flowchart of the sparsification and data selection step.
The symbol K denotes the matrix comprised of the elements K (i, j)
defined as Eq. (14). The leverage scoring ωi is calculated by Eq. (E5)
in Appendix E.

III. TECHNICAL DETAILS OF MELTING
POINT CALCULATIONS

A. Training conditions

For each material, the local reference configurations and
the datasets were collected during MD simulations on solid,
liquid, and interface systems, and all of those collected data
were used to optimize the regression coefficients. The chosen
descriptors can fully distinguish the local environment for
these three cases and allow for the simultaneous reproduction
of the potential energies for all configurations. The Al solid
and liquid were modeled by unit cells with 108 atoms, and the
Al interface was modeled by a unit cell with 144 atoms. For
the other materials, solids and liquids were modeled by unit
cells with 64 atoms, and the interfaces were modeled by unit
cells with 128 atoms. A 3×3×3 k-point mesh was used for the
Al solid and liquid, and a 3×3×2 k-point mesh was used for
the Al interface. For the other materials, a 2×2×2 mesh was
used for the solids and liquids, and a 2×2×1 mesh was used
for the interfaces. Plane-wave basis sets and the projector aug-
mented wave (PAW) method were used in all FP calculations.
The PAW atomic reference configuration was 2s22p4 for O,
3s23p0 for Mg, 3s23p1 for Al, 3s23p2 for Si, 4s24p2 for Ge,
and 5s25p2 for Sn. The plane-wave cutoff energy was set to
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325, 325, 225, 135, and 520 eV for Al, Si, Ge, Sn, and MgO,
respectively. Training was performed for several functionals:
the local density approximation (LDA) in the parametriza-
tion of Ceperly and Alder [46], the Perdew-Burke-Ernzerhof
(PBE) functional [47], its variant for solids (PBEsol) [48]
and the strongly constrained appropriately normed (SCAN)
functional [49]. For each material, the local reference con-
figurations and the datasets were collected during the MD
simulations on solid, liquid and interfacial systems. For each
condition and all phases, the MD simulation was executed
for 100 ps. We opted for this simulation time after observing
that the machine did not execute any FP calculations during
the last 10 ps of the training simulations. We also confirmed
that both, the Bayesian error and the spilling factor during the
production runs, were comparable to the values calculated in
the training simulations. The MD time step was set to 3 fs for
all materials except for Ge and Sn, where the time step was set
to 10 fs. Further details of the MD parameters and snapshots
of the models are shown in Sec. S2 in Ref. [37].

B. Efficiency and accuracy

During the on-the-fly force field generation, more than
99% of the FP calculations were skipped reducing the compu-
tational time by a factor of more than 200. These accelerations
allow the machine to efficiently collect reference configu-
rations in a wide phase space. The details of the skipping
ratio and the acceleration are summarized in Table S3 in
Ref. [37].

The number of structures in the reference structure datasets
is typically less than 500, and the number of local reference
configurations is less than 1000 as shown in Table S4 in
Ref. [37]. Both are much smaller than the reference config-
urations used in previous studies [11,15–19]. It should be
mentioned though that we train our force fields essentially to
the specific application, here liquids, solids, and interfaces.

By the efficient sampling of the local reference configu-
rations, MD simulations by the force fields are noticeably
accelerated. Table S5 in Ref. [37] tabulates the elapsed time
per MD step by the force fields and FP calculations. The
force fields accelerate the MD simulations by factors of 2000
to 5000. The factor will further grow with increasing system
size because the computational cost of the MLFF calculation
scales only linearly with the system size.

In addition to the significant acceleration of the compu-
tational speed, the adaptable reference datasets and flexible
functional form allows for accurate predictions of the poten-
tial energy surfaces. The error analysis summarized in Fig. 7
indicates that the mean absolute errors (in parentheses root
mean square errors) in energies, forces and stress tensors

are 5.5 (6.2) meV atom−1, 0.07 (0.09) eV Å
−1

, and 0.18
(0.27) GPa, on average, respectively.

C. Interface pinning

The melting-point calculations are carried out using force
fields and using the interface pinning method [10]. This
method has shown to be able to accurately predict the melt-
ing temperature and pressure [10]. In the interface pinning
method, an MD simulation with constant temperature and

0 10 20
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Al (SCAN)

Si (LDA)
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MAE
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FIG. 7. Mean absolute errors in the energy per atom

(meV atom−1) (a), force (eV Å
−1

) and stress tensor (GPa) predicted
by the force fields on 200 configurations of solids and liquids at the
melting points.

pressure [58,59] is carried out on a solid-liquid interface.
During the MD simulation, a harmonic bias potential is added
to the potential energy U in order to constrain the order
parameter Q of the system to an intermediate order parameter
a between the solid and the liquid phases as

U ′ = U + κ

2
(Q − a)2, (36)

where κ is a force constant. From the mean force that keeps
the order parameter close to a, the difference in the chemical
potential �μ between two phases is calculated as

�μ = −κ (〈Q〉′ − a)
�Q

Na
, (37)

where 〈Q〉′ is the order parameter of the interfacial system
averaged over the biased MD simulation. �Q is the difference
in the order parameter between the solid and liquid. The
melting temperature is determined as the point where �μ

becomes zero by using Newton’s root finding method. As
order parameters, the collective density proposed in Ref. [10]
is adopted. Further details of the used parameters and interfa-
cial systems are summarized in Sec. S4 in Ref. [37].

Once the melting temperature has been calculated, one
can obtain the entropy of fusion Sls from the difference in
the enthalpy between two phases at the melting temperature.
Furthermore, the slope of the melting curve dTm/d p can
be calculated as Sls/Vls by the Clausius-Clapeyron relation,
where Vls denotes the volume difference between the liquid
and solid. These thermodynamic properties were also evalu-
ated and compared with previously reported values as well as
experimental results.

Although the generated force fields are very precise, they
necessarily deviate from the FP data as shown in Fig. 7.
The effects of these errors on the melting points were also
evaluated by thermodynamic perturbation theory. Details of
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TABLE I. Melting temperatures (K) of Al, Si, Ge, Sn, and MgO. CORR and MLFF denote the results with and without the thermodynamic
perturbation corrections, respectively. CORR-33 denotes the results for Si, Ge, and Sn with the thermodynamic perturbation using a 3×3×3
k-point mesh. Values in the parentheses indicate the uncertainties estimated by the block averaging method described in Refs. [43,50].
Reference calculations with tight error tolerance and similar PAW potential are underlined.

XC MLFF CORR CORR-33 DFT Exp XC MLFF CORR DFT Exp

Si LDA 1207(5) 1298(5) 1283(5) 1350(100)a 1685(2)b Al LDA 918(7) 909(8) 890(20)c 933.47d

1300(50)e

1241(20)f

PBE 1409(6) 1431(9) 1450(9) 1449(10)g PBE 871(8) 837(9)
PBEsol 1145(10) 1172(21) 1213(21) PBEsol 986(5) 954(6) 985(30)f

SCAN 1786(7) 1825(7) 1833(7) 1842(10)g SCAN 1017(12) 981(16)

Ge LDA 814(7) 814(9) 841(9) 1210.4b MgO LDA 3165(20) 3243(21) 3040(100)h

PBE 843(5) 876(5) 893(5) PBE 2652(20) 2698(23) 2747(34)i 3250(25)j

PBEsol 758(8) 759(8) 792(8) PBEsol 2916(19) 2981(20)
SCAN 1060(2) 1065(3) 1081(3) SCAN 3079(23) 3072(25) 3032(54)i

Sn SCAN 468(11) 459(13) 459(13) 505k

aData from Ref. [1].
bData from Ref. [51].
cData from Ref. [2].
dData from Ref. [52].
eData from Ref. [3].
fData from Ref. [10].
gData from Ref. [53] using the same PAW and 3×3×3× k points.
hData from Ref. [54].
iData from Ref. [55] using 2p63s2 PAWs for Mg.
jData from Ref. [56].
kData from Ref. [57].

the thermodynamic perturbation method are described in Ref.
[15]. From both, the liquid and solid, trajectories obtained
by 100 ps MD simulations with the MLFF at the calculated
melting temperatures, 500–1000 structures are selected. FP
calculations on the selected structures are performed, and the
energy difference between the FP and ML potentials are used
in thermodynamic perturbation theory. In these calculations,
the same supercells and k points as for the training simulations
are employed. For Si, Ge, and Sn, we also performed thermo-
dynamic perturbation theory to 3×3×3 k points in order to
obtain more accurate results and, for Si, to allow for direct
comparison with previous literature values [53].

IV. RESULTS: MELTING POINTS

Table I summarizes the melting points Tm of Al, Si, Ge, Sn,
and MgO with and without the thermodynamic perturbation
corrections. The entropy of fusion, volume change and slopes
of the melting curves calculated by the force fields are sum-
marized in Table II. The uncorrected melting temperatures of
Al (LDA and PBEsol), Si (LDA, PBE, and SCAN), and MgO
(PBE and SCAN) already agree well with the reported DFT
results. The differences between the force field and DFT are
comparable to those reported by previous studies on Si using
carefully optimized GAP [13] and neural network potentials
[14]. The thermodynamic perturbation corrections improve
the agreement further. We observe that the perturbational
corrections (difference between MLFF and CORR in Table I)
are more strongly correlated with the errors in the total energy
than with the errors in forces and the stress tensor, indicating

that accurate predictions of the total energies are essential for
the predictions of the melting points. For Si (LDA and PBE)
and MgO (PBE and SCAN), the entropies of fusion, volume
changes at the phase transition temperature and slopes of the
melting curves also agree well with the recently published
reference values [53,55]. These results also indicate that our
on-the-fly scheme can efficiently generate force fields applica-
ble to quantitative predictions of thermodynamic properties.

Comparison of the theoretical melting points with the
experimental results indicates that LDA significantly underes-
timates the melting point of Si. PBE improves the calculated
value, but the melting point is still too low compared to
experiment. SCAN, while slightly overestimating the melting
point, provides the best agreement with experiment. The worst
agreement compared with experiment is obtained by PBEsol,
which strongly underestimates the melting point. The trend
among PBE, PBEsol, and SCAN for Ge is similar to that
observed for Si, with the only exception that now even SCAN
underestimates the melting point.

As opposed to Si and Ge, Sn crystallizes in the β-tin
structure. For Sn, PBE, and PBEsol do not provide a stable
solid within a reasonable temperature range compared to
experiment; the melting point seems to be placed at way
too low temperatures. Hence, the melting point of Sn has
only be determined for SCAN, which still underestimates the
melting temperature. As shown in Fig. 8, the observed trend
among different functionals and materials can be reasonably
well correlated to the energy difference between the α-tin
(the cubic diamond structure) and the β-tin structures. A
similar correlation was already observed in the melting point
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TABLE II. Entropies of fusion, Sls (kB), volumetric changes, �Vm = Vl − Vs (Å
3

atom−1), or its relative value to the volume of solid,
Vs, and slopes of the melting curves dTm/d p (K GPa−1) for Al, Si, Ge, Sn, and MgO. Errors in our results are within ±0.03 (kB) for Sls,

±0.02 (Å
3

atom−1) for �Vm, ±0.003 for �Vm/Vs and ±3 (K GPa−1) for dTm/d p. Recent reference calculations with tight error tolerance and
similar PAW potential are underlined.

Property XC MLFF DFT Exp Property XC MLFF DFT Exp

Si Sls LDA 3.18 3.0a, 3.5b, 3.5c 3.3d Al Sls LDA 1.31 1.36e 1.38f

PBE 3.36 3.3g 3.6h PBE 1.33
PBEsol 3.13 PBEsol 1.27
SCAN 3.47 3.3g SCAN 1.25

�Vls/Vs LDA −0.151 −0.10a, −0.142b −0.119i �Vls LDA 1.20 1.26e 1.24e

PBE −0.128 −0.120g −0.095d PBE 1.11
PBEsol −0.172 PBEsol 1.25
SCAN −0.089 −0.091g SCAN 1.11

dTm/d p LDA −69 −50a, −58b, −51c −38k dTm/d p LDA 67 65j

PBE −57 −55g PBE 68
PBEsol −81 PBEsol 63
SCAN −38 −40g SCAN 64

Ge Sls LDA 3.30 3.7k MgO Sls LDA 1.58
PBE 3.50 PBE 1.57 1.62l

PBEsol 3.38 PBEsol 1.57
SCAN 3.53 SCAN 1.50 1.70l

�Vm/Vs LDA −0.124 −0.055m �Vm/Vs LDA 0.254
PBE −0.111 PBE 0.297 0.305l

PBEsol −0.125 PBEsol 0.267
SCAN −0.091 SCAN 0.269 0.291l

dTm/d p LDA −63 −20k dTm/d p LDA 123
PBE −57 −38m PBE 153 153l

PBEsol −63 PBEsol 137
SCAN −44 SCAN 140 134l

Sn Sls SCAN 1.81 1.7h

�Vm/Vs SCAN 0.039 0.023h

dTm/d p SCAN 45 27n

aData from Ref. [1].
bData from Ref. [3].
cData from Ref. [10].
dData from Ref. [60].
eData from Ref. [2].
fData from Ref. [61].
gData from Ref. [53].
hData from Ref. [57].
iData from Ref. [62].
jData from Ref. [63].
kData from Ref. [51].
lData from Ref. [55].
mData from Ref. [64].
nThe melting curve of tin was calculated from the volume of β-tin at 453 K reported in Ref. [65], the volume change by the fusion written in
Ref. [66], and the heat of fusion and melting temperature reported in Ref. [57].

studies of Si in previous publications [3,53], where the trends
in the melting points among different functionals were well
described by the trends in the energy differences. This is
because the energy and structure of liquid Si and Ge can
be qualitatively described by the sixfold coordinated struc-
ture observed in the β-tin structure. The results summarized
in Fig. 8 indicate that this empirical rule is also roughly
applicable to Ge. For Ge, the energy difference between
the α-tin and β-tin structures is significantly smaller, and
thus, its melting temperature is lower than that of Si. In the
case of Sn, the α-tin structure is less stable than the β-tin

structure, and melting is obviously from the β-tin structure
itself. This implies that the energy difference between both
structures might not have a direct relevance for the melting
temperature, nevertheless, the linear relation between the
melting temperature and energy difference still seems to apply
approximately.

For Al, LDA, PBEsol, and SCAN closely reproduce the
experimental melting point while PBE underestimates it. Sim-
ilarly for MgO, LDA, PBEsol, and SCAN reproduce the
experimental melting point well, while PBE again underes-
timates it.
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FIG. 8. Melting point Tm calculated by the interface pinning
method using the machine learning force fields and the thermody-
namic perturbation corrections vs the energy difference �E between
the α- and β-tin structures obtained from DFT calculations at 0 K.
�E is defined to be negative when the α-tin structure is more stable
than the β-tin structure.

In summary, SCAN is judged to provide the most bal-
anced accuracy within the tested functionals for thermody-
namic properties of metallic, covalent and ionic materials.
Semilocal functionals always yield lower melting tempera-
tures, but whether LDA, PBEsol, or PBE performs better is not
a priori clear. For the tetrahedrally coordinated semiconduc-
tors LDA and PBEsol are worse (obviously they underbind
the diamond structure), whereas for densely packed materials
such as Al, the melting temperature is increased towards
the experiment. Since LDA and PBEsol increase the binding
energy on average, an increase of the melting temperature for
phase transitions where the local structure changes little is in
line with what one would expect.

V. CONCLUSION

An on-the-fly MLFF generation method has been devel-
oped and integrated into an electronic structure code. In the
developed method, the machine predicts not only the energy,
forces and the stress tensor but also the uncertainty on the
basis of Bayesian inference. Although the predicted error
possesses quantitative discrepancies from the real error, the
relative trend of the real error is reproduced by the Bayesian
inference. This allows the machine to decide whether FP
calculations are required or can be bypassed. This error
estimation and decision scheme enhances the self-learning
ability in the MLFF generation and dramatically reduces the
need for human intervention and supervision. The developed
method was applied to the calculation of melting points of
Al, Si, Ge, Sn, and MgO. The application demonstrates that
the on-the-fly method indeed enables an efficient creation of
accurate MLFFs for metallic, covalent and ionic materials.
The MD simulations are more than two orders of magnitude
accelerated by the on-the-fly scheme even during learning.
Furthermore, for large unit cells, the generated force fields
are more than three orders of magnitude faster for MD sim-
ulations than FP calculations. This allowed us to to calculate
the melting points of five materials using the interface pinning

method in a fraction of the compute time that would have been
required without ML. The melting temperatures predicted by
the MLFFs already agree well with the FP results, but it is
straightforward and involves only little overhead to employ
thermodynamic perturbation theory and correct for the re-
maining errors. Our on-the-fly method is universally applica-
ble to a wide variety of multi-element complex materials. We
believe that this has the potential to become a new working
paradigm in the materials science community.

Concerning melting temperatures, we observe that the
SCAN functional is clearly a step forward in accurate pre-
dictions compared to experiments. SCAN consistently outper-
forms the semi-local functionals tested in the present work. A
general trend between the semi-local functionals can not be
made out. For Al, where the local structure remains 12-fold
coordinated upon melting, the melting temperature increases
from PBE over LDA to PBEsol towards experiment, in line
with the increased cohesive energies predicted by PBEsol
and LDA. For Si and Ge, however, the melting temperature
decreases from PBE over LDA to PBEsol away from exper-
iment. This trend is related to a destabilization of the cubic
diamond structure by PBEsol. Clearly, melting temperatures
are a tough test for the performance of density functionals,
and only SCAN is reasonably satisfactory in this regard.
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APPENDIX A: RADIAL BASIS FUNCTIONS

The number of the radial basis functions Nl
R is automat-

ically determined such that a linear combination of the ra-
dial basis functions reproduces the radial functions flm(r, ri j )
with a predefined accuracy. The functions flm(r, ri j ) are ob-
tained by expanding the broadened atomic distribution ρi [see
Eqs. (3) and (2)] in products of spherical harmonics and the
radial functions as

ρi(r) =
Lmax∑
l=0

l∑
m=−l

Na∑
j=1

flm(r, ri j )Y
∗

lm(r̂i j )Ylm(r̂), (A1)

flm(r, ri j ) = 4π(√
2σ 2

atomπ
)3 fcut (ri j )

× exp

(
− r2 + r2

i j

2σ 2
atom

)
ιl

(
rri j

σ 2
atom

)
. (A2)

To derive this equation, the following theorem has been used:

exp

(−|r − ri j |2
2σ 2

atom

)
= 4πexp

(
− r2 + r2

i j

2σ 2
atom

)

×
Lmax∑
l=0

l∑
m=−l

ιl

(
rri j

σ 2
atom

)

×Y ∗
lm(r̂i j )Ylm(r̂). (A3)
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The radial part is expanded in a set of radial basis functions
χnl (r) = jl (qnl r) as

Na∑
j=1

flm(r, ri j ) =
Nl

R∑
n=1

ci
nlmχnl (r). (A4)

Here the parameters qnl are set such that jl (qnlRcut ) = 0. The
number of the radial basis functions Nl

R is determined to
satisfy Eq. (A4) within a desired precision. In our implemen-
tation, in advance of the MD simulation, the radial function
flm(r, ri j ) is calculated using Eq. (A2) on 100 radial grid
points for r ranging from 0 to Rcut and ri j ranging from 0.5 Å
to Rcut. The number of radial basis functions Nl

R is determined
to reproduce the original values of flm(r, ri j ) within an error
of ±0.02. This means that the width of the broadening σatom

in Eq. (2) alone determines the number of basis functions.

APPENDIX B: ASSUMPTIONS NECESSARY FOR
DERIVING THE POSTERIOR DISTRIBUTIONS

The formulation of the posterior distributions p(w|Y) and
p(y|Y) starts from two assumptions.

(i) The FP data vector yα deviates from the model vector
φαw. The distribution of the deviation is assumed to be
described by a Gaussian function with a covariance matrix of
σ 2

v I:

p(Y|w) = N
(
�w, σ 2

v I
)
. (B1)

p(Y|w) denotes the probability to observe the FP data Y after
the determination of the coefficients w.

(ii) The prior probability to find the vector w is assumed to
be described by a Gaussian distribution with a mean vector at
zero and a covariance matrix of σ 2

wI:

p(w) = N
(
0, σ 2

wI
)
. (B2)

On the basis of these two assumptions and the Bayesian
theorem, the posterior distribution p(w|Y) is derived as

p(w|Y) = p(Y|w)p(w)

p(Y)
, (B3)

p(Y) =
∫

p(Y|w)p(w)dw. (B4)

The equation can be converted to the Gaussian distribution
written as Eq. (25) by the completing square method [38].
From this posterior distribution, another posterior distribution
p(y|Y) is obtained as

p(y|Y) =
∫

p(y|w)p(w|Y)dw. (B5)

Similarly to p(w|Y), this distribution can be converted to a
Gaussian distribution specified in Eq. (29) [38].

APPENDIX C: MAXIMIZATION
OF EVIDENCE FUNCTION

The maximization of the evidence function Eq. (31) with
respect to the parameters σ 2

v and σ 2
w is carried out by
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FIG. 9. (a) Real (root mean square error) (gray line) and
Bayesian error (black line) on forces (a) and (b) histogram of training
data on forces during the training mainly on force data.

simultaneously solving the following equations derived from
∂ p/∂σ 2

v = ∂ p/∂σ 2
w = 0 (see Ref. [38]):

σ 2
w = |w̄|2

γ
, (C1)

σ 2
v = |Y − φw̄|2

M − γ
, (C2)

γ =
NB∑

k=1

λk

λk + 1/σ 2
w

. (C3)

Here, λk are the eigenvalues of the matrix �T �/σ 2
v . As

described in Ref. [41], if all eigenvalues are used in the actual
computations of Eqs. (C1)–(C3), numerical instabilities hap-
pen because the nonregularized matrix �T �/σ 2

v can become
nonpositive definite. In order to avoid this problem, eigenval-
ues smaller than 10−10 are excluded from the calculations.

APPENDIX D: TRAINING ON FORCES

Figure 9 shows the real error and the Bayesian error during
the training on the MgO solid at 300 K. In the same figure, a
histogram of the training data on forces collected during this
short training simulation is shown. In this particular training
simulation, the dimensionless training data of the energy and
stress tensor components were less weighted than the training
force data (10−6 times smaller weights). Thus, the training is
executed almost only on the force data. The accuracy on the
forces predicted by the MLFF is obviously improved, and the
Bayesian error resembles the real error more quantitatively .

APPENDIX E: CUR ALGORITHM

In the following, we denote the element K (i, j) in Eq. (13)
as Ki j and the matrix comprised of Ki j for all candidates
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of the local reference configurations as K (both the column
and row dimensions of K are equal to the number of the
candidates). The formulation of the CUR algorithm starts
from the diagonalization of the matrix K.

UT KU = L = diag
(
l1, . . . , lNB

)
, (E1)

where U is the eigenvector matrix defined as

U = (
u1, . . . , uNB

)
, (E2)

uT
j = (

u1 j, . . . , uNB j
)
, (E3)

By using the notations in Eq. (E2), Eq. (E1) can be rewritten
as follows:

k j =
NB∑
ξ=1

(u jξ lξ )uξ , (E4)

where k j denotes the jth column vector of the matrix K. In
the original CUR algorithm [45], the columns of the matrix
K are maintained when they are strongly correlated to the
eigenvectors uξ with large eigenvalues lξ . This algorithm was

originally developed to efficiently select a few significant local
reference configurations from many configurations. However,
in our on-the-fly force field generation, we need an efficient
algorithm that can select few insignificant configurations,
because the number of configurations discarded by the sparsi-
fication is usually small. To this end, we have modified the al-
gorithm. In our implementation, we dispose of those columns
of K that are strongly correlated with the Nlow eigenvectors
uξ with the small eigenvalues lξ . The local configurations
corresponding to those columns are disregarded. Similarly to
the original CUR algorithm, the correlation is measured by
the statistical leverage scoring determined for each column
of K as

ω j = 1

Nlow

NB∑
ξ=1

γξ j, (E5)

γξ j =
{

u2
jξ , if lξ < 10−10

0, otherwise
. (E6)
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