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The effects of localized spin fluctuations on the critical temperature T, and the specific-heat jump
hC(T, ) of dilute superconducting alloys is investigated, both in the weak and strong magnetic limits.
In the weak magnetic limit (rapid spin fluctuations) we find that the expression of Kaiser for T,(n, ),
where n, is the impurity concentration, which was derived for resonance scattering still holds with

redefined values of the pertinent parameters, while the specific-heat jump obeys a BCS law of
corresponding states. In the slow-spin-fluctuation limit the result of Abrikosov and Gor'kov (AG) for

T,(n, ) is recovered, with a redefined expression for the Cooper-pair lifetime, while A, C(T,) as
function of reduced temperature is depressed below the AG value.

I. INTRODUCTION

In the years after the papers of Rivier and Zuck-
ermann and Caplin and Rizzuto~ on localized spin
fluctuations (LSF) were published, much effort
has been devoted both to the theoretical3 and ex-
perimental 0 study of their effect on the proper-
ties of dilute alloys. In this contribution we carry
out a detailed analysis of how LSF affect the crit-
ical temperature T, and specific-heat jump &C(T,)
of superconducting alloys; our analysis does con-
sider a small but finite concentration of impuri-
ties nr= NI/N, whe-re Ni is the number of paramag-
netic impurities and N is the total number of atoms
which constitute the system.

The thermodynamic properties we cal.culate are
important to characterize the behavior of the mag-
netic impurities in a particular matrix; supercon-
ductivity is a sensitive tool used to extract the
pertinent information because of the very marked
difference in the way a magnetic or nonmagnetic
perturbation acts on a Cooper pair.

To achieve our purpose we formulate analytical-
ly the problem in Sec. D by writing the correspond-
ing Hamiltonian and the corresponding Green's
functions to extract the physical information we are
looking for. In Sec. II we also solve the self-con-
sistency equations for the propagators in the rapid-
spin-fluctuation (weak magnetic) limit, up to
(&/ks T,), where & is the superconducting order
parameter. The thermodynamic information in
this limit is obtained in Sec. III. In Sec. IV a
phenomenological model due to Zuckermann is
generalized to obtain information on the system in
the strong magnetic limit (slow spin fluctuations).
Section V is devoted to compare the theoretical re-
sults thus obtained with the available experimental
information. A critical analysis of the model used
and the approximations invoked is given and the
paper is concluded with a qualitative comparison
of the results of the present I.SF theory with theo-

retical results obtained by MCiller-Hartmann and
Zittartz on the basis of the Kondo effect.

II. MATHEMATICAL FORMULATION

We formulate the problem analytically writing
the Hamiltonian for our system. The alloy is de-
scribed by Anderson's Hamiltonian, ii as far as
its normal properties are concerned, and the
BCS interaction responsible for superconductivity'
is added to obtain a full description of the super-
conducting system. We thus have

+A ++BCS (2. l)

where

~„=Z e~af, gq, + ~ ~Ec,.„,c,~,
m, o

+ Q Z (V,f a-„,c, ,+ H. c. )
J) Qs asm

and

+ Q Z Un~„, n .,i
J mt m

(2. 2)

Bcs = —~ aK, a -„,a l... aR. , ~ (2. 2)
ksk

a„-, and a"„,are the creation and destruction opera-
tors for conduction electrons of momentum R, spin
cr, and energy a~. c, , and c~, are the creation
and destruction operators for localized electron
states at site R;, angular momentum component
m, spin 0, and energy F, which, as all energies,
is measured with respect to the Fermi level. The
coefficient V,.f is

(2. 4)

where V~ is the matrix element between band elec-
trons and electrons localized on the impurity. U

is the Coulomb repulsion energy between opposite-
spin electrons localized around a particular atomic
site and X is the phonon-induced attraction between
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conduction electrons responsible for superconduc-
tivity.

%e now introduce the following Matsubara-type
Green's function in the Nambu formalism':

{2.5a)

and

9";,"(t —t') = —(T(C; (t) C, (t')/), (2. 5b)

where T is Wick's time ordering operator, p, , v

=1 or 2,

C, (1) C, (2) t 1II (1)j ~jazz p j jmzp haft p

The Fourier components g'"(e„) of the propa-
gators defined in Eq. (2. 5) are given by the gener-
al expressions

g;„".((o )=G-„6-„-„.+ Z e""""'
&

n
j,g",m

A
x Vj f 73 G; r3 V p. ~'-„'.g', 2. 6a

but neglect all terms like the one of Fig. 1(b) which
describe quantum interference effects between
conduction-electron scattering events at different
impurity sites. This limits our solution to low
concentration of impurities.

Since our main concern are the LSF, it is the
Coulomb scattering which we treat more carefully
and with more detail. Essentially, we do per-
turbation theory in U since in the weakly magnetic
regime it is the electron-hole multiple scattering
processes which are dominant; we thus consider
both the "normal" and "superconducting" electron-
hole ladder diagrams shown in Fig. 2(a), but with
renormalized "particle" propagator internal lines,
as exemplified in Fig. 2(b). However, diagrams
like those of Fig. 2(c) and 2(d} are discarded; the
2(d) diagrams have been treated by Hamman" and
Kurodaie for the normal state and Kitamura' for
the superconducting case. In the weak1y magnetic
limit they lead to small corrections of the results
obtained from diagrams of the type of Figs. 2(a)
and 2(b}.

After all these considerations the set of Eqs.
(2. 6) reduces to

A

x V jf r3 Gjf, r3 Vgfff g)j (2. 6b)
h „"((u„)= G„-(1+(2l + 1)nz V„- 7z q, fz V "„g„), (2. 10a)

where Zc. is the Coulomb self-energy, (d„
= (2n+ l)wk~T, and 7";. are the Pauli spin matrices
with 7o designating the unit matrix. The bare
propagators Gf(&u„) and G;(&u„) are of the form

(j,(&u„)=Gz 1+ Zc+Z V zv'z g„zz V„" g, , (2. 10b)
k

where the Coulomb self-energy matrix Z~ is given
by

Gf ((u „)= (i&a„~,—e-„f, + &fz) ', .

G, (up„) = (z(u„f, —E0,)
' .

(2. 7a)

(2. 7b)

(2. 8)

Here & is the superconducing order parameter of
the BCS theory given by

6 = X Z (a f, ay, ) = X k s T Z g - (w„)

Ze(cu„) =4~ TZ z„',((u„—Qz) t"'"(n,),
with Q, =2lgk~ T and

t (0„)= U/[1 —Uy (0„)],
where we have used the definition

y, (Q„)
-=t'zs TZ [ Qzz (~ z) 9"(0„—(u, )

(2. 11)

(2. 12)

and X was defined in Eq. (2. 3).
Having formulated our problem analytically we

now focus our interest in the solution of the self-
consistent set of equations (2. 6) which contain all
of the thermodynamic information of our super-
conducting alloy. The first step in the procedure
to solve the problem is to average over the spatial
distribution of impurities'; this restores momen-
tum conservation to the conduction-electron prop-
agator since

[b-.-'(~.}]-= S r(~.)5z1' (2. 8)

which considerably simplifies the problem and al-
lows us to treat the finite concentration case.

Next we consider the resonance scattering of
conduction electrons by the d or f impurity, de-
scribed by the matrix element V~; out of all pos-
sible diagrams we only keep those like Fig. 1(a)

—9"(ze,) 9zz(fl„—(u, }], (2. 13)

which plays the role of a generalized susceptibility
appropriate to the superconducting state. As we
approach the magnetic region, U yo(0) ~ 1 and the
t matrix t(Q„) shows sharp peak for 0„-0, justi-
fying our choice of the partic1. e-hole ladder dia-
grams as the dominant contribution. The electron-
electron ladder leads to a density charge matrix
of the form

[U q, (n)]'/[1+ U q, (n) ],
which is nonsingular at the origin, as shown by
Kitamura 7 and can therefore be safely neglected
for our purposes; of course we do not neglect the
effect of the d or f Coulomb correlations on the
superconducting state studied previously. '

For simplicity we specialize to the case E = 0,
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z(0)„)=1+

n(td„) =6+

cr
))N(0) zdR ((d„)(02+ 62d (0)„)

CI' &d (tt) n)

wN(0) zd {td„)ldR+ 622(0)„) '

(2. 15a)

(2. 15b)

zd(td„) =1+
[zR(~ )

2 dRR( )]1f2 +

zd(tdn-1)tdn 1 U

zd(tdn-))tdn-1+ &d (0)n-)) 1 —UX0(fi))

(2. 15c)

r l). (0)„)
d(~n) d+ [z2( )~2 lt 2(~ )]1/2 ~B T

URX0(~, }
l zd(&n l)&n 1 + +d(&n l) 1 —UQO(0))

(2. 15d)

Here c=—(2l+1)nd is the impurity concentration
times the orbital degeneracy of the d(f = 2) or f(l = 3)
states, r =wN(0) ( (V-„„I ), N(0) is the conduction
electron density of states per spin direction at the

which is appropriate' for AlMn and A/Cr. The
most general forms which the Green's functions
QR(td„) and g&(td„) can take' are

t0-„(0)„}= [iz(td„)td„",+ d) (td„)",—2„",]', (2. 14a)

t), (0)„)= [iz, (td„)&d„&0+ &d(td„) f.,7', (2. 14b)

which substituted into Eqs. (2. 10}yield the follow-
ing self-consistent set of equations:

Fermi level, and &d describes the weakening of
the superconducting pairing related to Coulomb
correlation effects between electrons on the im-
purity site. In analogy to the order parameter &,
given by Eq. (2. 8), it is defined as

hd = —U(c, , c, ,) = —Ukz T Q 13 Rd (td„) (2. 18)

5Zdn Zd(~n) Zdn

5a,„-=&,(0)„)—&,"„) .

(2. 17a)

(2. 17b)

With these definitions the set of Eqs. (2. 15) ex-
panded up to third order in & reads

and is related to the effect of the Schrieffer-Mattis
electron-electron ladder correlation on the super-
conducting state, which as stated above we do not
neglect.

The set of Eqs. (2. 15) is identical to Eqs. (2. 12)
and (2. 13) of Ref. 18 with exception of the third
term of the right-hand side of Eqs. (2. 15c) and
(2. 15d), which display explicitly the additional ef-
fects due to LSF.

Our purpose is to find an expression for the
specific-heat jump associated with the supercon-
ducting phase transition. This requires a self-
consistent solution of Eqs. (2. 15) up to third order
in 4, which we carry out next. To start, it is
easy to see that zd(td„) and &d(td„) are, respectively,
even and odd functions of 4; we then define as
zd„' and d) dt„) the leading terms of zd(td„) and &d(td„)
which are of order unity and 4, respectively, and

(2. 18a)

)1X(0) (z' ' )' (z',0„' „)
(2. 18b)

() I" k~T ~ t (nl)
dn + (0)

~ nt &n l ~d, n-l (dn-l
(2. 18c)

( )
I' b,„' „p f„(Q,)h' „'

dn
{ ~

(0) B (Z t0) }2(dn ~n l dtn l ~n
{2.18d}

(2. 18e)

4(0) 3 c 2gg g (0) (g (0))3
5h n dn dtt dn

2I t' *"'
I tt ntO) ~ 1: "'/t') '" *"' t*"' t'}

(ii ) Q d n-l d. n l+ 2~d~n--1 5dz. nt f (g )

dRn-l n-l)
(2. 18t)
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with

Above we have used t„(Q,) to denote the t matrix
describing the LSF in the normal state. z„' ' and
~ „' ' denote the first two terms on the right-hand
side of Eqs. (2. 18a) and (2. 18b), respectively,
and c„=r'c/(z, "„'(s„}'.

Ne notice that Eq. {2.18c) is the well-known ex-
pression for a normal state LSF alloy. In this pa-
per we employ the linear solution to this equation
due to Hargitai and Corradi' within the context
of the self-consistent treatment of Paton and
Zuckermann which has the form

(2. 19)

(r —zr, )' zr,
1

(r zr )
~ (2. 28)

1 (dD 2Z(dD

I;I' I", I" (2. 29)

(2. 30)

interactions are involved we choose to cut off at
the Debye frequency (JD while Coulomb interactions
are kept to arbitrary high energies. The summa-
tions above can be carried out to yield

This solution yields good results for q~(ur„) if ur„

« I'/z. In this approximation n, =- ln D —(I)(-,
' },

B CO

(2. 31)

t„(A„) =-

with

(2. 2o)

{2.21)

COx=ln
C

r I
Eo = ln —P(z) —~8

2mZAB T~

(2. 32)

{2.33)

I;(U) is the inverse lifetime of the LSF. (We work

in units of 5=1.) The method of Hargitai and Corradi
is applicable and gives good results when I',« I'/z.

It is possible to find the solution we are seeking
starting by substituting the above expressions for
z„"', tt„") at t~ in Eq. (2. 18d); after a long calcula-
tion we obtain

where ())(—,') = —1.96351. . . is the digamma function~0

of —, and we have assumed ~D «r, r, .
We now investigate (2. 18e); noticing that &„(0)/

z„' '= E„and invoking again the Hargitai-Corradi
approximation we obtain, using an iterative pro-
cedure, that to the order in 4 in which we are in-
terested, 5~~„ is given by

(2. 34)
(0)
4ft P

[ t

~Pl

where

(2. 22)
Equation (2. 18f) is solved in a similar fashion

and yields

r'a, t). /[(I + cz/vrx(0))

x (1+ I"'a„+cr'f)„/(vrN(0) + cz}],
1

„.„(I;+I Q„l)(I"+z I (d„l }

1
I (d„l (I;+ I A„I)(r+z I(d„l )

(2. 24)

{2.25)

Cn
X

I (d„l (vN(0) + c„z/I )i
cI' Q„

vf(t(0) + cz/I
0 (2. 35)

2( (d„l

where I(s) is the Riemann g function and c„, de-
fined after Eqs. (2. 18), has the following form in
the approximation of Hargitai and Corradi:

(2. 26)

h„-=vt, Tr' 2 1
l(d„l (I;+ I Q„l)(r+z l(u„l)

(2. 2'I)

The subindices of a and b above are related to the
cutoff of the summations; when electron-phonon

I c
(z t co„(+I )~ (2. 36)

In this way the self-consistent set of Eqs. (2. 15)
has been solved up to third order in 4 and we can
go on to obtain the physical information in which
we are interested.
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III. THERMODYNAMIC PROPERTIES NEAR T, IN THE
VfEAI(' MAGNETK REGION

In this section we use the results obtained in
Sec. II in order to obtain expressions for the tran-
sition temperature T, of the alloy, as function of
the impurity concentration n, and of the specific-
heat discontinuity associated with the normal to
superconducting phase transition

~C(T,) = C,(T,) —C„(T,) .

The basic equation to achieve these purposes is

Eq. (2. 8), which can be cast into the form

~=~a, T Z Z
n fr, ~a+ ~a+ ~n(dn

(3.1)

where

after using the explicit form of Gz'(v„) given in
(2. 14a). Carrying out the summation over k, em-
ploying Eqs. (2. 18) as well as the expressions ob-
tained for z„"„', 5z~„', 4„'„',and 54„„inSec. 0, the
"gap equation" (3.1) can be written

(3. 2)

2wkzTN'(0) g
n~o ~a

2wk~TN(0) ~ ((„cr I„-p r)„rE„(z&u„+I'}

»0 l2co„wN(0)&o„+cr/(r+z&o„) (z&u„+ I')

(3.3)

(3.4)

f(T,) = I/1
%'hen m~=0 we have

(3. 5)

Equation (3.2} has been written in a form ap-
propriate to Landau's second-order phase transition
theory '; therefore, we can obtain from it complete
thermodynamic information about the transition
under study.

A. Critical temperature

The critical temperature T, is obtained directly
from the requirement that b, (T,) =0, or, equivalent-

ly,

t

and when we evaluate the initial slope of T,(n, ).
It is important to note that the functional form of

T,(nz) is identical for resonance scatteringzz and

when LSF are included; they just imply a redefini-
tion of the parameters A and 8 as suggested by
Luengo et al.

B. Specific-heat discontinuity and critical field

Relation (3.2) within the context of Landau's sec-
ond-order phase transition theory3' gives the fol-
lowing expression for the Helmholtz free energy
J, in the region T~ T,:

y(T ) =1/X=N(0)a, , (3.8)
(T) . (3.10)

T, = T~ exp[- An, /(1 —Bn,)j,
where

(3.&)

with ao defined by Eq. (2. 31). Carrying out the
summation in (3.3) and using Eqs. (3.5) and (3.6)
we obtain

It then follows immediately that

4C=C —C
~ =-)'() C)'C),

C

and g(T) can be evaluated explicitly as

(3. 11)

(2f+1)u~ {K,+ &)(r/zrg
wr N(O) 1+r'a „

(2f + I) no+ +8+ r a
wr, N(O) 1+r'a„

(3.s)

(3. 8)

1 + cz/wrN(0)
( ) ( )X y{T) . {3.12a)

Qo+ x

Also f(T) can be obtained explicitly; it reads
Most parameters used in the above relations are
given by Eqs. (2.28)-(2. 33).

Equation (3. 'I) is a generalization of Kaiser's
results to include the effect of LSF and extends
the work of Zuckermann' to finite impurity concen-
tration; the results of Refs. 5 and 22 are correctly
recovered when z =1 and I', - wrz/U- ~ (no LSF)

N(0)(n, +x)
1 + cz/wI' N(0}

{wI'N(0) +ez}{1+r a„)—cI' a„/1",
[wrN(0)+cz](1+r a„)+cr(KO+x —I' a„)/I',

(3.12b)
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From here we obtain, by direct use of Eq. (3.11)
and keeping only relevant terms that

Smk T~C= ' [N(O)+cz/vr ].
Again we recover the functional form of 4C valid

for resonance scattering [see Eq. (4. 20) of Ref.
18]; the only difference is that the impurity con-
centration c is multiplied by the LSF renormaliza-
tion factor z. Moreover, if we define

N,"'(O) =-z/vr

as the effective density of d (or f) states at the
Fermi level, then the total density of states at this
energy level is

lvr (0) = N(0) + cNd (0)

and we see that the expression for 4C we obtained
above is the same as the one of BCS with an en-
hanced density of states Nr(0). It follows that

~C T, V, (0}
d Cl& T~ N(0)

which is a law of corresponding states.
From the relation (3. 10) we can also derive di-

rectly an expression for the critical magnetic field
H, which reads

H2(T, n )=/—8&/(F3 —F„)
= —4T/(T, —T)'[{8f/sT)'/g(T)] ~,

and therefore for T, —T «T, ,

ered in Secs. II and III.
In addition to the interaction between localized

and conduction electrons (described in this paper
through f ), we now also consider an exchange
interaction of the type J,S (T, where S describes
the impurity magnetic moment, cr is the conduction-
electron spin and J, is the Heisenberg exchange
integral. Our treatment deviates from the usual
procedure followed in this context, ' which con-
sists of adding to J, a second contribution J~-=—21 V„- I /)E I

& 0 obtained from the Anderson
Hamiltonian through the Schrieffer-%olff transfor-
mation '; we instead choose to continue describing
the LSF through a t matrix in order to obtain de-
tailed information on their effect on the supercon-
ducting properties.

Formally, we treat the term J~S cr only to sec-
ond order in J„as Abrikosov and Gorikov'0 (here-
after referred as AG) did; that is, we do not tackle
the Kondo effect. On the other hand, we consider
the effect of J~S o and of the LSF as contributing
additively to the conduction-electron self-energy
(i. e. , we neglect quantum interference effects be-
tween both scattering mechanisms).

In this context Eqs. (2. 15a) and (2. 15b) take the
form

&/N(0) zd2(0&„)0&2„+ &24(ld „)

n, I',z (0&„)

[z2(+ )~2+ g2{~ )]I/2

H', (T, n, ) = (4v/T, ){T,—T)'r&C, (3.18) (
CI' ad(0&„)

&/N(0) z2d(0&„)0&2+ ad2 (0&„)

which provides an alternative way to proceed from
the experimental point of view.

IV. STRONGLY MAGNETIC LIMIT where"

&1/I &D((dd)

[z2(~ )~2+ g2( )]&/2

In this section we generalize a proposal of Zuck-
ermann' for the form of the t matrix in the strong
magnetic limit, in order to obtain an expression
for &C when U» ml . In this limit the LSF life-
time is lar'ge compared with the Cooper pair, that
is, I', «k~T„ in contrast with the cases consid-

F& = dmX(0) J&S(S+1) . (4. 2)

Following Zuckermann' we now make the basic
assumption that it is sufficient to keep the domi-
nant 0„=0 component of /

2 (0„) in the strong
magnetic limit. Equations (4. 1) then take the form

(0) I
Zd„= 1+ ), + (0)n[ Zdn n (4. 3a)

g(0)
dn

I g(0) g(0) ~
n dn
(0)

( (0) )2 (4. 3b)

~(0& 2 if „(g(0&)2
Z Z (d (d (Z ) (Z

(4. 3c}

I g(0& 3 cF2 - 8g 2l& (0& 8z (+40&)3 g(0& 8z z (0&(g(0&)2
dll 2) ~ ~

3 z (0& vN(0)z (0&0& (z (0&~ )2 (z (0))3~2 (z (0&/d )4 +
z (0& (z (0&Id )2

+ (z(0& )4
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+ (z(0)~ )4 (z(0)~ )2
+ (z(0))3 z (z(0)~ )z t (4 ~ 3(i)

where we have used definitions (2. 17), E(ls. (2. 18),
and

k, T/""(n„=O) =-=-(7')+11(T), (4. 4)

z(0) = ")/a/ (4. 5a.)

(4. 5b)

with:"(T) corresponding to the normal and II(T)
corresponding to the superconducting elements
(proportional to () ) of the f"sr matrix. Clearly
this is a phenomenological theory, where we ignore
the relation between = and II and the relation of
these parameters with those of the Anderson model
(U and r}.

The set of E(ls. (4. 3) has a triangular structure,
where the first one can be solved algebraically and

the rest by substitution of the solutions of the pre-
ceding ones.

A. Critical temperature

In order to obtain an expression for the critical
temperature we have to find a solution for the self-
consistent set of E(ls. (4. 1) and (4. 3) up to order

The renormalized-random-phase approxima, -
tion (RRPA) of Hamman" suggests that:- - U» I'
and 11-r/)z=)/~/(kzT)z and thus, keeping only rel-
evant terms, we obtain

as to make the logarithmic term above negligible
and recalling the AG expression

In(T~/T, ) = (l)(-,
'

+ I/wkz T,7 ) —(l)(-,'),
we obtain for the pair lifetime ~ the relation

I/) —I/r„o+ I/) ) s, ,

where

(4. Io)

(4. 11}

)-„o= —,
'

n(wN{0) Jz) S(S+ 1) = wkzT, ) ~o (4. 12a)

and

T yLsF
LSF 2W})/(0)~1/2 B c c (4. 12b)

As expected, they are the same expressions ob-
tained by previous authors in the corresponding
limits. '*"

The critical concentration n„ is obtained by re-
(Iuiring T, = 0 in E(i. (4. 9), which yields

nI Tco {((1/2)en„T, (4. 13)

The value of n„ thus obtained justifies the approxi-
mations invoked, in particular dropping the loga-
rithmic term in E(l. (4. 9).

B. Specific heat

(0) 1 cr
mN{D). '~' ' ')

g(0) g + ~n
2

n +
( ) 2 ~0~ I 1

where again

(4. 5c)

(4. 5d}

In order to evaluate the specific-heat discontinu-
ity we need to know 5z„and 5&„(to order & and
6, respectively); assuming " » I"T~/T, (strong
magnetic limit) we obtain a significantly simplified
version of our self-consistency equations which
reads

g(0)
n

~n
&

(0) 1+ 2wkzT, &,/I ru„l
(4. 8)

II
dn 2„1/2i

rg'„
4l cu„l

(4. 14a)

and

)(c= Q/2wksTc,

with

(I) = pn/wN(0) J)S(S+1)+1 2 cl

(4. 7)

(4. 8)

r
'4n 4 l „I3

nir
2l m„l (l (d„l+ 2wkzT, X,)

, l(u„l+2mu~T, &,LSF

(l (d„l+ 2wksTc Xc)

(4. 14b}

(4. 14c)

(4. 14d)

The critical temperature T, is obtained as in
Sec. III, that is, by use of (3.3) and {3.5) in com-
bination with (4. 5), which yields

ln(T~/T, ) = (l)(—,+ Xc) —(l)(~) —ln(l + Q/(dn), {4.9}

where g(x} is the digamma function.
Noticing that Q/(d)) is so much smaller than unity

Use of (4. 14) in combination with E(l. (3. 2) yields

g(T,)= 2{2 „[g(3,!+),)-~ g(4, -', +).)],2(2wks T,/

(4. 15}

where t(n, a) = g/. 0 (j +a) "is the generalized Rie-
mann t' function. wo Combination of (4. 15) with Eqs.
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,hC/hC()1.

/ p,

ky
i),

0.5.

(3. 3) and (3. 11) yields the final expression

EC T, K(3, ) [1 —&,g(2, —'+ it,) I

Acq T e f(3, ~ +Ac) —otic(4, ~+it~)
(4. 16)

FIG. 1. Diagrams which represent the resonance scat-
tering of conduction electrons by the d or f levels of the

11 22
impurity. Here G- = = =, Gg = = =, GI" = ==, and

Gp = = —,while the double lines represent the analogous2 =

d- or f-electron propagators. The crosses stand for an
impurity site~ while the dotted lines represent the inter-
action Vg ei"'RJ.

TC CO
0

FIG. 3. Plot of the reduced specific-heat jump DC/b, CO

vs reduced critical temperature T,/T, o. The straight line
represents the BCS law of corresponding states and the in-
termediate curve represents the relation obtained by
Abrikosov and Gor'kov. The lowest curve illustrates the
strong I SF case. The initial slopes are 1, 1.45, and

1.84, respectively.

with

-2
~AG

~AG + ~LSF
(4. 17)

The parameter 0 ~ n ~ 1 is a measure of the
strength of J,S ~ cr relative to the total scattering.

Since X, is a function of T, /T~ alone the graph
for hc/Dc, vs T,/T~ is universal for a fixed val-
ue of n and is illustrated in Fig. 3. The initial
slope

s(~c/~c, )
s(T, /T~) „I u

varies between 1.84 (a = 0) and 1.45 (n = 1).

V. COMPARISON WITH EXPERIMENTS AND CONCLUSION

cj

FIG. 2. Diagrams representing the Coulomb correla-
tion of the d or f electrons. Here G&'= — —,G& = ——
G& = = =-, and G&~= = =, while the wiggly lines stand
for the electron-hole Coulomb interaction U. [1 (T/gLsF)2] (5. 1)

Here we discuss the results obtained above,
mainly in Secs. III and IV, in the light of the exist-
ing experimental information. Moreover, we an-
alyze critically the theoretical implications and
limitations of this work.

There are several superconducting systems
which can be classified as being in the transition
region between magnetic and nonmagnetic be-
havior. The best documented experimentally24 are
Alvin and TkU, but Alt r also shows similar
characteristics. Some of these characteristics
are the following. The impurity contirubtion to
the resistivity varies as
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with 8 being a temperature suggested by Caplin
and Rizzuto~ to be rel.ated to the spin-fluctuation
frequency (r„'~r-kz8" ). These systems show a
relation between T, and n, given by Eq. (3.7),
which was derived by Kaiser for resonance scat-
tering and which with redefined parameters we
have shown to be valid also for LSF. Further-
more, they obey a BCS law of corresponding states
for the specific-heat jump &C/&C, versus reduced
transition temperature TJT~; this is also in good
agreement with our expression (S.16).

Having established that qualitatively our theory
for rapid spin fluctuations (weak magnetic limit)
is in good agreement with available experimental
information, we now proceed to analyze quantita-
tively the existing data of the two best-known '
systems: AlMn and TAU.

For AlMn the parameter oo = 5.9, the pure-Al
density of states iV(0) = 0. 4 states/eV atom and,
according to Huber, ~~ A = 576+64 and B= 88+4.
Using these experimental values we find through
numerical solution of the self-consistent set of
Eqs. (3.8) and (3. 9) the values zl JI'=0. 19 and
I'/z =1.7 eV. These values have to be considered
only as a rough estimate, since they are extremely
sensitive to small variations of the critical con-
centration which has a large experimental uncer-
tainty. Using the relation'

eL'r = (v 3 /vks)(I'/z) [1+—,'(I'/zI;)']'", (5. 2)

we obtain 8 =—1600 'K for AlMn which is con-
siderably larger than the experimental value of
530 'K, but is significantly smaller than the value
obtained from work of Maple et al. of 3000 'K,
calculated on the basis of a best fit to Eq. (3.7)
without inclusion of LSF effects.

For TAU we know' that o,o = 4. 8 A = 630, and
B= 130. The pure-Th density of states is 1.84
states/eV atom, which following the same pro-
cedure outlined above for A/Mn yields zI;/I'
= 0. 226 and I'/z = 0.26 eV. The result is e
= 300 K as compared with the experimental value '
of 100'K.

The reason for the remaining discrepancy be-
tween rapid LSF results and experimental values
has to be found in the fact that while our theory im-
proves upon previous work, the model used still
has several limitations. First, we assume that the
width I' of the localized states is much larger than
their distance to the Fermi level; this seems quite
reasonable for AlMn, but is only a working hypoth-
esis for ThU. Next, the weak magnetic limit re-
quires that (1+zI;/F)»1; when this condition is
not strictly satisfied, which happens to be the case
of our two examples, the interaction between LSF
may play a significant role; a calculation of this
effect (which is quite involved) might contribute to

explain the anomalously large density of f states
at the Fermi level observed in ThU, which has not
yet been accounted for.

As far as the strong magnetic regime is con-
cerned the situation is not as clearcut. Vaccarone
et al. ~ have recently suggested that superconduct-
ing magnetic alloys could be classified, on the
basis of the specific-heat jump nc/b. co as function
of TJT~, in three groups: (a) systems obeying a
BCS law of corresponding states, (b) systems
which follow the Abrikosov and Gorikov relation
(see Fig. 3 for n=1), and (c) systems obeying a
"universal" law with more depressed values of
&C(T,). Examples of type (a) systems were given
above; type (b) systems are LaGd and TkGd, while
type (c) alloys are (LaCe)Alz, ZnMn, and Zncr.
%hen comparing with theoretical results it is quite
clear that the initial slope

(
a(ac/~c, )
8(T,/T, o) .,=(

of the universal curve for type (c) systems is larg-
er than the maximum value of 1.84 allowed for by
our theory and is also larger than 2. 48, the maxi-
mum value permitted by the th ory of Miiller-Hart-
mann and Zittartz, which is based on the Kondo
effect.

On the other hand, recent work on the remarkable
(La„Tk, „)Ce system ' shows that it goes over con-
tinously from a Kondo-like behavior for x =1 to a
BCS law of corresponding states for x=0.

Our theory of LSF allows for either BCS-like
behavior (see Fig. 3) or the region between AG
(n =1) and the curve corresponding to n =0. The
region between BCS and @=1and below the a=0
curve is not excluded in principle, but the transi-
tion from one to the other requires going through
the regime I'~ -k~ T„where the approximations
we have invoked breakdown completely.

It is worth comparing qualitatively our results
with those of Ref. 30, in spite of the fact that they
appt. y to different models. In the strong magnetic
region (n-1 or Tz/T, o-0), both theories recover
the AG result. In the intermediate regime {n-0
or Tz/T~-1), both show maximum initial slope
(1.84 and 2.48, respectively). However, in the
weak magnetic region (rapid spin fluctuations or
Tz/T~- ~), they differ in that we recover a. BCS-
like law, while MGller-Hartmann and Zittartz find
an AG-like behavior. Semiquantitative analysis of
the expressions for T,{nI) in the weak and strong
magnetic limits [Eqs. (3.7) and (4. 9), respectively]
indicate that the analogy of our results with those
for the Kondo effect could also apply to the depen-
dence of the transition temperature on impurity
concentration in the regime I",-k~ T~.

In summary, we have studied the effect of LSF
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on superconducting properties up to third order in
b, both in the weak and strong magnetic regimes.
For rapid spin fluctuations (I",»k~ T,) we have found
that Kaiser's formula for T, as function of n,
holds, with redefined expressions for the pertinent
parameters, while a BCS law of corresponding
states is obeyed by the specific-heat jump. Our
expressions are in better agreement with experi-
ment than previous work, but there still remain
unexplained features, like the high density of
states of TAU. In the strong magnetic regime we

have extended previous work of Zuckermann' which
allows an alternative to the explanation based on
the Kondo effect, for the depression of the specific-
heat jump as function of reduced temperature.
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