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Phase separation instability in the Hubbard model~

P. B. Visschert
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

{Received 22 February 1973)

The simple cubic Hubbard model is examined at zero temperature, for the case of strong interactions
and average densities near but not at the half-filled band. It is shown that the ferromagnetic state
which is usually assumed to be the ground state is unstable against phase separation. A new phase
diagram is proposed, featuring a two-phase region in which the equilibrium state is separated into
macroscopic antiferromagnetic and ferromagnetic phases {of diAering density).

High-temperature numerical results reported in
the preceding paper' (referred to below as I) sug-
gest a condensation may take place at low tempera-
ture in the simple cubic non-half-filled-band Hub-
bard model. In the present paper we examine the
situation at zero temperature, starting from some
exact results of Nagaoka. We find that some of the
inferences made by Nagaoka from these results
must be modified. In particular, we find a region
of parameter space in which we believe the zero-
temperature state exhibits phase separation, con-
firming the prediction of Paper I.

The Hubbard Hamiltonian (given in Paper 1) is
determined by the ratio f/I of the hopping param-
eter to the intra-atomic repulsion energy. We will
discuss deviations from the half-filled band in terms
of the introduction of a number of holes (unoccupied
sites) in a lattice originally having exactly one elec-
tron on each site (for small t/I, there are very few
doubly occupied sites). Nagaoka proves rigorously
that if I=~ and there is exactly one hole, the ground
state is a saturated ferromagnet. The ground state
is most easily described in terms of the tight-bind-
ing bands; the band of one spin is empty and the
other is completely full except for one hole, in a
state of energy 6t at the top of the band. It is then
plausiblethatforn holes (where n«N, the number
of sites) the ground state again has one band empty,
with the other having a pocket of n holes at the top
of the band, The total energy of the ferromagnet
is thus

EF = —6tn .
Nagaoka, next allows I/I to become nonzero, and
tries to determine at what critical value of t/I the
system with n holes ceases to be ferromagnetic.
He does this by looking for spin-wave instabilities,
finding an instability (hence a transition to an anti-
ferromagnetic state) when

t/I& 0. 248 (n/N) .
As he points out, this does not prove the state is
ferromagnetic for smaller t/I; a different in-
stability can destroy the ferromagnetic state before

E, = —8fn(1- gh'"), (4)

(plus terms of order tnh ) where

f' = —,', (2w)'(34—n)
I' = 1.52.

We obtain directly from Eqs. (3) and (4) the in-

Eq. (2) is satisfied. We have found such an in-
stability, which always precedes (and therefore in-
validates) Nagaoka's spin-wave instability at low
hol. e densities. It involves the condensation of a
region of half-filled-band antiferromagnet; all the
holes remain in the ferromagnetic region.

It is assumed in most work on the Hubbard model
(including Nagaoka's and the present work) that for
the half-filled band and t/I«1, the ground state is
antiferromagnetic. This assumption is based on
an analogy with the Heisenberg model [Eq. (18) of
paper 1]. The ground-state energy is not known;
the analogy suggests that (counting one J per
nearest-neighbor pair)

+AF 8(f /I) +AF (3)

where N„F is the number of sites within the anti-
ferromagnetic region. [Our qualitative result does
not depend on the exact value of the binding energy;
we use Eq. (3) only for definiteness. ]

We can now see qualitatively why the ferromag-
netic state is unstable against condensation of anti-
ferromagnet. The binding of the ferromagnetic
state is due to the holes (so its binding energy is
proportional to the number of holes) whereas the
binding energy of the antiferromagnetic state is
simply proportional to its volume. Thus by form-
ing an antiferromagnetic region, we gain an energy
proportional to its volume, and lose no ferromag-
net energy (because the number of holes is un-
changed).

This simple argument is strictly valid only as
n/N-0 for fixed t/I„ it does not tell us the critical
density at which condensation begins. To get this,
we must account for the work done in compressing
the holes, i. e. , correct Eq. (1). From the tight-
binding density of states (letting h = n/N be the den-
sity of holes) it can be shown that
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FIG. 1. Phase diagram for the simple cubic Hubbard
model at zero temperature, for small t/I and hole con-
centration n/¹ Nagaoka's phase boundary [roughly Eq.
(2)J is the dashed line. The system is antiferromagnetic
(AF) only on the line njN=0; the solid line [Eq. (7)]
separates the pure ferromagnetic region (F) from the
two-phase equilibrium region.

stability condition

2

0) d(EP + EAF) 6
t 4t~h5($

OAF I
Thus if

(6)

the ferromagnet is unstable against condensation
of a region of half-filled-band antiferromagnet.
This condition supercedes (2}at low hole densities;
Egs. (2) and (t) are shown as dashed and solid
curves in Fig. 1.

It is clear that Nagaoka's phase diagram (pre-
dicting ferromagnetism below the dashed curve in
Fig. I) must be modified; Nagaoka's state cannot
be the ground state between the two curves. If one
knew the energies of all possible homogeneous
states, one could work out the entire phase diagram
by minimizing the total energy of a several-phase
system (for each point of the diagram} with respect

to the proportions of the homogeneous phases. I
shall attempt here to come as close as possible to
this ideal, by including the homogeneous states
known to be important and using the best available
estimates of their energies. The calculation will
be confined to small t/I and low hole concentration
h. In this region3 the relevant states are anti-
ferromagnetic (the ground state for h= 0) and ferro-
magnetic (the ground state for t/I=0). The energy
of Nagaoka's ferromagnetic state is known for all
h; for small h it is given by Eq. (4). It is not
obvious, however, what happens to the antiferro-
magnetic state for nonzero h. This question was
studied by Brinkman and Rice, ' who found that the
energy of an antiferromagnet with a hole is lowered
by the formation of a microscopic ferromagnetic
cloud ("spin polaron") around the hole. So in prin-
ciple one should include a Brinkman-Rice n polaron
antiferromagnetic state as a possible homogeneous
state of hole density h= n/N Howe. ver, it can be
shown that such a state is always unstable against
coalescence of the polarons into a separate ferro-
magnetic phase. ' Thus for any state containing an
antiferromagnetic phase with h& 0, there is a state
of lower energy having only ferromagnetic and k = 0
antiferromagnetic phases.

So in calculating the phase diagram, I consider
only Nagaoka's ferromagnetic phase and the half-
filled-band (h = 0) antiferromagnetic phase. Finding
the absolute minimum of the energy with respect
to the proportions of each is straightforward [using
Eqs. (2) and (4)]. The result, for each ehoiee of
t/I and h, is indicated in Fig. I. It is perhaps
easier to think of the condensation phenomenon in
terms of electrons rather than holes. The pure
ferromagnetic phase on the right in Fig. 1 is a
Fermi gas of electrons. If we fix t/I and add more
electrons (move to the left on Fig. I) the density of
the gas increases. %hen it reaches a critical den-
sity [given by Eq. ('t}] an antiferromagnetic phase
of fixed density (i. e. , a solid) begins to condense
out. As we add still more electrons, the gas re-
mains at its critical density and we form more
solid, until we have one electron per atom (half-
filled band) and there is no gas left,
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To compute the optimal size of the polaron and its binding
energy, Brinkman and Rice used a simple model with a
cubical polaron; the hole wave function was required to
vanish at the cube faces. %'ithin this model, instability
against coalescence can be shown either by direct com-
parison of energies or by the following argument: If
we stack the polarons together, the wave function of the
Brinkman-Rice n-polaron state (a single determinant of
n functions each confined to a small cube) is an allowed
wave function for the n holes in the large cavity formed
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by the coalesced polarons, but clearly not the one of
lowest energy. Thus the ground state of the coalesced
polarons has lower energy than that of the separated
polarons. Brinkman and Rice's cubical polaron model

does not treat the polaron boundary exactly, but it seems
likely that a proper treatment of the surface energy
would just further unbind the polaron state.


