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&e discuss, in the framework of the E expansion, systems with an n-component order parameter and

with the most general interaction compatible with the existence of only one length scale. At lowest

order, it is found that the only stable fixed point corresponds to an O(n)-symmetric interaction if n is

smaller that 4; in that case, two exponents only are sufficient to characterize deviations from scaling. If
there is a second nontrivial fixed point, then a third one is always present; among these three fixed

points, one and only one is stable.

I. INTRODUCTION

In the study of critical phenomena in 4 —& dimen-
sion by the renormalization-group methods of Wil-
son, ' the interaction is described by an n-compo-
nent order parameter. In order to write a precise
interaction, one must use the symmetry properties
of the problem. The model originally studied by
Wilson had 0(n) symmetry. The effect of cubic
anisotropy was then considered by several au-
thors. ' It may drastically change the behavior of
the system, leading possibly to a first-order tran-
sition or to a different critical behavior.

In order to incorporate other possible anisotropy
effects, we have studied here, in the framework
of the Wilson-Fisher e expansion, the most gen-
eral interaction compatible with only one length
scale. Most systems studied up to now fall into
this class; a nontrivial example is provided by the
p-wave superconducting transitions of He, in
which the order parameter is a 3& 3 complex ma-
trix. Several infrared fixed points, i.e. , relevant
for the critical domain, are in general present. We
have discussed the stability of these fixed points
with respect to small changes in the interaction. A

section is also devoted to the boundedness from be-
low of the free energy. It is shown that renormaliza. -
tion-group arguments lead to an expected result:
the boundedness implies that the bare interaction
energy should be positive.

Our main results are the following:
(i) At lowest nontrivial order in e, the only sta-

ble fixed point for n & 4 is the 0 (rr )-symmetric one.
This is a striking result, since it means that, whatever
interactions one takes, the symmetry is dynamically
generated near the critical point. The magnitude of
the first correction in & to the upper bound on n makes
it difficult to predict its actual value for & = 1.

(ii) In this domain, where rr & 4+ 8(e), only two

exponents characterize the first deviations to scal-
ing when the lattice spacing increases.

(iii) Conversely, if n &4+8(e), the symmetric
fixed point is not stable, unless the interaction is
O(n) symmetric by itself.

(iv) If, in addition to the symmetric fixed point,
a second nontrivial one is present, there is always
a third fixed point.

In the linear space of interactions spanned by
these three fixed points, one and only one is stable.

The critical exponent g, i.e. , the anomalous di-
mension of the field, can be calculated for each
fixed point. The largest of the three values of q
always corresponds to the stable fixed point.

At order c, one can perform a global study of
the domain of attraction of a fixed point. It is
found that this domain does not cover the entire
range of coupling constants allowed by the bounded-
ness from below of the free energy, yielding an-
other restriction to universality.

II. THE HAMILTONIAN DENSITY

The model is described by the renormalized
Hamiltonian for n massless fields y»(x), i = I, . . . ,
n, with a local interaction in d = 4 —& dimension:

&&) = l S.y; S"V;+(&»'/4&)

X[»»», », r»&&» Vr» V'r»»&»+ (&»»r r
—r»», r r)»»'»»&'» pr r&rj

+ g»& Ip» (Z3 —I)»» 8 tp» + p &»&»(51&r )»» 9&» . (I)

The dimensionless interaction u&», is totally sym-
metrical in the indices, and summation over re-
peated indices will always be meant.

The counter-terms f»»r, (Z, )»», and (5m )»» are
fixed by the renormalization conditions given on the
inverse p ropagators I »»»

&
(»r&)

(2a)

(2b)

and on the four-point proper vertex function (one-
particle irreducible)

T. (4)
&»tls z & &»t y

where S.P. stands for the symmetry point

p; ~ p, = p'(&]) —~)
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TABLE E. The normalization of the Feynman diagrams
is the same as in Ref. 14.

grrkr = P Prrkr ~

where the p are dimensionless, and

b- 4

a& 1

2 4e

1+5'

Prikr
- ~3'" ll ( 3'"}lr ( 3

-]/3
3 }11' ~r'1'k' l'

&irkr 12 b [ i'Jkr i'pqr ipqr

+ Sperm(ijkf)] + 6(u'),

c= = ' 1+' ~

in terms of which the Callan-Symanzik functions

Pr»1 (Ref. 7) are determined by

~Pi jkl
~Vj 'k' l' ~ ~Pi jkl

4
dp2

1 |, 1+2')
rr = 1 6 62

4ab 1

3 24'

This gives the result
1

t3rrkr= uokr+k 2a(ur»aupqkr+2Perm)

—qc(urp, „urp„,u„„+5 perm)

6 6 b(ultan rkr uppqr uipar + 3 Pel'111) + e(u )

and p, is an arbitrary renormalization mass.
We have assumed that all the fields are mass-

less, i.e. , they are critical all together; in general
there is no reason, if the bare masses are differ-
ent, that by fixing one parameter (the temperature),
the renormalized masses should vanish. There-
fore the physically interesting case is the one in
which the bare masses are the same. This situa-
tion will only occur if there is a symmetry group
of the interaction which has only one quadratic in-
variant, namely P&' r(yr) .

At lowest order, the condition on the interaction
to preserve this symmetry is the "trace condition"

& ~gk=U&gk .

However, it will not be necessary to impose this
restriction in the first part of our calculations.

III. RENORMALIZATION-GROUP EQUATIONS

The method we are using to calculate the fixed
points and the corresponding critical exponents has
been detailed in Ref. 6.

The relevant diagrams (denoted a, b, c, d, c, and

d) are listed in Table I, in terms of which the wave
function and vertex renormalization constants are

(Z,)„=5„+~6 b u, p,„u„,„+[-,' (ab) ——,
'

d]
4x

Xurpqr iiqrsi usrpr +6(u )

rr, » =u,», + —,'a [ur», up, »+2Perm(ijkl)]

+ —,
' a' [u„p, up, „,u„,„,+ 2 perm(ijkl)]

—c [u,p,„u„p,u„„+5Perm(ijkl)]+e(u ) .
(5)

The bare coupling constants g,», are expressed in
terms of these quantities by

It is convenient to define

Zrr „=(Zq}rr mn (Z3 }mk (Z3 }ni (i2)

in terms of which the anomalous dimension matrix
@of the y fields is

~~lg. mn
yi , 1kr~i'r'k'r'( } ( }mn kl

At these orders one finds
1 1

yrr, k»r2 auiikr 2 ~ C1urkmnurlmn ui lmnuikmn)

+ 6 1kb(brkurmnp urmnp+ 2perm [3 j k fl) ~

(i4)

With the help of these functions p, y3, and y, the
renormalization-group equations are for the one-
particle irreducible correlation functions

I'"' '((P„i,); (rfv, jek;}i lr, urrkr),

v=1, . . . , N, T =1, . . . , 1

with N —y fields and I.—9j insertions:

The anomalous dimension matrix y3 is now given
as

~~3 i/3
l, /a

(y3)rr =2P ,irk 1 Z3 y

Q)PgP kP lP

and thus

( &i
(y3}ir 3 buipqru»qr+ 4 eduipqruqrsi usrpi+e(u 1

(io}
Similarly, the insertions of y~ fieMs in Green's

functions are renormalized by the constants
(Zq)rr», which makes finite the insertion of a
9rr y,- pair on a (kl) line. One has

(Zi )rr, kr
= 2(brkbrr+brr brk) 2aurrkr

+ 4 (C —a )(urkp uirp a+urr4p ikp au). 4(i i)
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8
!

t'
m(Ny L) / ~

p. + p]igrpn)i (~1& ' ' ) ~Ni21 ~1) ' ' r fI ~l & ~ ~ (r3 ~lzkz '(~1)' ' ' ) ~n) ' ' ' ) ~Pl f ( ~1) ~ ) 2 L +I }
8p, Bg]ilail ~)i

L

(7)J )) f g)
&'"' '(iq, . . . , i„;A e„.. . ,i,'u', , . . . ,i, a, ) =0 . (ls)~

~ ~ ~

~ ~

~ ~ ~

~

~ ~ ~ ~

Integration of this equation gives

)'"'"((&)„',); (47, ,j;););II, ,/„) =11 (D), , g„(D„)...,
a~1 ls 1

I'"'"((f„,'); (q,i '
l

'
); l), (&)),

where u, », (&) is the solution of

du((kl(~) = P(g), g(u(l())

with u, », (1)=u,», , and where the matrices D, and

D~ are

[D,(u, X)],q = [Z~~~(u) Z, '~~(u(l())],
q

[D,(u, l()]„.,r
= [Z(u) Z '(u(l())]„

(is)

(i9)

We are interested in the critical region where p. is
much larger than the momenta, and we therefore
look to the solution of Eq. (17) when l).- 0.

In this limit a stable fixed point u, », is therefore
the solution of P,», (u*) = 0 with eigenvalues of posi-
tive real part for the matrix B defined by

where 4, and 42 are constant matrices.
Equations (16) and (22) show, therefore, that the

existence of a fixed point u* implies scale invari-
ance with anomalous dimensions related to the ei-
genvalues of y3 and y*.

IV. REMARKS CONCERNING THE POSITIVITY OF ENERGY

The theories that we are considering are asymp-
totically free~ (for the ultraviolet limit), since the
B matrix of Eq. (20) has only one eigenvalue, which
is —& for the fixed point n&», =0.

The eigenvalues of the B matrix give only a local
characterization. Let us call S the global domain
of (ultraviolet) attraction of the origin, defined by

8P~g&i
Bf»foftytpl )I

8+&'g 'a' t'
(20) u& ))& u(y))&(=1)EG if lxmu&g)), (l)) =0 (23)

The definition of y3 and y implies the matrix equa-
tions

'+—y, (l(.) D, (u(l).), i.) = 0,8D, j.
8A. 2

(2i)

In this domain, it is possible to show that the
stability of the vacuum (i.e. , the boundedness from
below of the free energy) is related to the sign of
the interaction part of the bare Hamiltonian —name-
ly, of

l). + y(X}Dq(u(X), A) = 0 0g &yI s + & +y ~I + ~ (24}

When X goes to zero, we assume as usual that
the matrices y~ and y reach finite limits y3 and y*.
Integration of Eq. (21) for l). small gives

D~ —A. "3 ~ A~, D~ —A,
~ b,2 (22}

where y, is an arbitrary real vector.
The argument is the following: Consider the gen-

erating functional of the one-particle irreducible
functions:

ao

0(M, , lt, u, q„) =Q ,—, ) dx, . . . dx„y, ,(x,) ~ ~ ~ rp, (x„)I",»'
I (x, , . . . , x„; l(, , u„„)!„,(„).„, (2s)

It is easy to verify that the renormalization group
equation (15) of the vertex functions give for the
functional

&(W) l")uo))i) =
l E(x(™su,

' ', u(y))(}, (27)

and E is solution of

I8 8 ]. 8
+ flu))t lh 2

t('4}(& SM +(W )» u(y))()
f jhow

(2s)
Dimensional analysis yields

4 —e+ p(u} —— [(y,)„+(2 —~) S„]
8 ~x 8

8u 2 8x,

xE(x(
& ups))() = 0 (2s)
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Any solution of this equation has the property that

F(xf(~) i +ffkl) ~ F(xf i +ff kf(~))

where fff»f(X) satisfies Eq. (17), and where

0(!f. Mf ff uffkf) ~ & P(M' ff ffffk( f)!)f, (31)

For u small the dominant term of F is the Born
term of the four-point function, and thus

Mf i f i +ffkl)

!'-' [(ff'/4! ) u„„(!) M, M, M, M, + s(!f.-")] .
(32)

Let us relate fff»f (!1.) to the bare coupling constants
through Eq. (8). From the definition of the P func-
tions

8
Pll kl f

ff f1kf lap tided (33)

we obtain

g ffkf(ff) - fl g ffkf( (f )}

Therefore, taking A. 1.arge, if u is in S

gfjkf(+)
k

+ffkf(~)

(34)

(38)

Consequently, the boundedness from below of the
free energy is equivalent to the positivity of the
bare quartic form (24). We shall call S the do-
main of the fff»f in B for which the bare form (24)
is positive.

We shall later see an explicit example of u&»&

belonging to S' but for which the form u, », x& x& x,x,
is not positive for some set of x, .

Another consequence of Eq. (34) is that the do-
main of attraction of the origin in the variables u
coincides with the domain of finiteness of the go's.
Indeed, assume that the ff are such that thegp(ff) are
finite; the corresponding ff(X) must be such that the
gp(ff(fl)) become infinitesimal for large !1,. For
small value of go, the bare and renormalized cou-
pling constants are equal, and therefore ff(!1}goes
to zero when A. goes to infinity.

In particular, on the boundary of the domain S
all the go are infinite, and therefore this boundary

'=-'x, rh, )„(~(!)).(2- e) f!„] . (30)

In the limit!l. goes to infinity, the fff»f(!f} go to zero
as V' (asymptotic freedom), and (y, )ff(ff(!f.)), which
is of order u, is negliy'ble. Therefore in this
limit the x& are proportional to A~ '~2.

Let us examine the consequences for 5: assume
all the M, go to infinity together like !f.' '~' at fixed
p, and u&», . The x, go to infinity like X' '~ . It is
equivalent to keep p. and the M, fixed with the u, »,
replaced by fff»f(!1) Th. ese fff»f(X) go to zero like

Therefore, the large M, limit of F can be ob-
tained from perturbation theory„since

cannot be crossed. Beyond it the bare coupling
constants would be, in general, complex.

All the infrared fixed points, stable or not, are
on this boundary, since in view of Eq. (34) they
must correspond to go strictly infinite.

Let us note from Eq. (34} that infrared fixed
points are obtained when one takes the large g,
limit: indeed, starting from ff such that gp(ff} is
finite, gp(ff(X}), being equal to X 'gp(ff}, increases
when A. -O.

If we stay at order &, it is possible to be a little
more precise. Let

ff(X}=fff jkl Xf X1 XkX1 (38)

Pffkk(+

~fpar(ff }"spar = 0 (40)

where x is an arbitrary vector normalized to x, x,
= 1. From the expression of the P functions, one
has

du(x, Z) = —N fl(X, !1)+ k Xf Xf ffffpa ffpakf XkX1 . (37)
d ink

Schwarz's inequality gives

dff(x, &)

d in'
——off(xi X) + p tf (x, A.)

If ff(x, 1) —=ff(x) &-', c, the corresponding ff(x, !1.) in-
creases indefinitely. Thus, M be in the domain S
the fff»f must fulfill the condition u(x) ( -', a: for
any x.

Let us take now a set of u, », in') and such that

vxff(x) & 0. Then, from inequality (38), fa(x, X) goes
to zero by positive values. Therefore the u,», that
satisfy Vxlf(x) & 0 belong to &'.

A last general remark concerns the domain of
attraction of the infrared fixed points: we have al-
ready mentioned that there are u&»& belonging to &'

for which ff(x) is not positive. Such points cannot
be attracted by the infrared fixed points: indeed,
when!1. -0, the same inequality (38} gives

dff(x, x) 3 2('( )» ~ff(x, !f.) ——,ff (x, X)

This inequality shows that if for some value Q of
!l. and some vector x ff(x, Xp) & 0, then ff(x, !1) de-
creases indefinitely when X goes to zero, and the

u&»& do not converge to any infrared fixed point. '

V. CR1TICAL EXPONENTS

A. General expressions for q and v

We shall now specialize for the theories satisfy-
ing the trace condition (3).

Let us first show that the matrix @3* is diagonal:
All the quantities are expanded in e, and we are only

considering the fixed points where the u* are of
order c. From the equations
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we obtain

and then
(41)

Ig
&ijkr = U ~ijkr+&ijkr

the u;, » is traceless and

n 42
+ijkl+ijkr ~ U +ijkr +ijkr8+4

Equations (47) and (50) yield the inequality

(50)

x 1+—U +——+2U +e(e ) . (42)
2b g c 8
30 0 3Q

Let us note that y* not only is a multiple of the
unit matrix, but also depends only on the value of
the trace U* of the fixed-point interaction.

Considering nom the dimensions of the composite
operators yj yk, let us note that derivatives mith

respect to the temperature involve y insertions.
Therefore a relation between temperature and
correlation length will only exist if the pij. »
matrix has the vector 5» as eigenvector. In-
deed, the same equations [(39)-(40)] show that

(51)

2(n+2)
(n+8) (53)

Next, q, obtained from Eq. (42) as
U*' 17 5U'

q =——— 1+—k + + 6(~'), (54)
24 a 2 12 12

The left-hand side is at lowest order a parabola,
consequently

0 —U* —U, ~2&

where U, is the O(n)-symmetric solution, given at
this order by

with

(43) appears by inequality (51) to be positive. Its ex-
pression has a maximum for

—-2 = —6—U+E g+— (44)
Umk

= &-k4k +6(& ) (55)

which corresponds to a value n of n for the sym-
metric solution

Remark

The two exponents g and v are only functions of
the trace U . Therefore if we eliminate U* be-
tween their two expressions, we obtain a relation
valid for all fke fixed points, which takes the form

U,*(n „)=U*„,
with

n =4 —4k+6(k )

(56)

5e1+—x(1 —x) + 6(&')
12 6

where we have set

(45)

Therefore one has an upper bound on q:

56
q —7l~ =—1 +—+0(k') (58)

—2 = —EX

I et us stress that this relation (45) is valid for
Ising as mell as for Heisenberg systems" with or
mithout anisotropy. Its comparison with the re-
sults for g and v obtained from high-temperature
series in three dimensions is within the error bars.

B. Bounds on U*, q, and v

Let us first show that U is bounded. Equation
(41) summed on i =j implies, using Table I,

U U* 2& 5U

n —4 —4&,

(n+2) a 6(3n +14) 1
}krm( ) 2(n+8)a (n+8)k 4

~2
n &4 —4& g ——1+—

48 6

A simila, r result holds for (I/v —2), which is
essentially proportional to (- U ), so that

(5S)

For n —n, since U is always smaller than U,
*

and g is an increasing function of U for 0 —U*

—U ~, we obtain the following bounds:

Let us define (6o)

= 1
~fgkt 2 (5ij E+5k5fk 5(i $E 55/k)n+2

Now, if we write

(48)
VI. STABILITY CONDITIONS

An infrared stable fixed point corresponds to a
matrix B, defined by Eq. (20):
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~Pkjkl
+k jkr;&' j'k' l' ~$ 'f ' k' l', gruff

no restriction on the trace of u&jk, . let us study
the vicinity of u&&'» with

with eigenvalues of positive real part.
The trivial fixed point at the origin u&», =0 is al-

ways unstable.

A. Stability of the symmetric solution

Let us now explore the stability of the O(n)-sym-
metric fixed point

nf jkf U2 (n) Sffkl (81)

I
5Q~~ff =nW

& Q«kl = 0

Vkk 5tt~g jk = W5 jk+ Vjk

4s
~+ffkl +jjkl +l jkl

1= n)Sf»2 +fff»f + (f)kf 5„+5 terms),n+4 (88)

(vo}

ffffkf --
I U, (")+ff'] Sff»+fff'fkr

where u,», is traceless. Then one gets

(83)

where, taking into account one more order in & than
in Eq. (53),

~) 2(2 ~ 2) 2(2» ~ (4) 1) (,) ( )n+8 n+8 2

In order to linearize the functions P&», around the
fixed point, let us write

The linearization of P,», around this point leads to
a third eigenvalue (d in addition to ~ and ~ „,with

(d'= 8 —
z Vn +68n+336 +6 a

(rl)
The physics associated with ~ is a crossover
phenomenon from the totally symmetric situation
to a region where some components of the order
parameter become decoupled.

I ~ I
fI ftjkl + + +l jkl + anil +$jkl

where

(84)
B. Consequences of the existence of more than one fixed point

3(3n+ 14) p
(n 8)'
4-n 25n +14n+152
n+8 (n+8)

(85a)

(85b)

The linearized P matrix has thus two eigenvalues
which are co ' and ~ „.' Therefore, the sym-
metric solution is stable (with respect to any kind
of quartic interaction} if and only if

The O(n)-symmetric fixed point is always pres-
ent. Let us assume the existence of a second one.
We are going to show that this implies the existence
of a third infrared fixed point and to study globally,
at order E, the resulting situation.

Let u, jk, be a second fixed point of order a with
a trace

(&2)

(d&0 and ~ „&0
This gives the condition

n ~4 —2k+e(k')

(88) and let us study the renormalization-group equa-
tions for coupling constants being arbitrary linear
combination of the symmetric solution and of the
second one, i.e. ,

Colnvexsely, we shall show at first order in & thatfor
n smaller than 4 no other fixed point is stable:

Let u&jk, be an arbitrary fixed point and J3 the
corresponding matrix (20) of the derivatives of P.
The subspace spanned by the two vectors u, jk, and

Sgf kl is invariant under the matrix 8 which in this
subspace reduces to

u~jkl =~ U. S~jkl+Y ~~jkl ~

1 QX—& —= —X+X'+ (kk Xy
dX

(V4}

The central remark is that, at order k, Xdfff»f /dX
is also a linear combination of the same two quan-
tities. The equations are at lowest order in &

6 U-& (88) 1
dX.

= —y+y +Q gy1

where U 5» =u«». The stability of the fixed point
implies U" & k. Since we know that U*& U, (n), this
nonsymmetric fixed point cannot be stable if n is
such that U,*(n) & &. This means that no other sta-
ble fjxed point appears if n & 4+(S(k).

where

o, =2--U, = +6(k),1 g 12
n+8

o, = U*l~+e(k)
(V5)

Remark

Actually one can study the stability of the sym-
metric fixed point in a more general situation with

We see that, in addition to the initial fixed points
(x= 1,y =0) and (x=0,y =1), a third one is always
present:
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1 —Q2x—
1 —Qg Q2 1 —Q, Qa

The corresponding u, &» has a trace given by

u&grr
= & Q3 &lg

(78)

(77)

one reads the eigenvalues of the matrix 8 corre-
sponding to the fixed point i = 1, 2, or 3 in Eq. (68):
The stability of the ith point is equivalent to the
condition

(88)
with

2 —Qg —Q2
Q3 =

1 —Q) Q2

or, equivalently,

2 —(Qg+ Qg+ o3) + Q~ Q~ o3 = 0 (78)

Q] —0, i=1,2, 3, (8o)

Note that the relation between the fixed points u

and u * is reciprocal.
From inequalities (52) we obtain

The inequalities Q;+ Q& —2 show that there is at
most one stable fixed point. Furthermore, there
certainly exists a stable one: for instance, if Q,
and Q~ are smaller than 1, it is easy to verify that
o3 given by Eq. (78) is larger than l.

Thus, there is one and only one stable fixed point
among the three.

A nomalous dimensions

At this order, the critical exponent g is directly
related to the values of the Q, by the equation

q; =4S e'o;(2 —o;)+s(~') (84)

Qg+ &3 —2, Q~+ &3 —2 (81)

Stability condition

To study the stability condition in the space of
coupling constants spanned by these three points,

In addition, from the explicit expression (78), we
find

Qg+ Q3~2 (82)

Thus in the following considerations which depend
only on the values of the Q&'s, the three fixed points
play a completely symmetric role.

If, for instance, the third fixed point is the stable
one,

o, &I, o2&1, (2 —o3)&1

In the interval [0, 1], q(o) is monotonically increas-
ing and the largest g, corresponds to the largest of
the three numbers o, , oz, (2 —o,). Inequalities
(81) and (82) show that (2 —o~) is the largest one.
Therefore the stable fixed point has the largest q.

Trajectories in the plane of the three fixed points

It is easy to obtain the trajectories from Eq. (74).
Defining cr by y = ox, we find

y
1 do.—X —=(1 —o ) o(o —o )x(o)

dX
(88)

/
/

/
/

/.g(3)ii

/

/
/

/

I'IG. 1. Plane of the renorrnalized coupling constants.
The domain S of ultraviolet attraction of the origin is
below its boundary S. The fixed points (1), (2), and (3)
are on 5; (3) is the stable one. The domain Q', domain
of positivity of the bare interaction, is depicted by the
horizontal hatching. The vertical hatching shows S*,
domain of attraction of the infrared fixed point (3}.

with

1 —Q~
0'3 =— )] —Q2

C(c, r) = - j'do'
~

o' ~"" ~~&-'

x ~o' —oa~'~" &' 'sgn(o'(o' —a3)) .
(88)

0
~&yr r =xo Us ~&yar+3'ourgr r (87)

integration of the renormalization group equations
gives

Kith the help of these formulas, one can determine
the boundary g of S, domain of ultraviolet attrac-
tion of the origin. The result is depicted in Fig. 1.
The infrared domain of attraction of the nontrivial
fixed point 3 (chosen as the stable one) is limited by
@and x &0, y & 0, and is contained in the domainS'
of positivity of the bare interaction.

At this order, one can calculate the bare coupling
constant in terms of the renormalized ones: if
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~ l2
namely Pg g (pg .

At lowest nontrivial order the two P functions are

q+8 ~ q(p —1) z

(ol)

p = —Egg + Qgng+ [4+q(p —2)] ng .q+2 1 2
2 2 3 6

This leads to three different nontrivial fixed points
of order &'

(i) the O(n)-symmetric one:

(o2)

FIG. 2. Plane of the bare coupling constants. Q' and
are depicted with the conventions used in Fig. 1.

(ii) the decoupled one:
6&

Q1= ) @2=0q+8

(iii) a "mixed" one

aq(p —1)e

pq(q+8) -18(q-1) '

8(4- q)~
pq(q+ 8) —18(q -1)

(oa)

(o4)

0 ~ 1/ ~1-O1) 0 1/ (1-0'3)

x, (cr, 7) =x(o, ~)—
7 —0'3

yo(o, ~) = 7'xo(o, r)
(ss)

where the denominator is always positive when

Ppq —1 ~

The B matrix for an arbitrary fixed point is

This shows that the domain of attraction of the in-
frared fixed points in the plane (r, , yo) is smaller
than the domain Q', as depicted in Fig. 2.

This is, in some sense, a restriction to univer-
sality: the fixed points depend not only on the
number of components of the symmetry group of
the interaction, but also on the initial values of the
coupling constants. %hen they are not chosen in
the domain of attraction of the infrared fixed point,
one cannot obtain the behavior of the correlation
functions from perturbation theory.

C. Example

Finally, in order to illustrate the general fea-
tures discussed above, we shall study a case which
generalizes a model studied in Refs. 3 and 4.

The order parameters consist of p vectors, each
one having q components;

(ao)

It satisfies the trace condition

q+2 q(p- 1)
&1+

3 3
f42 (oo)

More generally it has only one quadratic invariant,

The interaction is

,(„)=~'(,f (P)', +PE)~ co nter te ms.
f~l f4j

—.+q u*,
+8
3

q(p -1),
Qg

q+2 ~ 1—e+ uf+ —[4+q(p —2)]up
3 ' 3

(o5)

(iii) The third one is stable in the complemen-
tary domain

4&n &4P

Notice that for any value of p and q, there is ef-
fectively one and only one stable fixed point (except
perhaps for the limiting cases n = 4 or q = 4).

At this order, the critical exponent g is related
directly to the trace U~, since from Eq. (54),

q=~[eU*- —.'(v')']+ e(~') . (oa)

The values for q are for the three fixed points, re-
spectively:

Ne are now in position to study the stability of the
three fixed points:

(i) The symmetric one is stable, at this order
in q, if and only if

n =Pq &4

in agreement with the general proof given above.
(ii) The decoupled one is stable when
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pg + 2
987m 2Q + 8)2

fdscouyled 2(~ + 8)2

qQ- i) [pq(q+2) - Soq+C6],
2[pq(q+ 8) —&6(q —S)]'

These values of g can be continued for arbitrary p
and q, which are not necessarily in the domain of
stability of the corresponding fixed points. As
shown above, for any value of p and q the stable
fixed point has the largest value for q.

This leads to the intriguing conjecture that the
stable fixed point could in general correspond to
the largest value of g.
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