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High-temperature thermodynamics of the Hubbard model: An exact numerical solution*
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A new first-principles method for numerically calculating finite-temperature properties of quantum

many-body systems is described. It is used to compute the thermodynamic properties and magnetic
correlations of the Hubbard model, with negligible error at temperatures near the bandwidth or above.
Results for the half-filled band and a simple cubic or one-dimensional lattice confirm the existence of a
high-temperature peak in the specific heat which has been associated with a smooth but rapid change
in conductivity. Correlations calculated for the non-half-filled band simple cubic Hubbard model suggest
condensation, an entirely unexpected phenomenon whose existence is shown (by unrelated methods) in

Paper II.

I. INTRODUCTION

A new method is described in this paper for cal-
culating the finite-temperature properties of quan-
tum systems, and applied to the one- and three-di-
mensional Hubbard' models. The Hubbard model
is the simplest model of a system of interacting
itinerant electrons. Accordingly, it has been the
subject of much recent investigation. The present
calculation differs from most of this work in that
it is exact in a numerical sense; that is, given a
choice of the parameters of the model, a tempera-
ture (above any singularities), and any desired ac-
curacy, one can calculate all the equilibrium prop-
erties of the system to that accuracy. In fact, a
computer program has been written which does this
(given enough time and memory capacity) for a wide
class of models including Hubbard's. Other exact
numerical work' on the Hubbard model has been
done in the one-dimensional case, by exactly solv-
ing N atom finite chains and rings and extrapolating
to N=~. The specific heats calculated by Shiba
and Pincus (who used N~ 6) for the half-filled band
ease are confirmed at high temperatures by the
present results. More important, the present meth-
od can be extended to three dimensions, in which
the finite-system extrapolation approach is essen-
tially hopeless (even 2&&2&&2 atoms present a for-
midable problem). For a half-filled simple cubic

odel with strong interactions we obtain a smooth
high-temperature peak in the specific heat (see,
for example, Fig. 6). This extends earlier re-
sults (exact only in the limit f-0) which give such
a peak and associate it with a rapid but smooth
change in the conductivity. These findings contra-
dict some previous work4 (based on the Hartree-
Fock approximation ) which predicted a sharp met-
al-insulator transition. ~ At lower temperatures
we find antiferromagnetic correlations appearing,
suggesting the existence of a previously predicted
sharp antiferromagnetic transition. For the non-
half-filled band, we find positive short-range den-

sity-density correlations indicating clustering
which suggests a condensation transition. In the
following paper' it is shown by zero-temperature
arguments that a condensation probably occurs,
and its implications for the physical applicability
of the model are discussed.

In Hubbard's original work on this model, he
wrote equations of motion for the Green's functions
(as functions of time) and truncated them to obtain
a closed system of equations. Our approach differ:
in that we write differential equations for equal-
time expectation values as functions of inverse
temperature P = I/kT (instead of time). These
equations (suitably transformed, as in Sec. II) can
then be truncated at any point and integrated to ob-
tain arbitrarily accurate results. Our method is
closely related to the well-known technique of high-
temperature series expansion, in which expectation
values of simple operators are expanded about in-
finite temperature in a. power series in J3 =1/kT;
this series is easily generated from our equations.

We shall derive our basic differential equations
in Sec. II, and briefly describe a computer code
for automatically generating and solving them in
Sec. III. We give some selected numerical results
in Sec. IV, and conclude with Sec. V.

Since the method of Sec. II is quite involved, an
effort has been made in Secs. IV and V to make the
physical results understandable to the reader who
wishes to skip Secs. II and III.

II. DERIVATION OF METHOD

We will use second-quantized notation; c-„and
~, create and destroy an electron of spin cr on lat-
tice site 0, and na, = cg, cm, is the number opera-
tor. The Hubbard Hamiltonian (3C„„b., for nearest-
neighbor hopping, as usual) is

~i4 a'o
%v %'

~ iy

Here we restrict 5 and Ii' to be nearest neighbors;
I is the intra-atomic Coulomb repulsion, and t is
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an overlap integral (f&0). We will derive our dif-
ferential equation in the grand canonical ensemble
(GCE); thus we must add a chemical potential
term to the Hamiltonian

GCE =&Hub. + P +Q,, fy (2)
%, (I

For notational convenience we will write the Ham-
iltonian as

+GcE ~ao

where the X, are products of e 's and e's (i.e. ,
X =ggz, gg-„„egg,eZ.„or ggz, ); the numerical coeffi-
cients are y (so y, =f, t, or p).

Then the expectation value of an operator A (a
product of eg's and e's) is given by

( )
TrAexp(-PXocz)
Tr exp (-P Xoes)

(4)

where Tr indicates a trace over all possible states.
Our differential equation is obtained by simply

differentiating Eq. (4) formally'0 with respect"
to J3

gf(A&
dp

= &AXocs &+ &A) &Xocz& (5)

In the limit of an infinite system, both terms on
the right-hand side in Eq. (5) are infinite. These
divergences must cancel, as we can show explicit-
ly by substituting Eqs. (3) into (5) and rearranging
terms;

"„"=-gy. (&AX.&-&A&&X.&) (6)

In the absence of long-range correlations (i.e. , at
temperatures above any critical temperatures
which may exist) the quantity in parentheses in Eq.
(6) goes to zero rapidly as X, becomes spacially
separated from A; it is, in fact, a measure of the
correlation between X and A.

We have thus shown the sum in Eq. (6) to be con-
vergent. It gives us a system of coupled differen-
tial equations (one for each A). For purposes of
actual calculation, Eq. (6} shares a difficulty with
all such many-particle equations of motion: the
derivative of an N-particle operator involves
(N+ 1)- and (N+ 2)-particle operators. (A is an N

particle, or Nth order operator if it has N c 's and
N e's. ) The solution adopted by Hubbard in his
original work' was to write high-order operators
as products of lower-order ones. We shall do this
in a more systematic way by decomposing the ex-
pectation values (A) into cumulants. " The cumu-
lant associated with A will be denoted by (A). The
cumulant (A) may be written in terms of (A) and
lower-order expectation values, but it is more con-
venient to define it inductively on N, the order of

( egegegeg ) = (egegegeg) + (egeg) (egegg) —(eteg) (egeg)
(9)

Equation (9) shows that the two-particle cumulant
is actually the difference between an expectation
value and its Hartree-Fock decomposition. Thus
if the Hartree-Fock approximation" is fairly good,
the information contained in the one- and two-par-
ticle expectation values is mostly recoverable from
the one-particle cumulants via Eq. (8). Generaliz-
ing this, it seems likely (and can be verified nu-
merically) that the cumulants provide a much more
economical way of representing the state of the
system than do the expectation values. So, al-
though our purpose in introducing cumulants was
just to factor (AX ) in Eq. (6), we are better off
eliminating the bare expectation values entirely and
writing a differential equation just for the cumu-
lants.

We will do this at first by assuming the c 's and
e's of A and X in Eq. (6) anticommute, even those
referring to the same orbital. (This simplifies the
problem because ABC can then be brought to nor-
mal form without introducing extra terms. } Our
procedure will be to make a guess at d(A)/dP, and
verify it by induction on the order of A. The guess
1s

d(A)

Bl' ' ' Bn~A3'

(a11 B» overlay X ~)

(B ) . ~ (B )

(10)

where the sum is over all factorizations of AK

the cumulant. The one-particle cumulants are de-
fined by (A) =(A), i.e. ,

(eg' eg) = ( eg eg & (7)

(we have replaced 5a by a. composite index). If the
cumulants of order less than N are known, a cumu-
lant (A) of order N may be obtained from

(A) = g (B,)x ~ ~ ~ x(B„) (8)
Bl ~ 'Bff- A

where the sum is over all distinct factorizations
B,x Qx ~ ~ ~ x B„ofA.

In Eq. (8), as well as all our later sums over
factorizations, certain things are implicit: (i) All
operators are in normal form (eg precedes e); (ii)
noncommutation of operators is ignored, except
that if an odd permutation of the c"s and c's is nec-
essary to bring A into the form B, ~ ~ ~ B„, a minus
sign is inserted; (iii) in enumerating distinct fac-
torizations, all c 's and c's are regarded as distinct
(even if they really aren' t). In the present case,
(iii) is irrelevant [if A has two identical operators,
(A) and (A) vanish] but it will become relevant
later [Eq. (10)].

As an example of Eq. (8), we write the equation
defining the two-particle cumulants
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into 8, & ~ ~ ~ && I3„, subject to the condition that each
B, must overlap X (i.e. , share at least one ci or
c with X .) To verify our guess (10), we substitute
(8) into (6).

P (B ) ~ ~ ~ ' ~ ~ ~ (B )
d B&

8 l e ~ e Bye=A foal dP

careful in expressing (A3C ) in terms of cumu-
lants; it is not in normal form. If we write out
AX, collect the noncommuting pairs c,c,' (where
c, is from A and c, from 3C ) and use (12) for each
of them, we see that

(i4)

y P e ~ ~

e l ~ eB~"-AXof

&D, &
" &~.

&)
.

El e ~ «Eyfs»A Dl ~ ~ ~ DysXO

(11)
Note that the second sum on the right-hand side of
Eq. (11)cancels part of the first, namely, those
terms in which no B& overlaps both A and X . Us-
ing this fact, and substituting (10) for the deriva-
tive on the left, we get

Z Z(B)"

where N indicates normal form and F is a product
of noncommuting pairs. By AX, /E, we mean A3C„
with F removed (and a minus sign, if removal re-
quires an odd permutation). The sum includes the
trivial I' with zero pairs; this gives a term
N(AX ). Equation (14) is a version of Wick's the-
orem.

Now we can correct Eq. (11); instead of sum-
ming over factorizations of AK, we sum over
factorizations of AX /F for all possible E. Then
the proof of (10) goes through as before, if we re-
place (10) by

Bl e ~ e B~A f~i

c
x

Dl ' e e Df ~BfX
&&», "(&»,

)
(&».

d )--Z,
d p ~ B& ' "eFA»'&&'. ~

{each B~ overlays X~)

(B,) ~ ~ (B„),
(15)

(each D~ overlays X~)

El e ~ eE NAX
(some Ei overlays A and Xl)

(E ) ~ ~ ~ (E ) .

Recall that Eq. (11) is true, but (12) depends on
(10) and has not yet been proved. But if we can
demonstrate (12) independently of (10), we will
have proved (10) by induction on the order of A!
For (10) is trivially true for all A's of order zero
(there are none. ) And assuming it for all lower-
order cumulants than (A), we may prove it for (A)
as follows: all the cumulants (B&) whose deriva-
tives appear in (11) are of lower order except one,
namely, (A) itself, from the trivial factorization
with n= l. So we may use (10) for these others,
giving us a true equation, say (12'), identical to
(12) except that one term on the left-hand side of
(12') still is the left-hand side of (10), whereas the
right side of (10) has been substituted in (12).
Since (12') and (12) are both true, the left and right
sides of (10) are equal, i.e. , (10) is true of (A).

So now we need only prove Eq. (12). This is
done simply by observing that the same terms ap-
pear on both sides. For each (E&) ~ ~ (E„)on the
right side, the E's which do not overlap X become
B's, and those which do become D's.

We have been assuming the c~'s and c's anticom-
mute, to avoid unnecessary confusion. We will now

go back and take account of the canonical relation

c]c]= 1 —c)c)

In going from Eq. (6) to (11), we must be more

TABLE I. Inequivalent operators in the Hubbard
Hamiltonian [Kq. (3)], with integer labels. All operators
are in normal form, though we sometimes write A for
%{A}, for convenience.

Integer label Operator K

~(000) t

~ (000)t ~ (100)t
(OQO)t ~ (OOQ)a

Coefficient y

where the inner sum is over all factorizations of
AX into J3, ~ - ~ B„J. I is a product of zero or
more pairs C&c& with c& from A, c& from K . We
give explicitly a few terms of Eq. (15) in Table III.
These can easily be checked by hand.

Equation (15) is the basis for our calculation.
We wish to integrate this differential equation from
I3 =0 to obtain finite-temperature values for the
cumulants (A). Because of translational symme-
try, for each (A) there are infinitely many others
with the same value; clearly we must exploit this
symmetry. To make our method efficient enough
to be of much use we must also exploit the other
symmetries of the system. These include space
rotation, spin rotation, and time reversal. The
space rotation group is the 48-element octahedral
group O„(Shoenf lies notation). Since we only need
spin rotations to interchange c„,with c~„our
spin-rotation group need have only two elements,
the identity e and a rotation c& (by v about the x
axis, for example) which reverses the z component
of the spin. Instead of time reversal it is more
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TABLE II. Simple cumulants (in our arbitrarily cho-

sen standard form) with their labels. We again write X
for X{X}.

crement the cumulants

(A)~, ~, =(A)~+ hP
d(A)

(16)
Integer label Operator X

&(000»

t
&(000)t ~{f00)t

~(000)f

~(000)i

~ (000)~

~ (000»

~(000) i

C(000)i &(001)~

C(002)%

C(off)t

convenient to simply use the Hermitian conjugation
operation K. Because the cumulants happen to be
real, they are invariant under K, and the fact that
K is antilinear rather than linear has no effect.
The total invariance group of the system is the
product of these four groups (translation, space
and spin rotation, and Hermitian conjugation). We
will denote it by G.

The set of products A of c"s and c's (in normal
form) is partitioned into equivalence classes by G.
%e arbitrarily choose one member A of each
class, and concern ourselves only with calculating
the cumulant (A). For any other member A, we

have A=gA with gC6, so clearly (A) =(A). The
terms of the Hamiltonian (3) are similarly parti-
tioned; we denote the distinguished member of a
class by K-. The X-'s are listed in Table I, and

some of the A's in Table II.
%e now describe a finite procedure for solving

(15) numerically. We attempt in this section only
to convey a general understanding of how this is
possible; a precise description is left for the Ap-
pendix.

%e must somehow decide how to truncate the
system of equations; that is, which (A)'s to calcu-
late and which to ignore. The feature of (15) which
makes it so attractive for automatic computation
is that it makes this decision for us; this is unique
among equation-of -motion truncation schemes.
Initially (at P =0), it can be shown that the only non-
zero cumulants are (nZ ), i.e. , the equivalence
class of 2=~, . So we have only one nonzero (A),
with the numerical value p, the density per orbital.
Thus in Eq. (15) the only nonzero terms on the
right-hand side are those in which all the B's are
equivalent to ng, . Clearly (because of the crucial
restriction that B& overlap X ), there are a. finite
number (in fact, exactly nine, four of which have
been included in Table III) of inequivalent ways of
arranging the B&'s and F on the 3C 's, and hence
only a finite number (exactly three) of inequivalent
(A)'s whose derivatives are nonzero. We use these
nonzero derivatives computed from Eq. (15) to in-

This eliminates unnecessary calculation, while
ensuring that no important term is thrown away.
It is clear that this modified algorithm is still ex-
act, in the sense that we can achieve arbitrary ac-
curacy (at a given P) by choosing EP and 5 small
enough.

TABLE III. Selected terms in the differential equation
(15) [or (A9)), for the simple cubic lattice. Integer la-
bels for 3C- are from Table I, labels for B& and% from
Table II. The tabulated coefficient is the coefficient of

gf) ' ' CB„) in dg)/dp (i.e. , fQ~ in t;he notation of
the Appendix).

K- label 3; labels

1
1
1
1,1,1

3 1

2 label

None
1
2
1
3
4
1
5
6
3

Coefficient

1
1

—1
—2
—1

6
—1

2
—4

where P = 0 for the first iteration, and hP is a
small constant increment. After this first itera-
tion the number of nonzero (A)'s is still finite
(three). Clearly, this remains true in later itera-
tions; if a finite number of (A)'s are nonzero, there
are a finite number of products y(B,)-(8„)(in
the more precise notation of the Appendix, a finite
number of P's) contributing to Eq. (15). (This
finiteness depends on the fact that n is bounded. )
And each such set of B's can be arranged around
the K-'s in a finite number of inequivalent ways,
giving nonzero derivatives for only a finite number
of (A)'s. We therefore have a finite algorithm for
solving Eq. (15): we pick a bP by which to incre-
ment P from P =0, and at each iteration we enlarge
our list of (A)'s to include all those generated by
(15) from our previous list. By using a small
enough bP, we can compute the finite-temperature
cumulants to arbitrary accuracy.

This algorithm rapidly accumulates a large num-
ber of cumulants with extremely small numerical
values. To avoid this, instead of considering all
products of cumulants, we use only those which (at
the particular P we have reached) exceed some
small positive number 6;
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III. DESCRIPTION OF MACHINE CALCULATION

To test the method described in Sec. II and the

Appendix, a computer program was written. It
w'as not our objective to push the method to obtain
the highest possible accuracy or lowest tempera-
tures for any of the particular cases considered
below, but rather to see how promising the method
seems in a wide variety of cases. The program
was therefore designed to be as general as possi-
ble. Even the Hubba. rd model is not built in& the
Hamiltonian need only have the form (3), on a cu-
bic lattice with one s orbital per site. The pro-
gram is converted for the one-dimensional chain
by changing three FORTRAN lines. As a result of
this generality, the program is not very efficient
for any of the models, especially in one dimension.
Also, for some choices of parameters there is
much cancellation in (15), and determining which
terms to include by a different criterion than (17)
would speed convergence. It should therefore be
kept in mind, in looking at the numerical results
for special cases below, that each of them is al-
most certainly capable of substantial improvement
with a small investment of effort.

Because of the nature of the algorithm, the pro-
gram must be able to take an arbitrarily compli-
cated operator A and put it in a, unique standard
form A. It must ensure that each inequivalent rel-
ative geometric arrangement of X, I', B, ~ ~ ~ 8„
(each C in the notation of the Appendix) is con-
sidered exactly once (this is especially difficult if
some 8&'s are equivalent). Proper treatment of
the symmetry requires algorithms for various
group-theoretic manipulations of arbitrary sub-
groups of the group G. Thus the program is nec-
essarily rather complex, and cannot be described
here except in genera. l outline.

The inputs to the program are the Hamiltonian
operators X- (Table I), their coefficients y- (i.e. ,
f and I& p' is determined as in Ref. 10}, the densi-
ty p, and the error tolerance 5 [Eq. (17)]." The
program then generates the terms in (15) as re-
quired. It terminates when it fills the memory
space provided for storing information (like that
in Table III) specifying these terms, say N, words
(an average of three words per term). The value
of P atwhich this occurs will be denotedby P, . (In
practice, the system of equations defined by these
terms is then integrated again from P = 0 to obtain
better accuracy; this integration need not stop at
P, , ) This particular truncation of Eq. (15) is
uniquely determined by 5 and N, (and, of course,
f, I, and p). We will generally specify it by 5, N„
and P, to give an idea of the size of the ignored
terms (—5), the interval in P = 1/kT over which
they do not exceed 5(0 to P,), and the required data
storage (~ 2N~ words, counting storage of the cu-
mulants themselves as well as the differential

equation). The computing time is roughly propor-
tional to N, . The longest calculation we have done

(N, = 5000) takes about 14 min on the XDS Sigma 5,
a relatively slow computer, and costs about $11.

A number of checks have been made of the accu-
racy of the program. During debugging, several
hundred machine-generated terms in Eq. (15) were
checked by hand, most of them after the last error
was corrected. In addition, several tests have
been made on the final program. The Hubbard
model can be solved analytically in two limiting
cases, the atomic limit (t =0) and the noninteract-
ing limit (I= 0). In the atomic limit, the only non-
zero cumulants are (n, ) and (n, n, ), and (15) is a
closed system of equations. The program was
tested for p =-, (half-filled band) and reproduced
the exact solution (Fig. 1).

The noninteracting limit is less trivial. Our
method, based on local operators, is not naturally
suited for describing band wave functions; thus this
limit provides a test of the convergence of the
method, as well as the correctness of the program.
The exact specific heat in one dimension is given
by Shiba and Pincus. %e calculated it out to P
=4. 2(for f=1.0, using 5=2. 5&&10', N, =499, P,
= 2.4) reproducing their result exactly to within the
width of their curve. In three dimensions conver-
gence is naturally not so rapid, but we are still
able to reproduce the specific-heat peak exactly
(Fig. 2}. This calculation used N, =5000 (about
1700 terms) and 103 cumulants [(cg,c",) for 103
inequivalent R's, roughly filling a sphere of radius
9 lattice spacings]. At very low temperatures
more distant neighbors become important, causing
deviation from the exact result.

The program cannot be checked outside these
two limits for the Hubbard model, because no ac-
curate calculation exists. However, the Ising
Hamiltonian can also be cast into the form (3);
from the resulting coupled equations (15) high-
temperature series may be derived for all the cu-
mulants. The series for all the spin-spin corre-
lations were obtained to third order, and agree

0.3

--J.—---—.-.
'0 20

FIG. 1. Specific heat C& and fraction of doubly occu-
pied sites (n, n, ), for the atomic limit {independent of di-
mensionality) using p=y, t= 0, and I=4. The calculated
curves coincide with the exact results, Cz = [x/{1+e")] e"
and ( g,g, ) = Q-) {1+ e"), where x = yPI.
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0.3
xa01

O. (

0.0
I.O 4.0

FIG. 2. Specific heat of the simple cubic noninteract-
ing case (p=g, t=1, I=o). Our results (dashed curves
labeled by 6, 1V&, P&) are plotted with the exact result (sol-
id curve obtained by integrating the known density of
states; the author is indebted to B. Yang for a program
to do this).

(P ~ 1.3); though it is not hard to believe that the
finite-chain results converge to the exact curve,
it cannot be well determined by extrapolating them.
The specific heat for the simple cubic lattice, us-
ing the same parameters, is shown in Fig. 3(c).
In spite of the much greater complication of the 3-Q
calculation, we still resolve the peak well.

For strong interactions the specific heat no longer
resembles the noninteracting result. For t/I«1,
simple perturbation theory shows that at tempera-
tures kT« I the Hubbard model behaves as a Hei-
senberg model with exchange parameter

J=2t /I

From known results" for the Heisenberg model,
we expect in one dimension a peak in the specific
heat due to the appearance of antiferromagnetic or-

exactly with known results' for the simple cubic
lattice.

A consistency check can be made by noting that
(5) could have been written with (KA) replacing
(AX). This has the effect in (15) of conjugating
F (i.e. , c" now comes from A, c from X }. The
new coupled equations for the cumulants then look
quite different from the old ones (if we allow the
standard forms A to remain the same). For ex-
ample, the sixth line of Table III disappears. This
variation was tried for the case shown below in
Fig. 4(c); the results were the same to within the
convergence error. This is strong evidence for
the correctness of the program, since it is unlike-
ly an error would affect the two calculations the
same way.

IV. NUMERICAL RESULTS

0.5

(.0

(,'.6 x IO, 38'

2.0

I

x

6

(I Ox IO 4g00

, 3258, I.3}.

In order to compare the results of our method
with the only other exact results available, we ran
our program for some of the cases considered by
Shiba and Pincus. These involve a one-dimen-
sional infinite chain with one electron per atom
(half-filled band, p = 2} whose properties Shiba, and
Pincus tried to extrapolate from exact calculations
of finite chains. The problem is determined by one
parameter t/I. Shibaand Pincus distinguish two

cases: weak interaction (I & 4t = bandwidth) and
strong interaction (I ~4t). In the former case their
specific heat has one peak, and is not qualitatively
different from the noninteracting case. Our re-
sults for the weakly interacting (t/I=2) infinite
chain are shown in Fig. 3(a}, for three different
values of the error cutoff 5. The convergence is
essentially complete on the high-temperature side
of the peak. We replot our best result [t.e. , 5
= 10, with conservative error bars based on the
apparent rate of convergence of Fig. 3(a)] in Fig.
3(b) along with Shiba and Pincus s finite-chain re-
sults. It is apparent that the present method con-
verges much more rapidly at high temperatures

0,0' 0.0 I.O

0.5 — (c)

0.4

0,5

- (5x(0,x(68, 0,5)

(5 10,1500,0,5}

(I.5 x IO, I I75, 0.5)—

0.2

O. l

0,0
0.0 1.0 2.0

FIG. 3. Specific heat of the weakly interacting half-
filled Hubbard model (p = ~, t = 1, I= p. (a) one-dimen
sional, our results labeled by (g, N&, P&). {b) Our result
(solid line) with Shiba and Pincus's results for 2, 3, 4,
and 5 atom chains. (c} Our three-dimensional result.
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dering at about kT= 2t'/I. This peak was found by
the workers of Ref. 2 for finite chains. Because
of the relatively long range of the ordering, this
peak is not easily accessible by our present meth-
od (although we do verify the appearance of short-
range antiferromagnetic correlations).

Shiba and Pincus also report a higher-tempera-
ture peak which they associate with a metal-insula-
tor transition (but see Ref. 6). This peak is well
resolved by our calculation. '8 Our results for the

strongly interacting (t/I = ,') infinit-e chain are
shown in Fig. 4(a). Our best result is compared
to Shiba and Pincus s finite-chain results in Fig.
4(b). As in Fig. 3(b), there is good general agree-
ment.

The physical interpretation of this high-temper-
ature peak was given by Shiba and Pincus. It is
most easily seen in the atomic limit, shown in Fig.
1. The peak here is due to the freezing out of dou-
bly occupied sites when kT« I; at low temperatures

0.004

0.002

0.0

-0.002

-0.004

FIG. 5. Magnetic correlations for the case of Fig.
4{c). Curve labeled {tk) is (n(ppp)& n(ppg)&) (n), and
{)k) is (n&ppp), n~pp&), ) —(n)'. Indicated errors are esti-
mated from rate of convergence.
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FIG. 4. Specific heat for fairly strong interaction (p

=y, t= 1, I=4). {a) Our one-dimensional results; curves
labeled by 4, Nt, , Pt). Fraction (n, n, ) of doubly occu-
pied sites also given; arrow at right indicates exact P = ~
value. {b) Our result {solid line) with 2, 3, 4, and 5 at-
om chain results {Shiba and Pincus). {c) three-dimen-
sional result; {n, n, ) also given.

only one electron per site is allowed (i.e. , we have
"local moments" ). Figure 1 also shows how the
probability of double occupancy (i.e. , ( no, n|t, )) de-
creases. This freezing out causes a rapid decline
in conductivity because the current carriers are
extra electrons (doubly occupied sites) and holes
(empty sites) In th. e atomic limit there is of
course no conductivity, but for small nonzero t the
conductivity is proportional to t and has been ex-
plicitly calculated in this limit by Bari and Kaplan'
who confirm the rapid change in conductivity near
the specific-heat peak.

To show that the specific-heat peaks for the in-
teracting systems in Fig. 4 are attributable to this
same mechanism, we include (n, n, ) in Figs. 4(a)
and 4(c). ' We see that the peaks correspond to a
rapid decrease in (n, n, ), but that it does not dis-
appear entirely, as it does in the atomic limit.
This is because for finite t/I, (n, n, ) does not van-
ish even at zero temperature; some double occu-
pancy is allowed because the kinetic energy is
thereby decreased. In one dimension, the zero-
temperature value of (n, n, ) can be obtained' from
the exact solution of Lich and %u. It is shown
as an arrow in Fig. 4(a). It can be seen that the
freezing-out is essentially complete ' at I3 = 1.2.

Our present method does not explicitly demon-
strate the rapid drop in conductivity associated
with this freezing-out (we do not obtain any non-
equilibrium properties; this would be an interest-
ing subject for future investigation'). But Bari
and Kaplan's conductivity calculation' (which is
correct as t-0 for fixed nonzero kT and I ) indi-
cates that such a drop occurs for small t/I.

Figure 4(c) gives the three-dimensional result
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FIG. 6. Specific heat and (n, n, ) for very strong inter-
action (p = 2, t = 1, I= 100).

for the same parameters used in Figs. 4(a) and
4(b). The specific-heat peak is very broad; in-
deed it is not clear if it turns downward at all. We
believe that the high-temperature peak is beginning
to merge into the lower-temperature antiferromag-
netic structure. The Heisenberg-model analogy
[Eq. (18)] and series results for the Heisenberg
model suggest we may expect a transition around
kT=1.90J=0.95, or P=1.05. Though it is not
clear whether t/I= , is smal-l enough to actually in-
duce a transition, we observe an antiferromagnetic
tendency in the nearest-neighbor magnetic corre-
lations (Fig. 5; we plot these rather than the sus-
ceptibility because the latter is dominated at these
temperatures by intra-atomic effects).

To see the high-temperature peak in C» (and the
associated freezing-out of doubly occupied sites)
uncluttered by magnetic effects, we must consider
very strong interactions (t/I«1), for which the
antiferromagnetic structure recedes to very low
temperature (kT-4t /I) with respect to the high-
temperature peak, which remains at kT-0. 2I.
The specific heat C» and (n, n, ) for t/I=rkt are
shown in Fig. 6. C~ resembles the atomic limit
at high temperatures, but exceeds it at low tem-
peratures with the gradual appearance of antifer-
fomagnetic correlations.

Our most surprising results were obtained for
the non-half-filled band. To test Nagaoka's pre-
diction of a ferromagnetic ground state for den-
sities near the half-filled band and small t/I, we
calculated the specific-heat and nearest-neighbor
correlations for p =0.35 (i.e. , 0. 7 e/atom) and t/I

Figure 7 shows the results. The correlations
are antiferromagnetic at high temperatures; as we
lower the temperature the parallel-spin correla-
tion curves upward and becomes positive, as we
expect (in our grand canonical ensemble) if the
ground state is to be ferromagnetic. But the anti-
parallel-spin correlation does not become nega-
tive, as it should. The fact that we have both cor-
relations positive gives us a net density-density
correlation& that is, a clustering effect. This sug-
gests the intriguing possibility of a condensation
transition at low temperatures. In fact we find

(Paper II') by arguments quite independent of the
above numerical results, that for some choices of
parameters condensation probably occurs. The
zero-temperature state consists of two phases of
different densities, an antiferromagnetic phase
(density p =-,') and a ferromagnetic phase of lower
density.

We can use the zero-temperature results to give
a heuristic explanation of our high-temperature
curves (Fig. 7). The first peak in C» [Fig. 7(a)]
reflects the freezing-out of doubly occupied sites
(just as for the half-filled band, but now the holes
do not freeze out, so there is no sharp conductiv-
ity drop). In general, we expect at high tempera-
tures the formation of small clusters resembling
the low-temperature phases~ in this case ferro-
magnetic (F) and antiferromagnetic (AF) clusters.
The rise in C» at the right of Fig. 7(a) is due to
the binding energy of these clusters. Since the F
clusters contribute mainly to the parallel-spin
correlations, (and AF to antiparallel), we can ex-
plain Fig. 7(b) by mixing them in the proper pro-
portions. I et us assume the clusters occupy 6'f()

of the volume (73% F, 27% AF) and the other 94%
is uncorrelated. Since the AF clusters have den-
sity p=&, the F clusters must have p=0. 295. The
antiparallel and parallel correlations come out to
be 0.000 75 and 0.000 25 respectively. These fit
quite nicely onto Fig. 7(b) at about P = 0. 34; at
lower temperatures the cluster volume must in-
crease, and there must be proportionately more

0.2
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.0002—

-,0002

—.0004
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FIG. V. Non-half-filled band (p=0. 35, (=1, I=25).
{a) Specific heat. (b) Nearest-neighbor correlations, de-
fined as in Fig. 5.
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F clusters. It should be noted that this explanation
does not depend on the specific parameters used
in Fig. 7 giving a system with a tmo-phase equi-
librium at zero temperature~ in fact the phase dia-
gram still indicates it to be purely ferromagnetic.
At high temperature (kT» t /I) the energies of the
ferromagnetic and antiferromagnetic states are
indistinguishable, so we expect clusters of each.
Though it is important not to take arguments in-
volving these (basically ill-defined) clusters too
literally, the intuitive picture they provide of the
behavior of the system may be essentially correct.

V. CONCLUSION

We have shown that the differential-equation
method derived in Sec. II can produce nontrivial
information about problems which mere heretofore
accessible only by approximate methods of unknown
accuracy.

The results so far obtained show that the con-
ductivity drop in the half-filled three-dimensional
(simple cubic) Hubbard model is gradual rather
than sharp, and that antiferromagnetic correlations
exist at high temperatures, supporting previous
speculation that the ground state is antiferromag-
netic.

At densities other than the half-filled band, me
find correlations suggesting condensation into a
two-phase system. This prediction is supported
by independent examination of the zero-tempera-
ture state.

We wish to emphasize the great flexibility of the
computational approach used in this calculation,
namely that of generating, as well as solving, the
equations automatically. Although development of
the necessary combinatorial and group-theoretical
algorithms required a large initial investment of
effort, their generality allows rather fundamental
changes to be made in the method with very minor
changes in the computer code. For example, for
some ranges of parameters the algorithm would
converge much more rapidly with a different fac-
torization rule from (8) (e.g. , allowing no factor-
ization to separate two operators on the same site).
Equations (15) then become completely different,
and if we were computing them by hand we mould
have to start all over. Using the present program,
on the other hand, we need only change a few lines.

The principal limitation of our present method is
its inability to deal with long-range correlations;
work is in progress toward handling these more
efficiently.
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APPENDIX

In this Appendix me give a precise description
of the algorithm (described in general terms in Sec.
II) for integrating the basic equation (15). We first
categorize the factorizations on the right-hand side
according to the equivalence classes of X and the
B s. Each category may be labeled by an (n+1)-
tuple P

f =(X-., B„"~ S„) (A1)

where we require Bl» Bz» ~ ~ » B„ in some arbi-
trary ordering, for uniqueness. We can clearly
take into account only a finite number of P's; we
choose those satisfying (17). Given such a cate-
gory P, me mould like a set of rules for generating
all the contributions it makes to the derivatives
d(A)/dP in (15). The standard forms in (Al) may
be moved around arbitrarily on the lattice (and F
chosen in various ways) resulting in many different
configurations. We denote a representative con-
figuration by C, definedformally by the (n+ 2)-tuple

C=(X„, Z, B„~"B„) (A2)

X Qd. a 4 Bl '' ~

d. a. (each Bv overlays xo) (AS)
Here C is as in Eq. (A2). Satisfaction of the over-
lap condition in the sum over C (where we have not
specified which c~ is assigned to X, hence both
count as overlaps) does not ensure its satisfaction
after we have specified a distinct assignment, so
we must place another overlap condition on the in-
ner sum. We may eliminate A from the condition
on C, by noting that A is a function (call it 8) of C,

A = C(C) (A4)

Schematically, N(C) = B, ~ ~ ~ B„E/3C,. Then we need
require of C only that X be contained in B, ~ ~ ~ B„F
(and B~ overlaps 3C„as before) if we insert a
Kronecker delta function 6A «&. We now divide
the C's into equivalence classes under G [where

Here X =gX-, B& = g; B; for g, g; E G. To make C
unique, we require B,» BE» ~ ~ ~ B„ in our arbitrary
ordering. Clearly C determines the A in Eq. (15)
uniquely. Because of rule (iii) listed after Eq. (8),
the configuration C may correspond to more than
one factorization in (15); if B~ and B; share an op-
erator c~, C does not determine which of the two
c~~'s is assigned to X and which to A. When we
convert (15) to a sum over C's, we must sum ex-
plicitly over these distinct assignments. We shall
also write explicitly the sign of the permutation
mentioned in rule (ii), which turns B, ~ ~ ~ B„I' into
A X . Because this depends on the distinct assign-
ment, we denote it by cd.~ Equation (15) becomes

d(A)

C:Bl ~ ~ BzF=AX~ &each B~ overlays X~)
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X
2: each B~ overlays Xo, Xfk in Bl.~ ~ B„F

&~, e(c) 0'd. a. ~

C(~gV) d. a. (each B~ overlays Xz)
(A5)

We have taken advantage of the facts that y (8,)
&& ~ ~ ~ (B„)depends only upon P, and that the condi-
tions on the C sum are invariant under G (so we
need only check them for C). Noting that the in-
nermost sum (over distinct assignments) is invari-
ant under G, we may write it as a function f, of C
(the "assignment factor")

f.(~) =
d, a {each Bg overlays Xe)

(A6)

Since we are interested only in calculating one cu-
mulant from each equivalence class, we replace
A by A in (A5), giving

«» = g y-.(~,) ~ ~ (~.)
dP

X
C: each B~ overlays Xz, Xfk in Bl B„F

xf, (C) 2 5A, a(c) ~

C C=gV)
(A7)

We observe that Q(C) = C(gV} =gd(C), so that the
sum over C in (A7) vanishes unless e(V) is in the
equivalence class of A, i.e. , A = e(C). The sum

g 6 G acts on C by rotating all the operators in (A2)
simultaneously]. We pick a distinguished member
C of each equivalence class (in practice, this is the
first member in a dictionary ordering of Cs in-
duced by the ordering of the EPs). Our sum over
C's may now be written as a sum over P's LEq.
(Al}], then over C's, and finally over C = gC in the
equivalence class of C. So (A2) becomes

d(A) = -Z y-.(&i) * ~ ~ (&.)
P

may therefore be replaced by

4, a(c)f.(&)

where

fs(&) = + 5a(c)..a(~)
C(=@V)

(A8)

is the "symmetry factor. " It simply counts the
distinct rotations of C which leave 8(C) fixed. (If
the F in 0 has more than zero pairs, we must omit
operations g involving Hermitian conjugation. )

Our final result is

d(A) Q y (TI )... (TI )
dP

X
V: each B» overlays Xo Xo cont. in Bl"~ B„F

&&f.(C)f.(~) 4,a(v) (A9)

where f„ f„and 8 are defined by (A6), (A8), and
(A4). P was defined by (Al), and the C are in-
equivalent configurations of the form (A2).

Equation (A9) is the basis of our automatic al-
gorithm. For each product of cumulants (i.e. , P)
satisfying (17), we generate all possible 2's (since
we may leave K- fixed, and each 8& must overlap
X-, there are clearly a finite number of C's}. For
each C we compute f„ f„and 7l =a(C). We deter-
mine an integer label I. for A by finding 2 in our
list of cumulants (or adding it at the end, if it is
not there). For each product P, we store a num-
ber of pairs (L, fJ,}, one for each C. (For sev-
eral selected I"s, we give all the resulting pairs in
Table III. Each rom in the first two columns speci-
fies a P; the last two columns give L and fg„re-
spectively, one row per pair. ) This information
is used every time we iterate the differential equa-
tions; it determines how to increment the cumu-
lants.
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