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In this paper, resonance broadening is included along with spin-disorder scattering to study the

properties of the Hubbard Hamiltonian. Our solution, obtained through use of the 1ocator technique, is

valid for all strengths of the Coulomb repulsion term and for all band occupancies. However, here we

restrict our work to the strong-correlation limit. We find that inclusion of the resonance-broadening
terms (in particular spin-fhp scattering) leads to qualitative difFerences in the pseudoparticle density of
states compared with the density of states obtained with spin-disorder scattering only. When all three of
Hubbard's scattering terms are included, the ground state is nonferromagnetic for any level of band
filling, We also calculate the specific heat, magnetic susceptibility, and spin-spin correlation function as
a function of temperature. Partial band occupancy yields a Pauli-like susceptibility at low temperature
that transforms smoothly to Curie-like behavior at high temperature. The specific heat exhibits one or
two maxima depending on occupancy, but these maxima are not reflected in the susceptibility and seem

to be associated, not with magnetic ordering transitions, but with excitations across the Mott-Hubbard gap.

I. INTRODUCTION

Over the years considerable attention has been
given to possible solutions to the Hubbard model
Hamiltonian. ' It is beyond the scope of this paper
to review all methods; however, in a recent paper,
Esterling and Dubin~ reviewed some of these solu-
tions and discussed their moment-generated solu-
tion. These previous solutions include exact re-
sults in one dimension, as well as, Green's-func-
tion, perturbation, path-formulation, variational,
and functional integral techniques. Recently, a
theory for disordered alloys, the coherent-poten-
tial approximation (CPA), ' ' has been used to
investigate the magnetic properties of the Hubbard
model Hamiltonian in the strong-correlation limit;
e.g. , see papers by Levin and Bennemann' and
Fukuyama and Ehrenreich. '

In Hubbards's solution, ' the common approxi-
mation of truncating the Green's-function equa-
tions of motion is made in the second-order eq.m-
tion. Even this simplification leads to exceeding-
ly complicated mathematics, and subsequent in-
vestigators during the past ten years have re-
sorted to additional approximations, e.g. , series
expansion in the strong- or weak-correlation
limit, high-temperature expansion, CPA single-
scattering approximation, and weak applied fields.
These approximations are valid only in extreme
limits and do not express the behavior of Hub-
bard's solution over the entire range of variables.
Hubbard himself simplified the mathematics by
assuming a half-filled nonmagnetic band with a

circular density of states and zero temperature.
In this paper, we carry through the complete
Hubbard solution by computer methods for all
correlation energies, temperatures, and band
occupancy, assuming only that the single-particle
density of states is circular.

In Hubbard's alloy analogy, ' which has been
shown to be equivalent to the CPA' for a single
scattering mechanism, the position of the -cr
spin electron is held fixed while the motion of the
0 spin electron is watched. The relevant scatter-
ing term in the CPA is spin-disorder scattering
and is analogous to potential scattering in an alloy.
As pointed out by Hubbard, ' the analogy would be
exact if by some means the positions of the -0
spin electrons remain fixed while the o spin elec-
tron hops from site to site. The motion of the -a
electron is taken into account by including what
Hubbard called the resonance-broadening terms.
These resonance-broadening terms are the scat-
tering of a 0 spin electron into a -a spin hole and
the spin-flip scattering, in which an atom absorbs
a 0 spin electron and emits a -v spin electron,
thus coupling the motion of 0 and -a spin particles.
These resonance-broadening terms have largely
been ignored in favor of the computationally sim-
pler CPA.

Recently, Jarrett' investigated the effects of
Hubbard's three scattering terms on the ferro-
magnetic bandwidths for a half-filled band. He
discovered the inclusion of the spin-flip scattering
term has a significant effect on the density of
states. In particular, the bandwidths for the 0
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and -o spin bands remain the same for any mag-
netization when all three scattering terms are
included, in sharp contrast to result when only
the spin-disorder CPA and/or the o-spin-electron
into a -o-spin-hole scattering terms are included.

In a separate publication, ' we have calculated
the possible ferromagnetic states for a partially
filled band at T =0 only with all three scattering
terms and have compared the results to CPA
calculations. In that publication we assumed a
symmetry in the interaetor, which is strictly
true only for the half-filled band. However, as
we shall discuss, we find that for an arbitrarily
filled band the symmetry relation is approximately
obeyed. We conclude from our previous work, ' '
and from the work in this paper, that in the strong-
correlation limit, solutions (CPA, variational,
moment-generated, perturbation, etc. ) which
might exclude spin-flip scattering lead to quali-
tatively different results than those where it is
included.

Shiba and Pincus' studied the thermodynamic
properties of the one-dimensional half-filled-band
Hubbard model using the approa. ch of Bonner and
Fisher. They also compared their numerical
results for the one-dimensional case to results
obtained using what they term Hubbard's "im-
proved" approximate theory '(Hu. bbard's "im-
proved" approximate theory is identical to the
inclusion of the three scattering terms discussed
above. ) They found that Hubbard's theory' semi-
quantitatively reproduced their results for finite
chains for the thermal properties in the high-
temperature region, if the Coulomb repulsion
term was large compared to the bandwidth. They
also found that spin-wave contributions, which
are neglected in Hubbard's theory, ' are important
for the low-temperature behavior of the specific
heat as well as susceptibility. '

Out of all the possible scattering terms, the
three scattering terms discussed above arise
from the particular truncation scheme of the
Green's functions employed by Hubbard. This
scheme is identical to the locator technique, "'"
in which it is assumed that the scattering rate
for an average atom at the origin in a lattice of
average atoms is equal to the configurational aver-
age of the scattering by the various component
atoms replacing the average atom at the origin.
We employ locator formalism for an arbitrarily
filled band, for all values of the Coulomb repulsive
energy and finite temperature.

Our solution contains no approximation beyond
those contained in the locator technique, no high-
temperature expansion, and no expansion in the
ratio of bandwidth to Coulomb repulsive energy.
In spite of the general validity of this solution,

we restrict our discussions in this paper to the
strong-correlation limit and defer discussion of
the weak-correlation limit to a future publication.

In Sec. II, we develop the locator technique. The
ground state, density of states, electronic specific
heat, and magnetic susceptibility, all in the
strong-correlation limit, are discussed in Sec. III.
Finally, in Sec. IV we summarize our findings
and give our conclusions.

II. SOLUTION TO THE HUBBARD HAMILTONIAN

The Hubbard model Hamiltonian' is given by

3C = Q &;g C, , C, , + Q 7, n(, + IQ n; ) n, (, (1)

where t;& is the hopping matrix element for an
electron hopping from site j to site i, with t;; =0.
T, is the atomic binding energy, the C's are the
electron operators with n; =C, C;„andI is the
Coulomb repulsion energy for electrons of opposite
spin localized on the same site. In the atomic limit
for either a o or a -o spin electron on an other-
wise empty site, the electron has an energy T„.
for a o and -v spin electron on the same site,
the energy is T, +I. More than one electron of
the same spin is forbidden to occupy a site, be-
cause of the exclusion principle. For finite t;,
these atomic states broaden into the so-called
Hubbard bands, one centered at T, and the other
at T, +I, separated by the Mott-Hubbard gap of
width approximately I-h, where b is the band-
width. For a circular single-particle density of
states and I/6 & —,

'
W3 with occupancy n = 1, there

exist two distinct bands. ' For I/d. &-2v3 with n
= 1, the bands merge into a single band. In the
limit of I/n, «-,' &3, the motions of the electrons
become quite rapid, such that a motional narrow-
ing takes place, and a o spin electron "sees" the
average energy In, .' This probably corresponds
to the Hartree-Fock (HF) limit. However, Bari
and Kaplan" point out that, in the absence of elec-
tron scattering (Hubbard 1), the weak-correlation
limit is not the HF limit.

The self-consistency relation in locator formal-
ism becomes

1 x Y

E —Z'(E)-A, (E) E —E„-Q,(E) E —Es —f1o(E)

where the right-hand side (r.h.s) is the configura-
tional-average Green's function, and the left-hand
side (l.h. s. ) is the Green's function for the lattice
of average atoms. Here E is the energy and for a
half-filled band x+y =1; Z (E) is the self-energy
for the o spin electron; Q, (E) is the renormalized
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interactor' "'"for the o spin electron; and E„
and E~ are the atomic energies for the A and B
atoms, respectively. Q, (E) (designated Up by
Blackman et al.") represents the kinetic energy
of an electron dressed by multiparticle scattering
hopping between atomic sites. In the magnetic
case discussed here, E„=-E~ =-,'I. This assign-
ment places the origin of E (which is taken at the
atomic binding energy T, in the Hubbard model)
at --,'I. The concentrations x and y become the
fractional number of down n and up n, electrons,
as discussed below.

For less than one electron per site (n& 1), there
are some empty sites, and a o spin electron can
hop from a site with only the a spin electron on
it to the previously empty site, with no change in
energy (the case is similar for a -e spin electron).
In discussing the motion of the'o spin electron,
ther. h.s. of Eq. (2) becomes x[E E„-Q-,(E)] '

+y[E Ee --Q,(z)] '+e[z -Ep -Q, (E)] ', where
now x+y+z =1, x=n, y =n„z=1-n, n, +n,
=n, E„=—,'I, and E~ =E~ =--,'I. The expression cor-
responding to Eq. (2) now becomes

n 1-n
E —Z (E) —Q (E) E —pf-Qp(E) E+g&- Q(pE)

(3)

which is the self-consistency relation that we shall
use in our following work. Note that solving Eq.
(3) for [E —Z'(E)] ' gives Hubbard's' Eq. (59),
where Hubbard's F'(E) = [E —Z'(E}], see Ref. 4.

From the definition of the interactor Q, (E)
[Blackman et al."Eq. (2.7) or Shiba" Eq. (2.13)]

1 1 ~ 1
E —Z (E)-Q '(E) t)t

~
E —Z (E)-e))

(4)

where Q '(E) is to be distinguished from Q,(Z).
In the ordinary CPA there is only the spin-dis-
order scattering and Q, '(E}=Q, (E), and the re-
sulting self-consistency relation from Eq. (3) is
just the usual CPA self-consistency relation of
Soven' and of Velickf et a/. ' However, in Hub-

bard III, Ref. 1, there are three scattering mech-
anisms. The first, spin-disorder scattering, is
analogous to potential scattering in an alloy. The
other two, designated "resonance broadening, "
include scattering of a v spin electron into a -a
spin hole and spin-flip scattering. The total in-
teractor is taken to be the sum of the interactors
of the above three scattering processes'

Q.'(z),

Q, '(E) =E —Z'(E) —[G'(E)] '. (6)

p") (e) de
E-Z (E)-e '

yielding the result

(6)

Z (e) =~ —[G (e)] ' ——'G'(e), e =E t+0, (9)

where the energy is now expressed in units of
half-band-widths. ' From Eqs. (6) and (9), we ob-
tain

Q.(z) =![G:.(E) —G;:(-E) G;:(E)]. (10)

For the half-filled band, there is a particle-hole
symmetry such that Q, (E) =-Q,(-E). For a less-
than half-filled band, this relationship for Q, (E)
is not strictly obeyed. However, by actual calcula-
tion of various properties, the error in assuming
Q,(E) = -Q, (-E) for all band occupancy is 5/p or
less when compared with the calculations, which
follow, and where particle-hole symmetry is not
assumed.

By solving Eq. (3) for Q, (E) and using Eq. (10),
we have, for g'[—=G~(E)] and g, [~G)),(-E)],
-' (g'o)'+-E(g') +[( I}'-E'—

+t'))(g', }'g,— (E+I',)g', g, +4g,
-t')) (g'.}'g'. +l«+r-. )g'.g'. —l g'. =0

where

r. =-,'I(1-2)t.). (12)

Equation (11) represents four simultaneous equa-
tions in m and M to be solved for g', ,.

In the paramagnetic regime, G„(E)= G„'(E)(g,
=g', ) and then Eq. (11)becomes

--,'(g', )'+(gz+ ' r )(g', )'+[(-,' &}' —E' —-']g',

+E r-o +f))(go} g—

--,'(E+r .) go'go+', g, = 0. (13)

To facilitate the calculations, it is desirable to
obtain an analytical expression between Z'(E} and

G,', (E). Such an expression exists when the single-
particle density of states of bandwidth ~ is given
by

(p)(z) (6I«)[(zt)) -E ], Izl- 2+
(p)

0,

From Eq. (4), G,', (E) becomes

Q.(E)=Q. '(Z) —Q .'(-E)+Q .'(E).

Equation (5) represents four simultaneous equa-
tions in m and M. From Eq. (4) we have, for

(5)
Equation (13}represents two simultaneous equa-
tions to be solved for g', and g . By eliminating

g in Eq. (13), for example, the resulting poly-
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n~ =-7t' ' dE E Imoo"o E, (15)

where f (E) is the Fermi distribution function,
n =n, +n, and m =n, —n; n is the average num-
ber of electrons per site and m is the average
magnetization per site. The total electronic in-
ternal energy is calculated following Kjollerstrom
et gl. ' to be

E =-v 'g dzf(z)im{[z ——,'Z'(E)JG,',(E)).
g J ao

(16)

The resulting ninth-order equation for our solu-
tion from Eq, (13) has, in general, nine roots.
Fortunately, in the limit I/n. ~ —,

'
v 3 for the work

discussed in Sec. III, there exist in most cases
only two inequivalent solutions for which ImG,', (E)
10 for at least some E. The physical solution is
taken to be that solution for which -v ' f"„dz
xlmGOO(E) = 1 for each o, such that the sum for
both spin directions equals 2.

nomial in g, is ninth order; this is displayed in
Appendix A.

The pseudoparticle density of states is given by

p.(Z) =-v-'imG, , (z),
and n is given by

III. RESULTS OF CALCULATIONS

In the following calculations, we have obtained
g', from Eg. (13) by a computer program (from
the Sandia Mathematical Program Library) that
solves for the complex roots of a polynomial with
real coefficients. Then, using Eqs. (14)-(16),
p, (E), s„andEr can be calculated. Before we
discuss these calculations, we wish to orient the
reader by showing in Fig. 1 the pseudoparticle
spectrum as a function of b./I for the half-filled
band case (n = 1); this figure is similar to Fig. 5

of Ref. 1. The upper and lower Hubbard bands
merge for n. /I&2/v 3. The high-correlation limit
discussed in this paper corresponds to the region
n. /I & 2/W3.

A. Ground state

The energy of the paramagnetic state (m =0)
is to be compared to the energy of the completely
spin-polarized ferromagnetic state (m =n). The
energy of the m =0 state is calculated using Eqs.
(13) and (16). For m =n=n, n, =0, and, from

0. 0

2.0

w Q Q

-2. 0

-2.0

0.2 0.4
l}

0. 6 0. 8 1.0

0. 0 0. 5 1.0 1.5

FIG. 1. Energy as a function of the ratio of bandwidth
to Coulomb repulsion energy. The upper and lower Hub-
bard bands merge for 6/I & 2/W3.

FIG. 2. Electronic energy at T =0 as a function of
electron density n. The solid curves are for the para-
magnetic energy, while the dashed curves are for the
completely spin-polarized ferromagnetic state. 4 is
the bandwidth, and A' is the number of atoms per unit
volume.
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Eq. (3), it is clear that Z'(E)=- ,'I.-Hence p, (E)
= p"'(E+ ,'I)-, and the energy is then obtained
using Eq. (16). It is noteworthy that for n= 1,
self-consistent solutions exist for all m. ' This
indicates that the n =1 (half-filled band) case is
special. As will be pointed out in Sec. III E, for
n =1 and in the strong-correlation limit, the sus-
ceptibility can be defined only by taking the limit
as e- 1. It is our feeling that in this limit the
system is also nonferromagnetic, as is the case
for 0 ~n&1. We have not investigated possible
antifer romagnetic solutions.

In Fig. 2 we illustrate the behavior of E~ vs n,
where Er was calculated using Eq. (16}. The dif-
ference between the paramagnetic (m =0}and the
ferromagnetic (m =n) energies decreases as I/~
increases, with the m =0 solution always having
the lower energy, even in the limit of very large
I/S. . The energy difference between the para-
magnetic and ferromagnetic states is expected to
be that energy required to make the ferromagnetic
state the ground state at T =0. This energy differ-
ence is shown in Fig. 3. Note that, for large I/4,
the energy difference between the two states be-
comes very small, and for I/s, -~, the energy dif-
ference appears to vanish. '4

Nagaoka" obtained a ferromagnetic ground state
for very large I/r with n&1 (nearly half-filled
band) and selected density of states distributions.
Even with the circular density of states used here,
a ferromagnetic ground state occurs when spin-
flip scattering is omitted. ' We suggest that the
absence of a ferromagnetic ground state is due
either to (i) excessive dominance of the spin-flip
scattering term, which may be moderated by high-
er-order scattering mechanisms that are omitted
in this order decoupling; or to (ii) the choice of
the single-particle density of states. We feel that
the presence of the ferromagnetic ground state in
Nagaoka's work must be reexamined to include
spin-flip scattering.

In the low-electron-density limit, Kanamori"
obtained a ferromagnetic solution. Kanamori used
an adaptation of Brueckner's theory for multiple
scattering between particles. He found that corre-
lation reduces the intra-atomic interaction I from
its bare value. He then constructed a suitable
density of states that yielded the Stoner criterion
for a ferromagnetic instability, I,ffp"'(E~) ~ 1,
where p+'(E) is the suitable single-particle den-
sity of states, and I,ff is an effective value of I
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~l
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FIG. 3. Difference in energy between the param~etic
(PM) and ferromagnetic (FM) configurations as a func-
tion of electron density n at T =0. The para~~etic
state has the lower energy. 4 is the bandwidth and N
is the number of atoms per unit volume.

FIG. 4. Density of states per spin direction per atom
in units of (24) as a function of energy in units of +~A,

where b. is the bandwidth. In the top panel we show the
bare density of states p (E), and in the bottom three
panels we show the pseudoparticle density of states for
n =0.9, 0.5, and 0.1, with J/6 =2.0.
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approximately corrected for multiparticle scatter-
ing. The Kanamori theory does not take into ac-
count the renormalization of the density of states
due to many-body effects, as does the work of
this paper, nor does it treat the problem self-
consistently. As will become apparent in the work
to follow, the pseudoparticle density of states, in
particular the density of states at the Fermi level,
can differ significantly from the single-particle
density of states.

8. Density of states

The pseudoparticle density of states calculated
using Eqs. (13}and (14) for n =0.9, 0.5, and 0.1 is
shown in Fig. 4. Note that the upper bands at
energy —,'I contain fewer states for n&1. The num-
ber of states in the upper v band is equal to the
total possible number of doubly occupied sites
per o spin particle, which decreases from —,

' as
the occupancy of the band becomes less than half
full. The states lost in the upper band appear in
the lower band and correspond to the unoccupied
sites, of which there are (1 —n) per spin band.

The pseudoparticle density of states at the Fermi
level p(EF) for the paramagnetic configuration,
shown in Fig. 5, differs significantly from that
for the single-particle density of states. For ex-
ample, the single-particle density of states is

C. Specific heat

Differentiating Eq. (16}with respect to T gives
the result

(8
—E BE

)
Bf(E)

&& Im( [E ——' Z (E)]G ' (E)), (17)

where sE~/sT can be determined from sn/s T =0
to give

symmetrical about n = 1.0, while the pseudoparticle
density of states is not. In addition, p"'(E~) is
at least 20-30%%uo larger than p(Ez} for most band
occupancies. The reason for the difference be-
tween p(E~) and p"'(E~) is due, of course, to the
renormalization of the density of states. One
major result of that renormalization in the strong-
correlation limit is that the total number of states
in the lower Hubbard band (a plus -g spin bands)
is proportional to the occupancy and is approxi-
mately equal to (2 —n), while the total number of
states in the upper Hubbard band is equal to n.
For an explanation of this behavior, see Sec. IV.

0. 80-

0.70-

Q.

0.60-

0. 3—

0, 7

0.8

0. 1

x m 'T dE Imcpp
a ~ OO

(18}
Calculations of Er using Eq. (16) give the result

that, at low temperatures, E~ depends on T quad-
ratic@.ly, so that we can write E~ =-,' yT' such that
the specific heat at constant volume is C~ = yT for
T-O. From the initial slope of E~ vs T', or from
Eqs. (17) and (18}, we have determined y as a func-
tion of n for various I/n, . The calculations of y
using Eqs. (17) and (18) give identical results to
those using the slope of E~ vs T'. To illustrate
the behavior of y, we have plotted in Fig. 6 y vs
n for I/n, =2.0.

The simple theory for the electronic heat co-
efficient y in the single-particle picture yields
the result that

r =' (&&s }'p"-'(E~), (19)

0. 0 $ 2.0 40 6.0 8,0
W/2

la0

FIG. 5. Pseudoparticle density of states at the Fermi
level as a function of the ratio I/4 for various electron
densities n and at T =0. I/4 —2223 represents the
strong-correlation limit.

where p"'(E~) is the single-particle density of
states given by, say, Eq. (7). The results for y
vs n, calculated using Eq. (19), are shown in

Fig. 6. In addition, we show the calculation of y
vs n for I//r =2.0, where we have replaced the
single-particle density of states p"'(E~) in Eq.
(19) by the pseudoparticle density of states p(E~)
(Fig. 5). The decrease in y near n=1 is caused
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by the decreasing pseudoparticle density of states
near the Mott-Hubbard gap.

A comparison of the three curves in Fig. 6 shows
quite graphically the differences between a single-
particle picture and the interacting electron pic-
ture. The electronic energy for noninteractina,
particles is given by

Er(0) = dz 8 Ep(0) E,
and the resulting y is given by the dot-dash curve
in Fig. 6. Replacing p"'(E) by the pseudoparticle
density of states p(E) defined by Eq. (14) gives the

y shown as the dashed curve in Fig. 6. Finally,
using the correct expression for the electronic
energy of an interacting system of electrons, Eq.
(16), the resulting y is given by the solid curve
in Fig. 6. For a system of interacting electrons,
the total energy given by Eq. (16) takes into ac-
count the electron self-energy. The difference
between the dot-dashed and dashed curves is the
self-energy contribution to the density of states

at the Fermi level. The difference between the
dashed and solid curves is the contribution of the
self-energy to the total energy. A comparison of
the dashed and solid curves shows that, in cal-
culating thermodynamic properties, in particular
the total energy and specific heat, one is not at
liberty to assume noninteracting single particles,
nor simply to replace the single-particle density
of states with a pseudoparticle density of states.
Thus, correlation introduces an additional de-
crease in y beyond the value expected from Eq.
(19), using the pseudoparticle density of states.

In Fig. 7 we show our results for the specific
heat, given by Eqs. (17) and (18), as a function
of temperature for various n, and for I/b, = 2.0.
These results are in agreement with the calcula-
tions of C~ obtained from E~ by taking finite temp-
erature intervals. The low-temperature peak in
C„shifts toward higher temperatures, and the
height of this peak is largest for electron densities
of n =-0.5.

At high temperatures C~ develops a second peak

10.0

I./~= 20

8. 0-

0.3-

0. 2

4. 0-

2. 0-
Y= 2(&k ) P (E )/3

2

8 F

&= (5C~/&T)T

0 0 I I I I I

0. 0 0.2 0.4
I I I

0.6 0. 8
0. 0 0. 2 0.4 0. 6 0 8

k T/d
1.0 l. 2

FIG. 6. Electronic specific-heat coefficient y as a
function of electron density n. The solid curve was
calculated using the electronic energy defined by Eq.
(16) and Cz defined by Eq. (17), while the dot-dashed
and dashed curves were calculated using the single-
particle formula with the single-particle and pseudo-
particle densities of states, respectively. N is the
number of atoms per unit volume.

FIG. 7. Electronic specific heat C~ as a function of
temperature for various electron densities n with I/b
=2.0. These results were obtained using Eq. (17). A
calculation of C z for n =9.9 in which the contribution of
the upper Hubbard band is ignored is shown by the
dashed curve. N is the number of atoms per unit
volume.
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for n & 1 which shifts to higher temperatures as
the electron density is decreased. The height of
this high-temperature peak decreases as n de-
creases, and is barely noticeable for n =0.5. This
peak appears to be associated with excitations
across the Mott-Hubbard gap, and not with Inag-
netic ordering. In support of this assertion, the
contribution to C~ from the states in the upper
Hubbard band were determined by omitting these
states in the integral of Eq. (17). As a, result, the
high-temperature peak disappeared, as shown by
the dashed curve of Fig. 7 for n =0.9. This be-
havior indicates that the high-temperature peak
in C~ is due entirely to these excitations. In ad-
dition, this result, along with the n =1 curve,
suggests that the low-temperature peak is caused
by excitations into states immediately above E~
in the lower band. It appears, therefore, that the
structure in the specific heat is due entirely to
structure in the density of states. As will be seen
in Sec. IIID, no corresponding peaks occur in the
magnetic proper ties.

D. Magnetic susceptibility

The reduced paramagnetic susceptibility for a
uniform magnetic field is given by

(21)

g, =g . The set of simultaneous equations is
illustrated in matrix form

R( )=S,
and is shown in some detail in Appendix B.

The temperature dependence of X(T), calcu-
lated from Eqs. (22}-(25}, is shown in Fig. 8 for
various occupancies and I/n. =2.0. K is nearly
temperature independent for all n and for temp-
eratures up to ks T/n =—0.1, and hence the temp-
erature dependence is due primarily to X,(T).
For ksT/A & 0.1, K takes on some temperature
dependence. Contributions to the temperature
dependence in the regime I/b, & 2.0 from single-
particle excitations across the gap in the density
of states are insignificant at low temperatures.

At lower temperatures, X(T) is temperature
independent, and at the higher temperature, X(T)
takes on a Curie-like behavior. At high temp-
eratures, Ix(T)/p'sII is line, ar with respect to
I/kaT, and the slopes of the various curves ap-
proach n.

Our results for X(T) are in semiguantitative
agreement at the high temperatures with those
of Beni, Pincus, and Hone" for a simple cubic
lattice. Their high-temperature slopes are n for
low electron densities, but are somewhat less
than n for the band being nearly half-filled. At
the lower temperatures our results, Fig. 8, show

where the susceptibility X(T) = g'aNX, (T), with II
the number of atoms per unit volume. Using Eq.
(15}, and following Fukuyama and Ehrenreich, '
Eg. (21) becomes

16.0,

Ijd = 2.0

X„(T)= 2X,(T)(1+K)-',

where

X,(T) = -v-' dE, lmG,', (E),
af(E)

(22)

(23)

12.0

n =0.9

and

~n Bn

ir
eu Cl

8.0
M

X,(T) represents the unenhanced susceptibility
and, in the limit T-O, X,(0) =p(E~), in agreement
with Fukuyama and Ehrenreich. Here (1+K) is
the enhancement factor, and a ferromagnetic in-
stability will occur for finite temperature when,
and if, K =-1.

From the four equations in m and +E represent-
ed by Eq. (11), aG' (E)/an ag,'/an =-can be cal-
culated. Replacing n, by (n —n ) and treating n

as the independent variable, we obtain four equa-
tions for the four mdtnowns ag', /a n, ag'/an,
ag, /an, and ag /an . After completing the dif-
ferentiation, we setm =0 such thatg' andg', and

4, 0

0.0
0 10 20 30

IIk T

40 S0

FIG. 8. Magnetic susceptibility as a function of the
inverse temperature at various electron densities n.
Here we show the calculation for I/4 =2.0 using Eq.
(22). E is the number of atoms per unit volume.
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1. High-temperature susceptibility

At high temperatures, the reduced paramag-
netic susceptibility for localized spins must be
proportional to the single-site spin correlation
function

X(T)„,=g L,(T)/3keT, (26)

where g is the usual g factor and L,(T) is given
by'

0.8

a definite Pauli-like behavior for all electron
densities, whereas Beni et al."obtain a maximum
in the susceptibility, which they interpret as in-
dicative of a transition to an antiferromagnetic
state for the half-filled and nearly half-filled
bands, while a concave upward behavior is inter-
preted as indicative of a transition to a ferromag-
netic state at the lower electron densities. We
obtain neither a maximum nor the concave upward
behavior, and suspect that the differences are
caused by poor convergence of their series ex-
pansion in this temperature region.

The temperature dependence of y(T) may be
understood at, high temperature by investigation
of the spin-correlation function and at low temp-
erature by investigation of the dependence of
p(Er) on correlation energy.

(27)

in agreement with Eq. (4.16) of Shiba and Pincus, '
wherein F'(E) =E —Z (E) (see also Ref. 4).

At this temperature, and in the strong correla-
tion regime, (n&~ n& ~)- 0, with the result that
L,(T)-; n. Therefore,

X)„=-,'
ng /3kaT =n(keT) ', (29)

as expected from the well-known susceptibility
expression for a localized moment, y„,=ng'S(S
+1)/3keT for S=-,'.

At extreme temperatures, the spins become
unco r related and ( n, ~ n; ~) —( n, ~ ) ( n, ~ ) yielding
the result L,(T)-; n(1 ——, n) and

X„,=n(1 —-', n)g S(S+1)/3keT =n(1 ——,
' n)(keT) '.

(3o)

in the paramagnetic regime. From Hubbard's'
Eq. (49), replacing the resonance-broadening inter-
actors by total interactor 0 (E), and from his
Eqs. (50) and (59), along with our Eq. (3), we can
calculate the Green's function ((n;,C;„C„t)).
From this Green's function the correlation func-
tion in Eq. (27) can be evaluated for arbitrary
occupancy as

0.7 16.0

12.0

0.4 I

L

0.2—
0.3

0. 1 0. 1
4.0

00
0. 0 0.2 0.4 0.6

kB Tl

L

1.0 1.2

0.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FIG. 9. Single-site spin-correlation function I-0{T)
as a function of temperature for various electron densi-
ties n and I/4 =2.0. Lo{T) was calculated using Eq.
{28). At T =0, Lo{T) is equal to the correlated value
of 4n. At high temperatures, Lo{T) approaches the un-
correlated value of gn(1 —2n).

I/ kBT

FIG. 10. Comparison of I g/p~ W and 4'-o{T)//
3k&Tpz N as a function of inverse temperature. Here
g{T) was calculated using Eq. {22), and Lo{T) was cal-
culated using Eq. {28) for n =0.9 and I/4 =2.0.
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The temperature dependence of 1,,(T}for various
occupancies is shown in Fig. 9 for I/d, =2.0. At
intermediate temperature, X{T)equals approxi-
mately the correlated value [Eq. (29)]; at high
temperature, X(T) approaches the uncorrelated
value [Eq. (30)]. Figure 10 compares the suscepti-
bility calculated from Eq. (26) with the suscepti-
bility for n =0.9 obtained from Fig. 8. The agree-
ment between X(T) and Eq. (26) in the highest temp-
erature region is good, indicating that the suscepti-
bility is due mostly to uncorrelated localized spins.
As temperature decreases, the deviation between
the two curves is small, indicating that some cor-
relation has developed between spins at inter-
mediate temperature. However, large deviations
occur for I/ksT & 6.0, indicating that higher-order
correlation functions now dominate the suscepti-
bility, and that Eq. (26) is not a good approxima-
tion.

2. Low-temperature susceptibility

I/b, for I/n, = 2-3, but near the critica. l value,
—,'II3, some dependence on I/n develops. The
asymptotic values of X(T) in Fig. 8 are just the
values of X(0) in Fig. 12 at I/n, = 2.0.

Thus we see that, although a temperature-inde-
pendent Pauli-like susceptibility exists at the
lowest temperatures, the susceptibility is en-
hanced over that expected from the free-electron
value 2p(Ez). This enhancement factor reflects
the nearness of the band to half-filled, at which
point the susceptibility becomes Curie-like. For
the half-filled band (n = 1}at T = 0, K = -1 and p(Ez)
=0 such that X(0), Eq. (31), is undefined and can
only be defined in the limit n- 1; in this limit X(0}
appears to have Curie-like behavior. At low den-
sity, where a large number of unoccupied states
occur above FF, the enhancement is least, and
the susceptibility most closely approaches the
free-electron value.

In the Hartree-Fock theory, the reduced ex-
change-enhanced susceptibility at T =0 is given by

These higher-order correlations cause X(T) to
asymptotically approach a temperature-indepen-
dent value

2p"' (E~)
Ip(0) (E )

(32)

x(o) = 2p(E, )/t 1+K(0)] . (31)

The enhancement factor K =0n, /sn is given in

Fig. 11 as a function of I/n; the susceptibility
[Eq. (31)] is shown in Fig. 12 for various occu-
pancies. K and X(0) are nearly independent of

lt is tempting to replace p"' (Ez) by the pseudo-
particle density of states at the Fermi level p(EI ),
and to replace I by an effective I,«. Comparing
Eqs. (31) and (32), I,If p(E+) = -K, at T = 0. p(Ez)
-~ ', and in Kanamori's" theory I,«-~ in the
strong-correlation limit. Thus, in the strong-

n =1.0
8.0
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n =0.9

0. 8
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n =0.9

,
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-0 5-
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-0.3-

-0.2—
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0. 1

-0.1-

00 I I j I j i I

0.0 t 2.0 4. 0 6. 0 8.0

~3/2 I/d

0. 1

10.0 00 1 I I I I i l i i
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FIG. 11. Enhancement factor K at T =0 as a function
of the ratio I/4 at various electron densities n. For
I/6 ~ 2.0 and n =1.0, K= —1. I/b —~~3represents
the strong-correlation limit.

FIG. 12. Magnetic susceptibility at T =0 as a function
of the ratio I/O, for various electron densities n.
I/& —&+3 represents the strong-correlation limit.
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correlation limit I,«p(E~) =constant, independent
of I/A. This result agrees with our findings that
K is nearly independent of I/6 in the strong-corre-
lation limit (see Fig. 11).

IV. SUMMARY AND CONCLUSIONS

In this paper we have obtained the solution to
the Hubbard model Hamiltonian that includes all
three scattering terms of Hubbard, spin-disorder
(analogous to potential scattering in an alloy) and
the two resonance-broadening terms, scattering
of a o spin electron into a -0 spin hole, and spin-
Qip scattering. For a semicircular, single-
particle density of states, the solution is accom-
plished using a locator technique, "" the result
of which is a ninth-order equation in the local
Green's function, the imaginary part of which is
the average pseudoparticle density of states. Our
solution contains no approximations beyond those
contained in the locator technique, and in the se-
lection for the functional form of the bare density
of states. No high-temperature expansion, and no
expansion in b, /I, has been assumed. ln the locator
technique, it is assumed that the scattering rate
for an average atom at the origin in a lattice of
atoms is equal to the configurational average of
the scattering by the various component atoms
replacing the average atom at the origin. This
locator formulation is equivalent to Hubbard's
truncation of the Green's-function equation of
motion beyond two-particle scattering terms. The
solution, Eq. (13), is valid for all band occupan-
cies and strengths of the Coulomb repulsion.
However, we restrict our discussions here to the
strong-correlation limit and to paramagnetic and
completely ferromagnetic regimes only.

From the work in this paper and our previous
work, ' ' we find that the CPA, which takes into
account only spin-disorder scattering, and ignores
the resonance-broadening terms, leads to quali-
tatively different results from those obtained when
all three of Hubbard's scattering terms are in-
cluded. We conclude that the CPA biases the solu-
tion in favor of the ferromagnetic state. There
seems to be no compelling reason why a single-
site intra-atomic correlation should lead to a
ferromagnetic ground state. In fact, it is argued
that, for a half-filled band, the antiferromagnetic
state" is the lower energy configuration. The
absence of a ferromagnetic ground state in our
work agrees with the doubt about the possibility
of ferromagnetism without band degeneracy. '
Therefore, we conclude that any solution to the
Hubbard model must not ignore spin-flip scatter-
ing. For the fully polarized ferromagnetic case,
the energy difference between the ferromagnetic

and the paramagnetic states is at most 0.044~
for I/b as small as 1.0, and becomes smaller as
I/6 increases. By direct calculation, this energy
difference corresponds to the magnetic or molecu-
lar-field energy required to produce the m = n

ferromagnetic ground state. Thus, a weak inter-
atomic ferromagnetic exchange could provide this
difference. Our results, therefore, lead to an
energy separation between the ferromagnetic and
paramagnetic states that is of the order of magni-
tude commonly expected from experimentally ob-
served Curie temperatures. This result is to be
contrasted with the Stoner-Hartree-Pock results
in which this energy difference can be as large as
the correlation energy. "

The specific heat and magnetic susceptibility
differ from the one-dimensional calculations of
Shiba and Pincus' and Shiba, "probably because
our single-particle density of states vanishes at
the band edge, while for the one-dimensional
case, there is a singularity at the band edge. Our
high-temperature susceptibility calculations obey
a Curie law and are in semiquantitative agreement
with Beni et al." However, at lower temperatures,
our susceptibility displays Pauli behavior, where-
as their lower-temperature susceptibility for the
simple cubic density of states displays tendencies
toward an antiferromagnetic state for half-filled
and nearly-half-filled bands, and toward a ferro-
magnetic state for the low electron density. These
differences may arise from poor convergence in
their high-temperature expansion.

We find that the total number of states in the
lower Hubbard band for a less than half-filled
band is 2 —n, while the total number in the upper
band is n. This result is in qualitative agreement
with the predictions of Harris and Lange"; see
Egs. (5.20a) and (5.20b) of Ref. 20, where the cor-
relation function (C; tC;,) is negative for a
less than half-filled band. When hopping is not
allowed, the total number of states in the lower
and upper bands is 2 —n and I, respectively. When
hopping is allowed, there are effectively fewer
occupied sites (less chance for double occupancy)
because the electron clears a space for itself due
to the repulsion, and the total number of states in
the lower and upper bands becomes greater than
2 —n, and less than n, respectively. In our work
for I/b, & 1.25, the number of states is given by
2 —n and n to within the accuracy of the calcula-
tions. Evidently, in the regime I/6&1. 25, the
correlation function (C, tC&,) is small. Investi-
gation of the I/n, & 1.25 regime is in progress.

Finally, we note that simply replacing the single-
particle density of states by the pseudoparticle
density of states in the electronic specific heat
for a system of strongly interacting particles
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omits a self-energy contribution that reduces the
specific heat approximately 10-20% more for
I/n. = 2.0.

APPENDIX A

S=o
+ g b (g')' 'g =0,

g c (g )' '+g d (g } 'g,'=0, (A2)

Equation (13) represents two coupled equations
for g', and g „where g, —= Goo(E) and g, —= Go, (-B}.
The coupled equations for g', and g become

where

Dp = d1ap p D, =d~b —d,a, —
cheap,

Ap a p A1 2apa» A2 =a, + 2a~»

A32(a, a, +a,a2), A4= a', +2a,a,

A5 =2a2a, , A, =a3,'

Bo bp & B1 26pbl & B2 b1 +2bob2

83 2b 1b2 y B4 b2

o =dobo —co o ~ C1 dob1+c1bo a1co

C2 dpb2 + 151 0 2 & C3 =c1b2 c a3

(A7}

where

c = --E+ -I3 1
1 4 4 +& c, =-E —I',

Solving Eq. (Al} for g,
g- = —g a, (g', }3-'

4=0
g b;(g,'}' ',
4=0

ap =co = —6, bo =do =+~

b, =d, =+ —,', a, =c, =(-', 1)' —E' —p,
a, = -E + -' I' (A3)

(A4)

D, =d,b, +c,b() —d,a, —c,a, ,

D~ = (dmb2 +c3bg dias c2am) l D, = c,b, —c a, ~

To find g, the solution for g,' is then substituted
into Eq. (A4).

APPENDIX B

Equation (11) represents four coupled equa-
tions for g'„g', g, , and g where g', ,—= G~(+E)
Replacing n, by n —n in Eq. (11}, and treating
n as the independent variable, we differentiate
these four equations with respect to n and obtain

and substituting this result into Eq. (A2), the re-
sulting equation is ninth order for g', such that

R, -R, 0 R,

-R, R, R, 0

sg,'/an

sg'/an

S,

-S.1'

Q 4(g', )' ' =0.
k=0

Here the coefficients F& are given by

(0 =AOCO,

$, =A,C, +A,C, +BQ, ,

(A5) 0 R4 R3 -R4 Bg, Bn

R 0 -R R Bg Bn

after setting g' =g,' and g, =g for m =0, the para-
magnetic regime. Here

,AC+A, C, +A,C, +BQ, +B,D, ,

$~ =AOC ~+A,C~ +A2C, +ABCO+B+2 +B,D, +Bj)0, +-,'g', g —g(z+r )g,

E4 =A,C3 +A,C2 +A3C1+A4CO

+BPs+BiD2+BPi +BPo

R2 = r's (g,')' —g(E + r ) g', + 7, (B2)

g, =A C +A,C +A C, +A,C

+BQ, +B,D, +BQ, +BQ, +Bj), ,

6 A3C3 +A4C2 +A5C1 +A6Cp

+B,D, +BQ~ +Bg, +B4D, ,

+ 8 g-g+ —v(-&+r-)g

R4 =~~(g } —g(-E+r )g +g,

$7:A4C 3 +A 6C2 +A 6C 1 +B2D4 +B3D3 +B4D2

$, =A,C3+A,C, +Bj)~+BQ, , g, =A ~C, +BQ~,
Equation (Bl) can be solved for Bg+/8pg using
standard techniques.



958 L. C. BARTEL AND H. S. JARRETT 10

*%'ork at Sandia Laboratories supported by the U. S.
AEC.
J. Hubbard, Proc. R. Soc. A 281, 401 (1964).
D. M. Esterling and H. C. Dubin, Phys. Bev. B 6, 4276
(19V2).

3P. Soven, Phys. Bev. 156, 80S (1967); 178, 1136 (1969).
B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys.
Bev. 175, 747 (1968).

~K. Levin and K. H. Bennemann, Phys. Bev. B 5, 3770
(1972).

~H. Fukuyama and H. Ehrenreich, Phys. Bev. B 7, 3266
(19V3).

~H. S. Jarrett, in Proceedings of the Eighteenth Annual

Conference on Magnetism and Magnetic Materials, No.
10,

,
edited by C. D. Graham and J. J. Rhyne (AIP,

New York, 1973), pp. 521-525.
SL. C. Bartel and H. S. Jarrett, in Proceedings of the

Nineteenth Annual Conference on Magnetism and Mag-
netic Materials (unpublished).

SH. Shiba and P. A. Pincus, Phys. Rev. B 5, 1966 {1972).
H. Shiba, Prog. Theor. Phys. 46, 77 (1971).

~~J. A. Blackman, D. M. Esterling, and N. F. Berk,
Phys. Bev. B 4, 2412 (1971).

~2R. A. Bari and T. A. Kaplan, Phys. Lett. A 33, 400
(1970).

~3B. Kjollerstrom, D. J. Scalapino, and J. R. Schrieffer,
Phys. Rev. 148, 665 {1S66).

~4R. A. Tahir-Kheli and H. S. Jarrett, Phys. Lett. A 27,
4s5 {1968).
Y. Nagaoka, Phys. Bev. 147, 392 (1966).
J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

TG. Beni, P. Pincus, and D. Hone, Phys. Rev. B 8,
3389 (1973).

SC. Herring, Magnetism, edited by G. T. Bado and

H. Suhl (Academic, New York, 1966), Vol. IV.
H. Shiba, Phys. Rev. B 6, 930 (1972).
A. B. Harris and R. V. Lange, Phys. Rev. 157, 295
(196V).


