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We consider a twoMimensional Ising model whose vertical interaction energies E,(j) between row j
and row j + 1 are allo~ed to be arbitrary for 1 ( j & n. This set of bonds is then repeated
indefinitely to make up an infinite lattice. For any set of the n energies E,(j) we show that the
specific heat has a logarithmic divergence as T T, and we derive an explicit formula for the
amplitude of Ql —T/T,

~
From. this result we demonstrate that if the Ez(jl are considered to be

independent random variables with a distribution function P(E,) which is not a 8 function, then, for
almost all lattices constructed from P(E,), the amplitude of the logarithmic singularity vanishes as
n

I. INTRODUCTION

Several years ago McCoy and Wu' (MW I) studied
the influence of frozen-in random impurities on
ferromagnetic phase transitions by introducing a
two-dimensional Ising model specified by the in-
teraction energy

SE

S=-Et+ Q rr, ,ktri, k, t
g"-1 jf %+1

%-1
Es( j)op p k+f+ Iy k (1.1)

1 jl= @+1

where Ea(j) are taken to be independent random
variables with the probability distribution function
P(Es), and the first (second) index on ti specifies
the row (column) of the lattice. It was found that
if P(Es) is sharply peaked then the specific heat
[which is the same for almost all lattices con-
structed from P(Es)] possesses [at least to leading
order in the width of P(Es)] an infinitely differen-
tiable essential singularity at the critical tempera-
ture T„where T, is determined as the solution of

J tfEsP(Es)»l tanhP. Esl = —2P. IEil (l. 2)

Later3 this behavior at T, was shown to hold for any
arbitrary P(Es) (not equal to a 5 function).

This very smooth behavior of the specific heat
near T, is qualitatively different from the behavior
of the specific heat of Onsager's lattice' [Es(j)= Es
independent of j], which near T, behaves as

c/k = —P, 2tr [Ei sinh2P+s+ 2EiEs

+Es»»2P. Et]lull -T/T. l+O(l), (1.3)
and because the difference between the impure and
the pure lattice is so striking, it seems worthwhile
to study the relation between these two extreme

cases in detail. To do this, we investigate in this
series of papers the properties of nth-order
layered Ising models which are specified by

n OR+1

Ei Q Q cJ keg k+t

y 1 jf -%+1

9R -1

Es(f)tr„...~.tr„„„t,,
)mo jati H %+1

(1.4)

Loosely speaking, this layered Ising model consists
of R strips, each one of which is made up of n

layers. The n constants Es(j) between the n layers
are chosen at will, but once they are specified the
basic strip is repeated 3R times, where the bonds
Es(n) of the nth row of one strip connect with the
first row of the next strip. We are of course in-
terested in the thermodynamic limit 3R- ~ and
X~~

In this paper we study the thermodynamics of
nth-order layered Ising models. In Sec. II we de-
rive a general formula for the free energy for ar-
bitrary n. This is, as expected, not a very trans-
parent formula and therefore in Sec. III we concen-
trate on that part of the specific heat that diverges
as T- T,. We find for any finite n and any set
(Es(j)] that when T- T,

c/k = —A(n; (Es)) lnl I —T/T,
l

+ 0(1), (1.5)

where A(n; [Es)) is explicitly given by (3. 11).
We find from this explicit expression that if n

is large then A(n; {Es))depends strongly on the
spacial arrangement of the energies Es(j) in the
sense that a mere permutation of the Es(j) can
cause A(n; (Es)) to vary from being on the order of
1 to being exponentially small in n. We conclude
by demonstrating that if the energies (Es] are
treated as independent random variables with the
probability distribution function P(Es) (not equal to
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a 5 function) then as n-~, A(n; {Ea})will vanish
for almost all lattices constructed from P(Ea).

and we have the recurrence relation for /» 1

II. FREE ENERGY

The lattice specified by (1.4) is taken to have
cyclic boundary conditions in the horizontal direc-
tion and free boundary conditions in the vertical
direction. Kith these boundary conditions the de-
rivation presented in MW I for the partition func-
tion of the random lattice specified by (1.1) may be
carried over word for word to the n-layer model
specified by (I..4). Calling Z„ the partition function
for the n-layer model we find

/n 45lER

Z„=(2coshpE&) &" ' ' II [coshEz(j)

D&tt& (8) D&n& (8)

where

() a +b a 1 0

a 1 O z,'(/g

a + b azz(/)

a z', (/)

with the initial condition

C'"'(8) = a + b

D& "&(8)= a.

(2. 8)

(2. 9)

(2. IOa)

(2. 1Ob)

xII(I1+z e'
I

" ' 'detC" (8)),

where+ is the product over

8 = &&(2/ —1)/2st, / = 1, 2, . . . , 2%

(2. I)

(2. 2) (2. 11)

We now make use of the periodicity of the zaa(/)

by iterating (2. 6) n —1 times. Therefore

C&n&(8) C&n&(8)

D&n& (8) D&tt& (8)
and we use the notation

z1= tanhpE1,

zz(j) = tanhPEa(j),

(2. Sa)

(2. n&)

-b ia
0 0

(2. 4a)

~(f/) ~(n) T
Cf, f+1 — Cf+1,f-~ z,(j) O

(2. 4b)

with p=(bT) . The 2(n5//+1)x2(n5t/+ I) matrix
C'"'(8) is defined by

ia

where

T(n) = A(n)A(n —1) ~ ~ A. (1) . (2. 12)

Note that T(n) depends on n only and not on /.
Therefore we may compute F„by precisely the
same method used for the case n=1.

Let the two eigenvectors of T(n) be v„and v„' and
let the corresponding eigenvatues be A.„and X„',
where we define I &(„I —I &(„&I. In general, since T(n)
is not Hermitian, v„and v„' will not be orthogonal.
%e use the normalization condition

with all other Cf"f, zero. Here we use the further
notation

v'„=[v„' —(v„v„')v„]'= 1 .
Then for any vector v

(2. 13}

I+z&e'
I

b=(1 —zz&)l I+z&e"
I

'

The free energy per spin F„ is then given by

—PE„= lim [45/(ns&/+ 1)] lnZ„

(2. 5a)

(2. 5b)

T~(n}v 0 = g~(v a ~ v„)v„+v ' ~ [v' —(v„~ v„')v„]

x [p 'a&&v„' —(v„~ v„') &&~ v„] . (2. 14)

Moreover, the eigenvalue A is explicitly obtained
in terms of T(n} as

n

=in(2coshPE&)+n g lncoshEa(/)

~ (e ) 'f ne(t (t ~ *,e'
(

~ i ()nett+t) 'tnnetC'"'(e)). (2. 6)

detC'"&(8) = C& "& „(8) (2. 7)

Following MV I we define C', "' to be the deter-
minant of the 2lx 2l matrix whose nonzero elements
are given by (2. 4) and define iD&&") to be the (2/ —1)
x (2/ —1) determinant obtained from C&P& by omitting
the last row and column. Then

&(„=—,'(TrT(n)+([TrT(n)] —4detT(n)}'& ). (2. 15)

Substituting (2. 1), (2. 14}, and (2. 15) into (2. 6)
with vo given by (2. 10) we obtain the explicit result

—PF„= ln(2 coshPE, )+n

xg tncoenitn (t) ~ (e n)'f ee
j~1

xln[ I1+z, e'
I

(TrT(n)

+([TrT(n)] -4 detT(n)}" )] . (2. 16)

The quantity detT(n) is easily evaluated from
(2. 9) and (2. 12) as
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detT(n) =]I detA(f) = b~]I][zz(l) . (2. 17)

The only difficulty in explicitly evaluating (2. 16),

therefore, lies in the evaluation of TrT(n). For
small values of n the trace may readily be com-
puted and we find

4

T &( «)= (
' ~ )«' ~ (

' ~ «')' ' Z l(() ~ (
' ~ «') '2 «'())*'() ~ ') ~ '

TrT(1) = a'+ b'+z', (I), (2. 18a)

TrT(2) = (a + b ) +a [zz(1)+z2(2)]+zz(1)zz(2), (2. 18b}

TrT(3) = (a + b )3+ (a + b ) a [zz(1)+zz(2)+zz(3)]+a [zz(1)zz(2)+zz(2)zz(3)+zz(3)z«(1)]+z2(I)zz(2)zz(3) )

(2. 18c)

x P zz(l)zz(l+1)zz(l+2)+] ] zz(E)+a [zz(2}zz(4)+zz(1)zz(3)] . (2. 18d)

In (2. 18d) recall that zz(f+ n) =zz(l).
When a=0

n

TrT(n}= b~(0)+Q z (I)
la'„

= [(1 —z,)/(I+z, )] +] ] zz(l). (2. 18)

T„(n)= (a'+ b')" + a' Q (a'+ b')" '
m=0

i=2+m 5=0

(3. 2a)

Therefore at a =0 the argument of the square root
in (2. 16) is

n-2

()= (('+b')"' 2(' ~ «')"'
m=0

(
n )2

b (0)-g', (I)
~

. (2. 2o)
(3. 2b)

The vanishing of this expression is the condition
for T=T,

When E, and all Ez(j) are non-negative, it may
be verified that if (2. M) does not vanish then the
a,rgument of the square root in (2. 16) never
vanishes for 0 —8 —2m. Therefore we conclude
that if T~ T„ then I„is an analytic function of T
for all positive T.

III. SINGULARITY IN THE SPECIFIC HEAT AS T~ T,

T,z(n) =a+ (a + b')" 'g zz(j),

T„()=g",(I) .'P (" b')"'-
m~0

m m+1

xP Qz,'(,

(3. 2c)

(3. 2d)

The free energies obtained by substituting (2. 17)
and (2. 18) into (2. 16), while explicit, are awkward
to handle and, moreover, as n increases they be-
come increasingly cumbersome. Therefore, we
will restrict our attention to that term in the spe-
cific heat which diverges as T- T,. For this pur-
pose we only need to keep terms in TrT(n) which
are either quadratic in a or independent of a as
a-0 [we restrict our attention to the ferromagnetic
case E, 0, E,(j)~0].

We may easily compute TrT(n) correct to order
a if we note that the following expressions for
T;&(n) satisfy the recursion relation

(3.1)
a zz(n+ 1)

to order a and reduce correctly to A(I) when n = 1:

l~0 (~1

where by definition zz( —I) =zz(n —I). Thus we ob-
tain to order a

n

TrT(n) = (a'+ b')" +g z',(l)+a'
l-"1

ff-2

xQ (a'+b')" ' Q D,z,'(I+j). (3. 3)
m=o l =1 )=0

Note in particular that (3.3) reduces, correct to
order a, to (2. 18) when n= 1, 2, 3, or 4.

Call c„' ' that part of the specific heat (at zero
magnetic field) which diverges as T T,. Then, -
defining+ to mean that the terms which diverges as
T- T, are the same on both sides, we substitute
(2. 17) and (3. 3) into (2. 16) to find
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c(S ) 82 g2
=:P, a ( —PE„)=:(4zn) 'P, a d Inb

X 1+ —1 —
~

gP l +gA2

where
(s.4)

There are several special cases of (3. 12) which
should be noted:

If n= 1, then B(1)=1 and, calling Ea(1)=Ea, we
have

z ac){Ea+ Ea [zac —zac]]

= P a 2z {Easinh2P, Ea+ 2EaEa

+Easinh2p, E&], (3 13)

(', ;,*") =ll*:.(n (s. 6)

has been used. The first term in the argument of
the square root in (3.4) may be expanded near T, as

( 11 (,
"*')' .;())

n-1 n

=4 l.(I -'.)'2 2
c) 0 (=1 /0 k 1cj (3 6)

where the subscript c means T = T, and in the last
line of (3.5) the T, condition

Ba(n) = n (3. 14)

and A(n; {Ea])reduces to the right-hand side of
(3. 13) independent of n.

If n=2,

B (2) = [z,(1)z,(2)] [z,(1)+za, (2)]

= (I+za, ) (1 —zoic) [za,(l)+za (2)]

A(2) Ea(1)) Ea(2)) = Pc(8)/) (I —za ) zt

X [za,(1)+zac(2)] {4E& Ea(1)

[zac(1) —za, (1)1+Ea(2) [za.'(2) —za, (2)]]a .

(s. is)

which agrees with Onsager's result (1.3). Similar-
ly, if Ea(j) =Ea for all j, then

n

—2(c —c)I2"z +I ca(l)(* ()) —ga (l))
2~1

= —2(P —P,)Ar,

where the last line defines A1. Therefore
(S) g2 I

=: (47/n) P, a d& ln

(3.7)

(s. i6)
In particular we note that as z= Ea(1)/Ea(2) -0

A(2; Ea(1), Ea(2))- P, )/ sinh2P, Ea

X (2E~+ Ea„sinh4P, E&+ 2x ' e~cza"'")a,

(3. IV)
where E2„ is determined from p, and E1 by

sinh2P, Ea„——1/sinh4P, Ea . (3. ie)
x {I+ [(p p )aAa eaAa ]1/a)

=:(2wc-'c'. —'J cs(c-c)~l

x{(p p )aAa eaAa]-1/a

As P Pc

f c
dg [(P P )aAa gaAa ]-1/a

=A in~ P-P, ~+O(i).

(3.8)

(s. 9)

A much more interesting special case is obtained
if we consider n to be even and let an of the Ea(j)
take on the value E'a ' while the other an Ea(j) have
the value Ea(a). The amplitude A(n; {Ea})will still
depend on the spacial arrangement of E2 ' and E2 '.
To illustrate the possibilities we consider the fol-
lowing two extreme cases:

(s. io)

Thus we have the desired result that as T- T,

c„/&= -A(/a; {Ea))ln~ I - T/Tc~ +0(1),

E,(2l) = E,'"
E,(2l —1)= E,'", 1~ l» an—(S. 19a)

with (3. 11)

where

A(n; {E])=aP, (27/n) 'Ag Aa'

= P', (4)/n) '(z, ', -
)~ z2nEg Q+Ea(l)

2

x [z,,'(I) —za, (l)] B '()a; {Ea]),

Ea(l) =Ea", i ~ l» ,'n-
Ea(l) = Ea ), —,'n+ 1 —l —n.

(S. 19b)

Case (i) is, of course, the same as the case n= 2
considered above and it is easily verified that when
(3. 19a) holds (3. 11) reduces to (3. 16).

Case (ii) is, however, drastically different. If
we call

(1 ) (I — ) ' ' = '"/z'@=c

then a bit of algebra shows that

n1 n m
1 2&(;&E ))=I; +II() ") 1() /) . *~

m~0 3~ 1 )=0 (3. 12)

(s. 2o)
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1.0 IV. n-+" RANDOM LIMIT
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The most interesting aspect of the amplitude
(3. 11) is its behavior when n-~ and the E2( j) are
treated as independent random variables with the
probability distribution P(E2). To examine the be-
havior of A(n; {E2))we first study the behavior of

(8; {E2))by using the Tn condition (3. 6) to wzite

~) =2 r ( II ". '""'"'( + }
l

78=0 A+1 ga1

0.2 (4. 1)

0.1

0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1.0
X

FIG. 1. Plot of the ratio R(n E ') E2 )) =A(~; E&'),

E2 )/A(1; E), E)) for fixed E) and p and for n=2, 4, 10,
50, and 100 as a function of x=E2')/E2, where the
spacial configuration of bonds is that of case (ii) of the
text.

We now consider A(n; {E2))and hence 8 (n; {E2])
as functions of the n+1 variables E1 and {E2].
Only n of these energies are independent because
T, is fixed. Therefore we will consider the E2(j)
as independent and E1 as the dependent variable.
Then, since (4. 1) does not contain E1, we may
average each E2(j) independently over P(E2) and
obtain

8'( )=(rr()(r' ~ () ~ r( ) (r"' ' —()

~1 2
-1 +

(
-(n/2-1) I ) (3. 21)

(E2( )) ~ (&2(1-(m+1)/n))m+1
Pl g Pl ~ 2 g2

~(fbi+ 1)

/~gaff

-fft-1
X qg2 rg2

Furthermore, we write the summand as

(4. 2)

Thus for case (ii)
( 2(1-(mr1)/n])m+1( N(m+1)/n)n~-1 qn( ) (4 3)

where, calling
A = Pn(4)/) ')1(ain -21n) {2E1+E2" csch2P, E2"

+E2) cschP, E2)j 8 (n). (3. 22)

2Z2=X (4. 4a)

If E21' =E2( ), then (3. 22) reduces to (3. 13); if n=2,
then (3. 22) reduces to (3. 16); and if n = 4,

)({2E1+E ' csch2P, E '+E( ' csch2P, E2 ) .
(3. 23)

In Fig. 1 we plot for case (ii) the ratio

R(n; E ' E ')=A(n; E ' E ')/A(n E1 E1)
(3. 24)

as a, function of x = E2 '/E22) for E1 and P, fixed and
various values of n.

When n-~ and 2o 1, (3. 21) and (3. 22) show that
the coefficient of —ln I 1 —T/T, I va.nishes exponen-
tially rapidly. The physical reason for the vanish-
ing of this amplitude must be related to the fact
that locally (i. e. , in the interior of the strips which
have n/2 bonds of strength E2" or E2( )) the lattice
is not at T,. It is only globally that the lattice is
at T,. As n lets larger and larger, the local effect
tends to dominate more and more over the global
effect and hence the singularity in the specific heat
is increasingly depressed.

dE, P(E,) = d~p() ),
q( ) [f d) p(Z)Z1-(mr 1) /n](m+1) /n

)& [f d) p() ))„-(mru/n]l-(m+1) /n
0

(4. 4b)

(4. 6)

Then if we use Holders inequality (for positive f
and g)

f d/(f(X)g(X) —[f deaf~(/()]1/ [f dZg'()()]1',

(4. 6)with

1 m+1 1 n —m —1

P n '
q n

g'(x) = p(~)) -'"
we find that

q(m, n)

(4. Vb)

(4. 6)

Moreover, if we consider terms in the sum (4. 2)
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where m/n approaches a limit different from 0 or
1 as n ~ and if p(X) is not a 5 function then

n» N'. (4. 14)

limp(m, n)& 1.
5~ o

(4. e)

P(X) = N);"~"-'

was considered and

N»1.
For (4. 10)

ff 1
N ~+[

(B (n)) =n
X+ n-m-1 n

(4. 10)

(4. 11)

Therefore we conclude that if P(Ez) is not a 5 func-
tion then (B (n})z diverges exponentially rapidly

2
as n-~.

Since n (B (n))z -~ as n-~, we know that, for
at least a finite fraction of the lattices constructed
with P(Ez), A(n, {Ez]) 0. But we recall that in
the random limit the specific heat is the same for
almost all sets (Ezf. Therefore we conclude that
for almost all sets (Ez), limA(n, (Ez)) = 0.

We may now make contact with the work of MW I.
In that paper the distribution

N'= O(1), (4. 16)

the results of MW I are applicable and we observe
a smooth specific heat.

(iii) Finally, where T —T, becomes so small that

Since N is the width of the distribution function
P(X), (4. 13) says that for n (Bz(n))z to be large
[and hence for A(n; {Ez])to be small], the width of
the strip (n) must be much larger than the mean-
square fluctuation of the bond strengths. For n

much smaller than (4. 14) the lattice behaves essen-
tially as though it were pure.

When both (4. 14) and (4. 11) hold, there are three
temperature scales:

(i) When

(4. 15)

then the work of MW I implies that the specific
heat deviates only to order N ' from a pure lattice.
For this temperature range we observe a logarith-
mic divergence in the specific heat with the ampli-
tude given by (1.3).

(ii) When

N qn~1
N (m+ 1)/n j- (4. 12} -A (n; JEST])ln

l
1 —T/T,

l
» ln N (4. 1'7)

The largest term in the sum is at m = &n —1.
Therefore

n[1 —(2N) ] "'z&(B (n)) &n [1 —(2N) ]"'
(4»)

so, in order for (B (n))z to be much larger than
n we need

a logarithmic divergence in the specific heat is
again observed but now its amplitude is given by
(3. 11), which is very much smaller than the On-
sager amplitude (1.3). Only in this third tempera-
ture scale will the geometrical arrangement of the
bonds have any appreciable effect on the specific
heat.
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