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%e derive a general microscopic expression for the photoassisted-field-emission current
and the energy distribution curve (EDC) with the help of a nonequilibrium perturbation
formalism. It is shown that, in spite of the irreversible nature of the (unperturbed) field-
emission system, the EDC at energies above the Fermi level of the emitter is given by the
same formal expression as in the pure photoemission case. This EDC is calculated in the
simple case of a semi-infinite free-electron emitter. These results are used to discuss
what information could be obtained from photoassisted-field-emission experiments con-
cerning the shape of the surface potential and the electronic properties of the cathode.

I. INTRODUCTION

Photoemission (PE) and field emission (FE) have
been recently the subject of much interest from
both the experimental and the theoretical points of
view. Developments in these two fields have been
made possible by the considerable improvement
of vacuum technology and of the quality of electron
detectors. These two types of experiments share
one essential feature —they measure currents that
are extracted Out of a solid, i.e. , currents made up
of electrons all of which have crossed the surface
region. They are therefore good tools for probing
surface properties of solids, e.g. , work functions,
surface states, adsorbed states, etc. Moreover,
from the energy distribution curves (EDC), one
also extracts information about the density of bulk
electron states in the emitter. %hile field emis-
sion is due to electrons below the Fermi level p,

'
and therefore probes the corresponding energy
range, photoemission contains information about
both the initial and final states of the photon ab-
sorption process. That is, it explores the two
ranges e & p, , since the initial state must be oc-
cupied, and e & E (where E is the vacuum energy),
since the final state must extend to infinity in the
vacuum region in order for the corresponding
electron to contribute to the photocurrent.

One is therefore left with an energy gap p. & ~ & E
of width Q=E —p, (Q is the work function of the
material) typically of the order of a few eV, which
neither photoemission nor field emission can
probe. It is possible to reduce this gap, namely
to lower the work function, by cesiating the emit-
ting solid. However, on the one hand, Q cannot
be lowered by more than about 2 eV; on the other
hand, the surface states of the emitter are cer-
tainly modified by the presence of the Cs layer.

One is therefore led to the natural idea of com-
bining photoemission and field emission into

photoassisted field emission' (PFE): a metal tip
is illuminated with light of frequency 0, the photo-
excited electrons then give rise to a field-emis-
sion current in the energy range c & p, + Q.' Such
experiments have recently been realized on tung-
sten' ' in which both the total PFE current and
its energy distribution are measured. These ex-
periments have been interpreted on the basis of
the three-step model of photoemission, which as-
sumes that the current is the result of three in-
dependent (i.e., multiplicative) processes: optical
absorption, propagation of the excited electron to
the surface, and transmission into vacuum. %hen
this model is applied to PFE, the static electric
field is taken into account only in the last step,
in which the transmission coefficient through the
emission barrier is expressed by means of a
Miller-Good- (or Nordheim-) type of formula.

Such an interpretation, although widely used to
interpret photoemission data, has been proved
recently, ' ' on the basis of first-principles calcu-
lation of the PE current, to have at most a quali-
tative value. Indeed, this appears when the photo-
current is correctly expressed as the (quadratic)
response to the electromagn, etic field. In PFE,
the situation is complicated further, and the
quadratic-response formalism must be extended
to take into account the fact that the system in
the absence of the optical field is out of equilibrium.

In Sec. II we derive the general expression for
the energy distribution curve (EDC) of the elastic
PFE current above the Fermi level, and discuss
in detail the formal implications of the detailed
balance of the charge distribution. In Sec. III we
apply these results to the very simple case of a
semi-infinite free-electron gas emitter and nor-
mally incident light. We obtain an expression of
the elastic EDC which is valid whatever the pre-
cise shape of the surface barrier. The influence
of this shape appears in the result only through a
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single (energy-dependent) parameter which char-
acterizes the reflectivity of the barrier. Finally,
in Sec. IV we discuss briefly what kind of infor-
mation one can reasonably hope to extract from
PFE experiments in practical situations, in which
one must take into account further complications
due to the lattice structure and the various inter-
action effects.

II. FORMAL EXPRESSION OF THE CURRENT

spin directions) by

eh - - )e'A(r, f)j(rt) =2h —(v- —v-)+
2m ' ' me

x G'„, (r t, r 9}

G'...(rt, r't') =i(@~(r 't')4(rt))

(2 4)

(2.5)

Let us consider a semi-infinite metal at zero
temperature, extending in the region g & 0, with
a perfectly plane surface at x=0, in the presence
of a strong dc electric field Z normal to the sur-
face. Z is zero in the metal (its penetration is
negligible) and uniform in the vacuum region
(x & 0). Let H0 be the Hamiltonian of this system;
we assume it to be an independent-electron Hamil-
tonian. This means that we neglect, in a first
stage, interactions inside the metal (their influ-
ence will be discussed in Sec. IV) and that we de-
scribe the interaction between an electron in the
vacuum and the metal by a one-electron potential
v(x)." The simplest expression of v(x) is the
image potential one, v(x) =-e'/4x; one can also
use one of its various improved forms. " In the
vacuum region, the electron is therefore sub-
mitted to the total potential

V(x) = E -e8x+ v(x), (2.1)

H~ = d3x+t rt

x ' r( 0 ~ 0 ~ +[7T(, 0j')e(rt)

(2 3)

where +~(rt) [4'(rf)] are the electron creation
[destruction] operators.

The total current density is given (for the two

where E = p, + &Ii) is the vacuum level. This potential
has a barrier shape, its maximum value decreases
when 8 increases (Schottky effect}.

This system is submitted to an electromagnetic
field deriving from the vector potential

A(r, t) =ya(x) cosQ[), (2.2)

i.e., we choose the gauge so that the scalar po-
tential is zero, and we assume the field to be
monochromatic, linearly polarized along direction
y parallel to the surface, and at normal incidence. "
a(x) is oscillating in the vacuum (x & 0) and de-
creases on a penetration depth 6 in the solid
(x & 0).

The coupling between the ae field and the elec-
trons is described by the Hamiltonian

g+ g+ g&&&+ + g&2)+ +, , ~ (2 6)

But, contrary to what happens in ordinary photo-
emission, the unperturbed system to which the
perturbation H, is applied is out of equilibrium.
Indeed, due to the presence of the dc field, Hp

describes a field-emission system with a finite
stationary current flow. Therefore, the zeroth-
order system must be described within the frame
of Keldysh's formalism (this has been done in
Ref. 13), which must naturally also be used to
perform the expansion (2.6).

Making use of Eqs. (2.6) and (2.4) we can also
express the current as a power series in A:

«j(rt) —«j(0) (F f) + j (1) (r« f}+j (0)(«rt) +. . . (2.7}

The zeroth-order term j'" is the field-emission
current flowing in the g direction, which has been
calculated in Ref. 13. Note that j ' ' is a dc current
and that its energy distribution is entirely con-
centrated in the range 0) & g. (This comes from
the fact that, in our independent-electron model,
there exists no physical process that can provide
energy to excite electrons into states above the
Fermi level of the cathode. "

The first-order term j'" is the conductivity
current of the field-emission system, it is there-
fore an ac current at the finite frequency Q.
Photo(assisted)-emission experiments only mea-
sure the dc part of j„sothat j'" does not con-
tribute to the assisted photoeurrent.

The second-order term j'" contains two parts:
(i) the "gauge current" AG""(rt, rt), which does
not contribute to the PFE current, since it is
parallel to the surface"; (ii} the only remaining
term is simply

J(r, t) = (v; —v-, )G'"'(rt, r'f) . (2.8)
m

is a Green's function of the complete system, i.e. ,
in the presence of both the ac and dc fields. Gt„
may be expanded in powers of the small-coupling
Hamiltonian H, and, following what is done in
photoemission, ' the terms in the resulting per-
turbation expansion are then classified and ordered
into a power series in A, which reads
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In order to simplify the following calculations,
we shall assume the solid to have complete trans-
lational invariance in the yz plane. This con-
dition —which is assumed to hold in most treat-
ments of fieM emission —can be released without

difficulty and periodicity effects can be included

in the following formal calculation. However,
taking them into account brings in such consider-
able algebraic complications (even in zeroth order,
i.e. , in the pure field-emission case) that it only

seems possible to discuss their effects quali-
tatively on the basis of the results obtained in the
simple case studied hereafter.

Then, the total photoassisted dc current flowing

out of the surface has the same formal expression
as in photoemission:

J,= dco4, (u,

where the EDC is given by

8,((u}=- i'q e@'
2w (2v)' m 8»' 8»

(2.9)

with

x exp[iq (p —p') —i&a(t t')]-
and p is a vector of the yz plane.

The formal Keldysh perturbation expansion
which gives G''" in terms of the zeroth-order
Green's matrix G then proceeds exactly as in the
photoemission case, i.e., we get [see Eq. (10) of
Ref. 9, hereafter referred to as paper I]

22
' 4mc2

2 2 2

+ Xg dX2 Q Xg 0 X2 Gq& XXg 0'g Gq &+(], XgX2 +
q ~ P X&X2 ~ Tf~ 2X

4m2C2

where the notations are those of paper I, i.e.,

G= -, and g, =

and (+ -) means the first-line, second-column
term of the matrix product.

The first term of the right-hand side of Eq.
(2.10) comes from the diamagnetic part of the
electromagnetic perturbation acting to first order.

We will show now that this term (which is zero
in the PE case) is finite, due to presence of the
finite FE current in the unperturbed system. In-
deed, it is proportional to

G"- (xx,)G-'„(x,x')+ G'- (xx,)Ga (x,x') . (2.11)

Here, as in the PE case, the zeroth-order elec-
tron occupation propagators G' are strictly zero
for cu & jtt. . This means that, as we have pointed

out above, the field-emission current is dis-
tributed only in the & & p, energy range.

On the other hand, the current is measured at
infinity from the sample, i.e. , the relevant x and

x' in (2.10)-+~. In PE, the advanced and re-
tarded propagators G' and G" in (2.11), as well as
the G', are then zero for &u & tt (in other words,
electrons at energies below the vacuum level can-
not escape from the solid). Here, on the contrary,
lim„„G- (x,x) e0 for &u& tt. Indeed, due to the
presence of the FE current an electron in any

occupied level has a finite [although exponentially
decreasing with decreasing ~ -e,(= ~ —h'q'/2m)]
probability of tunneling from the solid into the
vacuum.

Therefore the corresponding "diamagnetic" cur-

rentt

is now finite, but its EDC is cone entrated
below the Fermi level. Thus it simply gives a
small correction [-A'j '"(~)] to the field emission
EDC j '"((u).

It does not seem of much interest to study PFE
in that energy range (&u & p. ) which is already ex-
plored (much more easily} by FE. Consequently

we witt specialize from now on to the region v& tt,
and we can ignore the diamagnetic contribution.

We are then left with

1 f' d'q 1 ekq, &eh' 2 2

x (G„-„(x, ,)8,[G-„ „,„(x„x,) + G-, „(x„x,)]o,G- (x„ ')]"-'
x'=x(=~)

(2.12)
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Developing the matrix product, and taking into account that, for ~ & p,

G&q (x, x') =Gii „,„(x,x') =0,

me obtain

g„((o) =— 2,4,—— dx, dx, a(x,)a(x, )Gg (x, x,)G, „(x„x,)G'-, (x,x')
2x 2« ' 4 mc m 8«' Bx x' =x(=~)

(2.13)

Equation (2.13) means that the EDC 4,(ur) is due to
electrons which were occupying states of energy
&v —0 in the unperturbed system (factor G~ „)
and have been optically excited to the final level
&u (factor G"- G) ). Since G-' „~8(p—&v+0),
J,(&u) is limited, as it should be, to the region
+ & p. +Q. This expression is formally identical
to the PE one [Eq. (14) of paper Ij, but here the
G's are those of the field-emission situation. They
must be calculated by the method developed in
Ref. 13 and this will be done in detail for a spe-
cific model in the next section.

Before going into such explicit calculations one
question must be raised: when writing down Eqs.
(2.9), (2.12), and (2.13), we have implicitly taken
for granted that the EDC g„(&u) is independent of

the position of the point z where it is measured.
This point is of course assumed, as in plain photo-
emission, to be infinitely far from the sample
(x =+ ) in order for the collecting apparatus not
to perturb the system under study.

This assumes that the quantity J,(u&, x) of Eq.
(2.13), when first calculated for finite x, has a
we11-defined limit when x -~. In order to check
whether this is the case, let us calculate V J(&u,x)
= W,(~, x)/ax. Making use of Eq. (2.13) and of the
equation of motion of the G'" 's,

~-.-, + „,—V(x) G-,'.(x, x')=6(x-x'),

(2.14)
we get

(}g ((g, «) a(x) d'q eh 2 ekq„' ~1 2m
dx, a(x,) [G'-, „(x,x)G& (xx,) —G~ „(xx,)G~ (x,x)j . (2.15)

2% $2w m mc

On the other hand, we can define (to the same order in A) the electromagnetic power absorbed per unit

volume of the system at point x, as

P(x) =(E Z'")

where E =-(I/c) 8A/8t, J '"(r, f) is the conductivity current (i.e., is given by a first-order response
expression) and () indicates time averaging. We thus obtain

P =SQ

q((u, x)= 2",2, 2
' dx,a(x,)[G-, „(xx,)&,Gq (x,x)-G; (xx,)8,Gq „„(x,x)j" '. (2.16)

For (d & p, , this expression reduces to

y((o, x) =
2 2, 2

" dx,a(x, )[G&~ „(xx,)G)„(x,x)- Gg (xx, )G&q o(x,x)j.a(x) d'q 1 egq„ (2.17)

It is clear from Eqs. (2.16) and (2.17) that q (&u, x)
x

duddy

can be interpreted to be the Qux of elec-
trons Qowing per unit time into the energy range
(&u, &u+de) in the volume element (x, x+dx), due
to optical transitions e —0 —m, each of which is
associated with an energy absorption kQ.

Comparing Eqs. (2.15) and (2.17) we see that

v 3((u, x)+ey(&u, x) =0 (2.18)

(this relation can be shown to hold as well for
&u & p). Relation (2.18) simply expresses that the
local energy distribution of particles N(m, x) obeys
a detailed balance principle, even in the presence
of the field-emission current.
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It is obvious from Eq. (2.18) that 24(v, x)/8x is
nonzero in any region of space where the density
of electrons at energy ~-II (and thus the optical
transition probability) of the unperturbed system
is nonzero. In the PE situation, there are no
electrons at infinity in the vacuum [lim„„G' o(xx, )
= 0] so that lim, „BJ(e,x)/8x= 0, and the photo-
current lim, „8(&u, x) is uniquely defined. The
situation is different in PFE: indeed, an electron
density exists even at infinity in the vacuum, due

to the presence of the field-emission current.
This means that 88(&u, x)/8x is nonzero, even for
x-~, so that one cannot, in principle, uniquely
define a PFE current.

This result appears of course to be somewhat
paradoxical. There are in fact two ways of avoid-
ing the difficulty.
(i) The "practical" one: one calculates explicitly
4(&u, x) from Eq. (2.13) for a specific model (e.g. ,
the one of Sec. III). One then finds that, for x-~,
8„(e,x) -4,(co)+f„,(x'+), where the oscillating
function f, has an amplitude -j '"(&o)A' and its
local "wavelength" goes to zero when x-~."
Since, in a real experiment the collector (and the
emitting surface) are not ideal planes, there is a
finite uncertainty nx on the measuring point, and
the oscillating term in J(ra, x) averages to zero,
and it is in practice the average value 4(&o) which
is detected.
(ii) The "conceptual" one: in the PFE situation,
the "system" which is submitted to the perturba-
tion extends wherever there is a finite electron
density, i.e., up to the collector of the field-
emission current. Quite obviously, in order for
the measured (PFE) current to characterize the
response of the whole system under study, the
measuring apparatus (PFE collector) must be out-
side of this system. Conceptually, this can be
realized in the following setup: the FE collecting
filter is at x=X„ the PFE one at x=X, +X„with
very large X, and X, (note that this device is pos-
sible because we are only interested in the PFE
current energy distribution above g). Then

y(u&, X, +X,) in Eq. (2.18) is zero, and 4,(+) is
uniquely defined.

In practical calculations, one must therefore
use the following recipe (which we apply in the
next section): make x& x, and x, in Eq. (2.13) (even
when x, and x, -~).

V(x) = 0]. However, we do not make any assump-
tion about the detailed shape of the surface bar-
rier. Note that the interaction potential between
an electron in vacuum and the metal v(x) goes to
zero when x-~, so that

V(x) ~ E —egx

f2 d2
EU —f. +

2m dx'
—V(x) y"- (x) =0

q4) (3.la)

(
S2 d2

(d 6 +
2m dx

—V(x) tj'- =o'
4J (3.1b)

(ii) g "-„(x)behaves as a pure outgoing wave to-
wards positive x when x-+~. y"- (x) is a pure
outgoing wave towards negative x when x--~.
Then one may write

2m q'; (x,)yg (x,)

(3.2)

In the metal region (x & 0) we can take

yq (x)=e '", (3.3)

met. al

]I Y(xI

VSCUUN

independently of the approximation one may choose
for v(x).

V(x) is represented schematically in Fig. 1. We
now have to calculate the G's of the field-emission
system which appear in Eq. (2.13).

G' and G" are simply dynamical functions which
do not contain any information about the thermo-
dynamics of the system. They can therefore be
calculated by solving the equation of motion (2.14),
subject to the boundary condition that GP (G"-„)
be analytical in the lower (upper) half &u plane.

I et us define two functions g g (x) and y~ by
the following conditions:
(i) they are solutions of the Schrodinger equation
of our system

III. PFE FROM A FREE-ELECTRON METAL

As stated in Sec. II, we restrict our calcu-
lation of the EDC to the region &o & p, , where 8,(u&)

is given by Eq. (2.13). We assume that the emit-
ting metal is a semi-infinite free-electron gas
extending in the region x & 0 [where the potential

FIG. 1. Schematic representation of the potential bar-
rier.
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where

« -=«(q, ~) = [(2m/«')(~- ~-,)]'" (3.3)

and we define g" by its asymptotic behavior at
infinity in the vacuum, namely

2m 6( —,)
S2

x exp —,(x- x,)', (3 4)2i 2me8

where x, = [E- (&u —a-„)]/eg.
We now define the transmission and reflexion

coefficients (at transverse energy &o-e„-) by

2i«g& (0)
i«y g~(0) + ii({"(0)

(3.5)

%'e can then write explicitly 6" as

G"- (» x') = . (e'"&-it", e '"&)e '~*& for x and x'&0k' 2'
2m Pq~ (4@i lpffll(x) f I
52 2i«gf~(0)
2mT" & x,
g' 2i«& ' y~(0)

& y& (x,) ~ ' for x and x'& 0. (3.6)

and G; is given by the same expressions with sub-
script a substituted for r.

These expressions for the dynamical functions G'
and G" are independent of the thermodynamic state
of the system, and all the statistical information
in Eq. (2.13) about the departure from equilibrium
is contained in the electron occupation propagator
G& „(x„x,). This propagator we calculate with

the help of the method that we have developed in
Ref. 17 (see also Refs. 13 and 18). Let us simply
recall here that in this method one expresses the
properties of the current-carrying system in
terms of those of two semi-infinite media, most
naturally identified here with the metal electrode
(x & 0) and the vacuum (x& 0). Each of these media
is separately at equilibrium, with chemical po-
tentials p (for the metal) and -~ (for the vacuum).

Using the kind of algebraic manipulation of Ref.
17, and reexpressing the expressions thus ob-
tained for G+ in terms of G' and G", we obtain"

G~q (x„x,) = 8(-x,)G& (x„x,) —8(-x,)Gq (x„x,)

+2 [Gg (x„0)Gf„(0,», )

—Gg(»„0)GP.(0, x,)], (3.V)

where

G';".(»„0)=—G&.(x„x)r
x=o

= ae"'
7

x& 0. (3.8)

Making use of Eqs. (2.13) and (3.6)-(3.8) and

taking advantage of the fact that

t
oo k2
qg .(x)yg (x)dx=2

(

4'$~'Vg(u 0 fiv'%ting)

(3.9)

we obtain for the photoassisted EDC above the
metal Fermi level

Note that expression (3.7) is valid whatever the
shape of the one-dimensional potential V(x), pro-
vided that the electron occupation propagator
g„' of the right-hand (x & 0) semi-infinite isolated
subsystem is strictly zero at all values of the
energy.

Finally, neglecting the (optical) wavelength of
the electromagnetic field, we take

a(») =a=constant, x& 0

&,((u)=2 8(p, +Q-(u), 8((u —0- e-)
2w

1
4««6- («-«) 6- -i(«+«) «-««+«
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with s)' -=~ —Q and k' =- k(q, a) ') = [(2m/k')
x,(~-fi —«i,)]

We can first remark that, when 6-~, 4,(e)-0;
that is, the current is not affected by the presence
of the electromagnetic field. This feature is well
known in photoemission, where several authors
have shown that no PE current can flow in this
oversimplified model. The physical reason for
it is the following: assuming g(x) =constant
amounts to neglecting the ac magnetic field. Then,
since we also neglect the lattice potential in the
metal, the motion of an electron along x and ( yz),
respectively, is separable (in particular there is
no I orentz force). Therefore the ac electric field
which is parallel to the surface cannot induce any
modification of the current in the x direction.

The quantity v' =(I-Af~R$ ) characterizes
the "transparency" of the barrier at energy &,
for electrons of parallel wave vector q. Indeed,
should electron states at energy w in the metal be
occupied, the corresponding FE current density
would read

eS 2 pal

Let us now examine the remaining factors in

Eq. (3.10). k and k' are slowly varying functions
of the energy. On the other hand, when 8-0, at
transverse energies &u-«-„& 8, g$ (x) is real and

Eq. (3.5) shows that (A~ ~

- 1. As can be seen
from Eq. (3.11), this amounts to saying that the
field-emission EDC decreases exponentially when

the barrier thickness increases. The reflection
coefficient R~ „which appears in the last factor
of Eq. (3.10) corresponds to states below the
Fermi level, for which the barrier transparency
is very small. Therefore, Rf ~ can be approxi-

mated reasonably by its value in zero static elec-
tric field, which is a slowly varying function of

This can be illustrated by the case of the
Fowler-Nordheim triangular-barrier model,
where

ik'+(E-&u'+ «-)"' 4k'(E —ru'+ «)'"
ik' (E-- (o'+«-)' [ik' (E-&u'-+ «)'"]'

4 2mx exp ~- &, (E —ra'+ «,)' . (3.12)
3eS

Therefore, the variation of the photoassisted-
field-emission EDC with +, at fixed h and Q, is
essentially controlled by the variation of the trans-
parency coefficient in the final state. The general
behavior of V'~~ =1-A"~R&~ is the following.

It is an increasing function of (~ —«„). At low

energies, for

[where x, is the barrier thickness at energy &a&-«„-,

and V (h) is the potential at the top of the bar-
rier], it is exponentially small, as expected from
the usual field-emission results. It increases
rapidly in the "transitional" range u —eq Vm~,

then, in the "photoelectric" range QJ 6q» V

it varies slowly towards its limit E&, „,=1.
This behavior is illustrated on Fig. 2, where

we plot V- for the Fowler-Nordheim triangular
barrier for two different values of 8 and V,„,
respectively.

Let us, however, insist that in order to obtain
the EDC 8,(&u), one needs to integrate the contri-
butions of all q's such that 0 & ~~ & ~- Q. This
will result in a further broadening of the transi-
tional region of the EDC, the practical implica-
tions of which are discussed in the next section.

IV. QUALITATIVE FEATURES OF PFE FROM REAL
METALS

Q5

5 s aC s

v c&(IV)
I I I

FIG. 2. The "transparency" coefficient ~&~ versus
E'q) for different triangular barriers; V(x) = E-e 8x.

The solid and dashed curves correspond, respectively,
to 8=0.7 V/A and8=0. 38 V/A. , with E=12 eV. The
dotted curve corresponds to 8 = 0.7 V/A with E =9.6 eV
(which would be the value of V~~ in the image potential
model for the chosen 8). The arrows refer to the two
values of E.

Up to now, we have neglected all interaction
effects inside the cathode. In real metals, as in
photoemission, these effects cannot actually be
neglected, since the excitation energy in the final
states of interest is greater than about 1-2 eV.
At such energies, the mean free path I(&u) is
typically of a few hundred A. This limits the
extraction depth of the elastic current and gives
rise to an inelastic contribution to the EDC. This
can be included into the formal treatment of Sec.
II in exactly the same way as has been done for
photoemission (see paper I). It is then found that
if the self-energy is quasilocal, the elastic EDC
(for an interacting free-electron cathode) is given

by Eq. (3.10), provided one replaces 6 by the
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elastic extraction depth L =(~ '+ I ') '. The mea-
sured EDC also includes an inelastic contribution,
the losses are due to emission of phonons and/or
electron-hole pairs. They have been discussed in
detail in paper I. Let us simply recall that, as for
PE in the optical range, the upper part of the EDC
(in a range of -1 eV below the maximum energy
p, + Q) is essentially due to the elastic current and
to electrons which have emitted a few phonovs.
This gives rise to a broadening of the possible
structures of the order of a few tenths of an eV.
The lower part of EDC curves, where electron-
hole losses are important, is in general very dif-
ficult to interpret.

Note, however, that the contribution to the total
current J,"' of electrons which have created elec-
tron-hole pairs should be quite small: this arises
from the fact that, due to the increase of the bar-
rier thickness with decreasing energy, the rela-
tive weight in 8, of the low-energy part of g, (&u) is
exponentially small compared to the weight of the
upper part.

There are in principle two categories of infor-
mation one can hope to extract from PFE experi-
ments. (i) The first one is concerned wit'h the
shape of the surface barrier close to the metal
surface. In particular, one would like' ' to mea-
sure its maximum height as a function of the static
electric field, and, if possible, detect deviations
from the prediction of the simple unscreened
image potential model, which gives

V(llll)(g) ~ (e3g)3/2

(ii) The second one deals with the structure and
density of electronic states in the range p. «u& E,
including possible surface states.

It is clear that in order to study the barrier
shape one must, as far as possible, choose a
material with a regular shape of the density-of-
states curve: indeed, as can be inferred from
Eq. (3.10), the condition for the variation of the
EDC with & to be controlled by the transparency
in the final state is that all other terms —i.e., all
propagation properties inside the cathode —vary
smoothly with energy. Assuming that this con-
dition is fulfilled, we can examine point (i) on
the qualitative basis of Eq. (3.10) (with 8 '-L ').

Three ways of studying the barrier top can be
contemplated.

EDC measurements at constant 8 and Q in the
energy range around V (8): Such experiments
are of course technically very difficult to realize,
due to the smallness of the signal. One shouM
then choose a value of Q such that p, + Q- V
+-,' eV, in order to avoid having too large an in-
elastic EDC at (d - V

Total PFE current J„versus 8 at constant Q' ':

In our model, J„ is obtained by integrating expres-
sion (3.10). Strictly speaking, as shown in Sec.
II, one should use a different expression for && p. .
However, the transparency coefficient at such
energies is very small compared with the one of
the highest excited states, and this effect can be
neglected. Q must be chosen so that 0& E-(p, +Q)
~ 1 eV. In principle, one hopes to see a rapid
variation of t„when V decreases below p. +Q.

Total PFE current versus Q at constant b: This
could be r ealized with the help, for instance, of
tunable dye laser. It would then be of most inter-
est to plot the quantity 8J,/8Q versus Q. Indeed,
as far as there is no very sharp electronic struc-
ture of the initial states, the variation with Q of
the last factor of (3.10) is slow and 8J,/8Q should
not differ very much from 8„(p, +Q), i.e. , from the
uppermost part of the EDC, which is practically
elastic.

Following the discussion of Sec. II it may be
seen that all such experiments measure the varia-
tion with energy of some q average of the trans-
parency coefficient in the final state.

As shown on Fig. 2, f'~~ has no singularity for
Eq V and the change from the exponential

(tunneling) regime to the "photoelectric" one takes
place on a range ~(~-e-„), typically of the order
of 2 eV. Moreover, the width of this transitional
region increases when the averaging over parallel
wave vectors is performed. This averaging
smoothes the whole structure of the F- curve,
so that one cannot expect to get very accurate
information about V (8) from the study of a
single EDC. However, as is illustrated by the
oversimplified model of Fig. 2, the transparency-
coefficient curves for constant V are not very
sensitive to variations of the electric field. Con-
sequently, a change of b in a real system, i.e.,
with a corresponding change in V, results in a
deformation of the &-vs-(&u-e-„) curve which, in
the transitional range, reduces practically to a
translation ~(&u —'-„)=~V,„.

It can therefore be concluded that the study of a
single EDC can only detect the change from the
tunneling to the photoelectric regime, and does
not provide an accurate determination of the
absolute value of V . However, it would be of
interest to study a set of EDC's measured at dif-
ferent values of the static field, since the shift
of the transitional region of these curves should
give reasonably accurate information on the varia-
tions of V with b.

Finally, let us consider point (ii). The discus-
sion that can be made on that point is very similar
to that which has been made in paper I for PE.
%e will thus only emphasize a few important re-
marks. Information about the final electron states
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cannot be properly extracted from a measurement
of the current J„"but only of the EDC. The "step
model, " as in photoemission, cannot be de-
duced from the microscopic calculation, and must
be considered to be only of qualitative value. At
the energies of interest (v & V ), the matching
conditions for wave functions at the surface are
certainly of even more crucial importance than
in PE. Indeed, the effective barrier thickness,
i.e., the transparency coefficient ~- varies with

q much more rapidly than does the transmission
coefficient in the energy range (&u & E) of interest
in PE.

Getting more than these semiquantitative infor-
mations about both the surface and the electronic
structure of the cathode below vacuum level would
be at the moment very difficult. Indeed, in order
to go one step further than the present analysis,
it would be necessary to extend the present micro-
scopic calculation to include lattice effects (in
the presence of a surface) and to compute the EDC
thus obtained for various models of the barrier
shape. Completing such a task will perhaps be
feasible when such computations will haVe been
performed and checked in the simpler photoemis-
sion situation.

*Laboratoire associ6 au Centre National de la
Recherche Scientifique.
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