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Cosine and other terms in the Josephson tunneling current

Richard E. Harris
United Aircraft Research Laboratories, East Hartford, Connecticut 06108

(Received 29 August 1973)

To second order in perturbation theory the tunneling current between two superconductors can be

expressed as follows:

I(V, T) =Iq, (V, T) sinp+IJ2(V, T) cosp+Iqp(V, T).

where V is a constant voltage across the tunneling barrier, T is the temperature, and

p = —2e V tlh + go is the difference in the phases of the wave functions of the superconductors on
each side of the barrier. Numerical evaluations of each of the terms are presented as functions of
voltage for several temperatures. For the second term we find a different sign from that found in

previous numerical work. When the superconductors on each side of the tunneling barrier are different,
structure occurs at a voltage corresponding to the difference in the energy gaps. For the first two
terms this structure was previously unrecognized. In addition, it is shown that the term in cos& has no
effect upon rf-induced steps in the time-averaged current-voltage curve for a tunneling junction biased by
a voltage source. Finally a relation is discussed between tunneling and other experiments such as
far-infrared absorption and acoustic attenuation in superconductors. It is shown that tunneling can be

thought of in terms of a slight generalization of the coherence effects which dominate the other kinds

of experiments.

I. INTRODUCTION

Josephson' first showed that the current through
a tunneling junction between superconductors can
be written as follows:

I (V, T) = I ~,(V, T) sing + I~,(V, T) cosset + I„(V,T),

where V is a constant voltage across the junction,
T is the temperature, and y is the difference be-
tween the phases of the wave functions of the super-
conductors on each side of the tunneling barrier.
It is emphasized that this equation is valid only
when the voltage V is constant. In this case
y =-2eV t/S+q&o, ' where e is the magnitude of the
electronic charge (a positive number), If is Planck's
constant divided by 2m, t is the time, and y, is a
constant. The first two terms are often referred
to as the sine and cosine terms, respectively.
The usual Josephson effect is associated with the
sine term which describes the tunneling of paired
ground-state electrons. It gives rise to both loss-
less dc currents at zero voltage and oscillating
currents at nonzero voltage. For many years the
cosine term was quite correctly approximated as
zero for low voltages and temperatures. Recently,
however, experimental observation of the cosine
term by Pederson, Finnegan, and Langenberg'
has prompted renewed interest in it, and a de-
scription of this term is a major subject of this
paper. It is found to have a sign opposite that
apparently measured. The last term in Eq. (l)

describes the tunneling of quasiparticles. %e in-
clude this term only for completeness as it has
been considered in detail previously. '

In Sec. II we review the theoretical formulations
of the three terms and the numerical evaluations.
of them as well. All three terms are presented in

integral form in Sec. III and evaluated at T =0.
Numerical evaluations of the three terms for non-
zero temperature are given in Sec. IV for identical
superconductors on each side of the tunneling bar-
rier. Results for different superconductors are
given in Sec. V. In Sec. VI it is shown for a con-
stant voltage across the junction that the cosine
term has no effect on the amplitude of rf-induced
steps in the current-voltage curve. It is shown in
Sec. VII that tunneling can be thought of in terms
of a slight generalization of the coherence effects
which dominate other kinds of experiments on
superconductors. Section VIII contains a summary
and a brief discussion of the range of applicability
of existing tunneling theory.

II. PREVIOUS YORK

Since both theoretical and experimental work on

the Josephson effect often deal exclusively with
the sine term, we wish to discuss here those
papers in which we have found mention of the co-
sine term as well. In many theoretical treatments,
the cosine term arises as a natural consequence
of the process used to obtain the sine term. On

the other hand, the presence of this term in the
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result is often obscured because the author has
emphasized the sine term. In addition, some
authors immediately notice that for low frequen-
cies the cosine term can be approximated as zero,
and then neglect it in the remainder of their work.
Today, however, when Josephson junctions are
being considered for use as very-high-frequency
microwave detectors' and as high-speed switching
devices, ' it may be essential to include the cosine
term in quantitative analyses of Josephson-effect
devices.

Josephson included all three terms of the tun-
neling current in his original work. His discus-
sion of the dependence of the sine and cosine terms
on voltage and temperature was limited to men-
tioning that the sine term is the only nonzero one
at zero temperature and voltage. Ambegaokar
and Baratoff' produced expressions for all three
terms but examined their dependence on tempera-
ture only at zero voltage where the cosine and
quasiparticle terms vanish. In later papers on the
topic,"Josephson pointed out that the cosine term
can be considered as a phase-dependent part of
the quasiparticle current. Riedel" studied the
voltage dependence of the sine term at zero tem-
perature although his formulation was more gen-
eral and also included the cosine term. The log-
arithmic singularity in the amplitude of the sine
term is referred to as the "Riedel peak. " This
singularity has now been experimentally ob-
served. " " Rickayzen" and l.ater Svidzinskii and
Slyusarev" also produced expressions for all
three terms but they did not call attention to the
presence of the cosine term. Werthamer" pro-
duced expressions for all three terms, analytic
formulas for them at zero temperature, and
actually plotted them as functions of voltage for
zero temperature. His mention of the cosine term
may have attracted little attention because the co-
sine term was the imaginary part of a complex-
valued integral of which the real part was the sine
term that commanded more interest. " Shortly
afterwards, Larkin and Ovehinnikov produced
integral formulas" for all three terms and gave
many asymptotic forms for them as well. Their
work is particularly useful because they reduced
the sine term from the usual double integral to a
single integral. This makes the numerical work
required for finite temperature much simpler.
They also applied their result to superconduetors
containing magnetic impurities. Nam" later gave
a general integral formula for all three terms in
an appendix to a paper on the electromagnetic
properties of superconductors. His approach is
valid for superconductors having strong electron-
phonon coupling. %ilkins" was the first to point
out explicitly that the sine and cosine terms are

the Kramers-Kronig transforms of each other,
although Werthamer probably realized this con-
nection between them.

The theoretical work discussed above goes back
to 1962, but it was not until 1972 that Poulsen" for
the first time numerically evaluated the cosine
term at finite temperature. His initial work was
limited to low voltages. (His work has now been
extended to more general eases. ) Even more re-
cent numerical work by Schlup" gave all three
terms graphically over a wide range of tempera-
ture and voltage. This was the first evaluation of
the sine term at both nonzero temperature and
voltage. Each of these authors gave results for
identical supereonduetors on each side of the tun-
neling barrier. Harris" presented the cosine
term as R function of temperature and voltage for
tunnel junctions composed of different supercon-
ductors. The present paper is an extension of that
work and presents the sine and quasiparticle terms
as well.

Experimentally, Dahm, Denenstein, Finnegan,
Langenberg, and Scalapino" first mentioned that
a Josephson plasma-resonance experiment would
produce evidence of the cosine term. More re-
cently Pederson, Finnegan, and Langenberg'
completed this experiment. Their measured value
for the average amplitude of the cosine term at
small voltages is apparently equal, within experi-
mental error, to that subsequently calculated by
Poulsen but the experimental sign is opposite from
the theoretical one. The disagreement is not under-
stood at this time. No experiments have yet been
done which measure the cosine term as a function
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FIG. 1. Three terms in the Josephson tunneling
current and the normal-state tunneling current for zero
temperature and different superconductors.
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of voltage.
After the majority of this paper was completed

three additional papers appeared. First by in-
terpreting the effects of noise on the dc current-
voltage characteristics of proximity-effect bridges,
Falco, Parker, and Trullinger" have deduced the
existence of a cosine term having the same sign
and similar magnitude to that found in Ref. 3.
Hansma" has shown theoretically that the cosine
term may produce an observable effect on super-
conducting-quantum-interference devices (SQUIDs).
Vincent and Deaver" have analyzed their data on
a toroidal point-contact SQUID and concluded that
there is a cosine term. The two experimental
papers conclude that the cosine term has sign op-
posite that predicted by the microscopic theory of
tunnel junctions discussed in this work. On the
other hand, neither experiment involved a tunnel
junction so the disagreement does not necessarily
have great significance for tunnel junctions.

Langenberg" has very recently reviewed both
experiments and theories related to the cosine
term.

111. SINE, COSINE, AND QUASIPARTICLE TERMS

A. Integral formulas for tunneling current

The basis for the numerical evaluation of the
three terms in the tunneling current is the set of
integral formulas presented below. They are valid
for junctions composed of different superconductors
on each side of the tunneling barrier. The super-
conductors are assumed to be described by the
BCS theory, "to have weak electron-phonon cou-
pling, and to contain no magnetic impurities.
These formulas have been given in nearly the same
form by Larkin and Ovchinnikov" but we include
them to indicate changes we have made and to indi-
cate clearly the signs we have used:

&(&1-I~—«l)i/(I~l-&2), &(I~l-&1)«&, —I~ «I')
[I 2f f~f)jd~

[g2 (~ e I/)2] 1/2(~2 ~2)1/2 ( 2 g )1/2[g (~ ~ el/)2] 1/2
(2a)

eA„
, (sgn~)[sgn(~+ «)]~(l ~l- &,)&(I~+«I- &,)

(
2 n2}l/2[( ~ I/)2 g2] 1/2 (2b)

1 o(f~f- a, )e(f(a+evf —~) (2c)

where

sgn& =+1 for ~ & 0

=-1 for ~ &0,
g(u)) =0 for (u (0

=1 for w& 0,
and

f ((u) = [I+exp((u/ksT)]

The physical quantities s, and b,, are the energy
gaps of the two superconductors at temperature
T; A„is the normal-state resistance of the junc-
tion; e is the absolute value of the electronic
charge; and k~ is Boltzmann's constant. The cur-
rent is defined as a conventional current of positive
charges from side 1 to side 2. The voltage dif-
ference V is given by the voltage on side 1 minus
that on side 2. Using these conventions we have
I= I//A„ for the normal state. In this paper the
phrase "amplitude of the cosine term" means I~,
while "magnitude of the cosine term" means the
absolute value of I~, . Similar definitions apply to
the sine term.

The integral formulas [Eqs. (2)] for the three
terms are not in agreement with all theoretical
papers we have found. They do agree, however,

with the expressions obtained by Ambegaokar and
Baratoff, Svidzinskii and Slyusarev, %'erthamer
(for T w 0), Josephson, "and Schrieffer 2o Dif-
ferences between the signs given in the present
paper and those of additional authors are noted in
the references.

In the case of the sine term a single integral
similar to Eq. (2a) is given only by Larkin and
Ovchinnikov. The integral given here differs from
theirs, however. The essential difference is that
we have used the same sign for both terms in the
integrand, while their signs differ. This change
is necessary to obtain agreement (except for an
overall sign} with Werthamer's analytic expres-
sion" at T=0. This change also makes I~, and

I» as given in Eqs. (2) consistent with the
Kramers-Kronig relations between them as dis-
cussed later in this section.

As can be readily seen the integrand of each
integral contains a number of square-root singu-
larities. These singularities are integrable but
transformations must be made to remove them be-
fore numerical integrations can be performed.
The general approach to these transformations is
given by Shapiro et a/. ' A complete discussion
of the transformations fear this problem and of the
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computer programs used for the numerical inte-
grations is available from the author.

In Fig. 1 we have plotted I~„I~„I„,and I„
= V/It„, the last being the normal-state current.
This graph is for zero temperature and is similar
to that given by Werthamer except that we have
used different energy gaps for the superconductors
on each side of the tunneling barrier (s, =36,) and
Ig y and I~, have signs opposite from Werthamer's
corresponding quantities. " We have plotted the
voltage and currents in dimensionless units in
which a unit voltage corresponds to the sum of the
energy gaps and a unit current is the normal-
state current for unit dimensionless voltage.

The sine term, I~, sincp, describes the tunneling
of ground-state pairs. This process can occur at
zero voltage as indicated by the nonzero value of
I~, at zero voltage. The function I~, falls with
voltage to a logarithmic singularity at a voltage
corresponding to the sum of the energy gaps and
then rises gradually toward zero at large voltage.
The singularity, the Riedel peak, evidently de-
scribes a resonance between the pair tunneling
and quasiparticle tunneling.

The sign of I~, is shown in the figure to be nega-
tive for all values of voltage V. However, if the
wave functions of the two superconductors are in
phase at time zero, rp =-2eVt/5, the argument
of the sine function which multiplies I~, is also
negative for positive time t. As the sine is an odd
function, the negative sign of its argument cancels
the negative sign of I~,. That is, for an initially
positive voltage (0 & 2eVf/h & —,'v), one obtains an
initially positive contribution to the current. For
longer times this term oscillates between +I~, be-
cause cp continues to decrease with time.

It is also useful to note that Igy is an even func-
tion of the voltage difference V. If one reverses
the voltage, I~,(-V, T) =+I~,(+V, T), but the sine
function changes sign because its argument changes
sign. Thus the contribution to the current is re-
versed for negative voltage.

The quasiparticle term Iq„atzero temperature
is zero for voltages below the sum of the gap volt-
ages, rises abruptly, and gradually approaches
the normal-state current. The abrupt rise occurs
because at that voltage enough energy can be gained
by a pair to split into two quasiparticles. The on-
set is abrupt because of the singularity in the den-
sity of quasiparticle states at the gap. The func-
tion Iq~(V, T) is an odd function of V so that, like
the sine term, it too reverses sign when the sign
of the voltage is reversed.

The cosine term is similar to the quasiparticle
term in that it is also zero for low voltage, but
then drops abruptly at the sum of the gap voltages,
and rises gradually toward zero with increasing

C4

2+
O

z
IXI

10 2 3
(0)+a2(0)

FIG. 2. Composition of the total tunneling current.

voltage. Josephson" has described this term es-
sentially as a phase-dependent part of the quasi-
particle current. The net quasiparticle current is
thus the sum of the quasiparticle and cosine terms.
It is therefore not surprising that the cosine term
is zero below the sum of the gaps because quasi-
particles cannot be created with energy less than
this at T =0. It is also not surprising that the net
quasiparticle current can never become negative
for positive voltage because the magnitude of the
cosine term is always less than or equal to the
(luasiparticle current. This can be seen [E(ls. (2b)
and (2c)] to be true for any temperature or voltage.
That the cosine term may be important in under-
standing how a tunnel junction operates is indicated
by the fact that the cosine term has magnitude
larger than the sine term for voltages above about
1.3 x (6, + 6,). For 6, = a, = a the cosine term be-
comes bigger than the sine term at about 1.4X 2~.

To see how the cosine term affects the total cur-
rent through a tunneling junction we recall again
that y = 2eVt/If. -Thus the phase decreases linear-
ly with time t and both the sine and cosine terms
oscillate sinusoidally in time. Unlike the sine
term, for initially positive voltage V, the cosine
term gives an initially negative (or zero) contribu-
tion to the current at zero temperature. For non-
zero temperature it is shown in Secs. IV and V
that the cosine term gives an initially positive
current for V & (n, , + n,,)/e, but an initially negative
current for V& (a, +a, )/e. As with the sine and
quasiparticle terms, reversing the voltage causes
the contribution to the current from the cosine
term to reverse because I~, (V, T) is an odd func-
tion of V while the cosine is an even one.

In Fig. 2 we show graphically the composition
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conductors.

FIG. 4. Amplitude of the cosine term Iz& for identical
superconductors. Note that the scale for negative
currents is ten times finer than that for positive currents.

of the total current. The heavy line gives the
constant part of the quasiparticle current Iq~ as a
function of voltage. The net quasiparticle current,
which is the sum of the quasiparticle and cosine
terms, is bounded by Iqp + )I~, ( because the cosine
varies between +1 and -l. This region is indicated
by the area having hatch marks with negative slope.
As mentioned before, this region always repre-
sents nonnegative currents. The total current is
bounded by Iq~+ [Iz~, +I~~~] ". This region is the
entire hatched area. Notice that above the sum of
the gaps, the sine term adds very little to the
amplitude of the oscillations. On the other hand,
as we shall see in Sec. VI, the sine term is the
only one which contributes to the rf-induced steps.

B. Kramers-Kronig relations

Wilkins" was the first to point out that Izy and

I~, are related by the Kramers-Kronig relations. "
This is especially easy to see from the form in
which Rickayzen writes the two quantities. He
shows that they arise from the real and imaginary
parts, respectively, of the sum of four complex-
valued integrals each having the following form:

g((d, (d ) d(d d(d

g~p CO —Gd —COp —Z'g

g((u, &u ') d(u d(u '
=6 + w1 g (d~ (d + (dp 6(d ~

(d —4) —(d p

(d06 IJ&((d)
(3b)

Since we restricted ourselves to evaluating the
integral for values of ~p less than the sum of the
gap voltages, the denominator is positive over the
entire range of integration. It follows that the
sine term for voltages less than the sum of the
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We can use this result to prove that we have used
the correct relative signs for the sine and cosine
terms at zero temperature. We assume that the
cosine term has been correctly evaluated except
possibly for an overall sign. Recall that the co-
sine term vanishes for voltage less than the sum
of the gap voltages. Then it follows using Eq.
(3a) that

4r(&o+ &i++a)= a a ~~.2 (dI~&((d)

77 g g (d —(d

The sine term comes from the real, principal part
of each of the integrals while the cosine term
comes from the imaginary, single integral part.
It is simple to show that the Kramers-Kronig re-
lations follow:
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6 &dIgg((d) d(d
zl p p (3a) FIG. 5. Amplitude of the sine term Iz& for identical

superconductor s.
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gaps has the same sign as the cosine term has at
higher voltages. Since the amplitude of the sine
term is negative we can conclude that for zero
temperature the cosine term must also be negative.

At finite temperature the cosine term is nonzero
for voltages less than the sum of the gap voltages.
This simple argument is thus no longer useful. In
fact, the cosine term is positive in this range, a
result which seems to contradict the experimental
measurements. To determine that we have ob-
tained the correct relative signs for the cosine
term above and below the sum of the gaps we have
evaluated the sine term both from Eq. (2a) and nu-
merically from the Kramers-Kronig relation Eq.
(3a). The results were in agreement within nu-
merical errors. When the sign of the cosine term
below the sum of the gap voltages was changed, its
Kramers-Kronig transform was inconsistent with
the sine term calculated directly.

IV. NUMERICAL RESULTS FOR

IDENTICAL SUPERCONDUCTORS

In Figs. 3-5 the numerical results for Iqp IJ'z,
and I~, are given for identical superconductors on
each side of the tunneling barrier. The temper-
ature dependence of s(T)32 has been included in
the calculations. The reduced temperature t is
given by t= T/T, , where T, is the critical tem-
perature of the superconductors. For a BCS super-
conductor, i = 1 764ksT/n. (0.)

The quasiparticle current (Fig. 3) increases with
temperature everywhere and especially below
2b, (T) as increasing numbers of thermally excited
quasiparticles become available for tunneling at
higher temperature. In addition, at zero voltage
this current becomes zero with infinite slope, al-
though this may not be apparent given the scale of
this figure.

The cosine term (Fig. 4) is positive below 2L,
negative above 2b, , and vanishes with infinite slope
at zero voltage. Note that the scale for positive
values of current is ten times finer than that for
negative currents. One can see that the cosine
term has smaller magnitude than the quasiparticle
term for voltages below 2A. Above the energy gap
it is also clear that increasing temperature de-
presses the cosine term.

The sine term (Fig. 5) has qualitatively the same
shape for all temperatures. However, at finite
temperatures it approaches zero voltage with
finite slope in contrast to zero slope at zero tem-
perature. This is connected through the Kramers-
Kronig relations with the infinite slope of the co-
sine term at zero voltage and finite temperature.

Although we have plotted these three terms as
currents, Josephson, and the authors of papers

When multiplied by the voltage these conductivities
are identical to our currents: Vco(V, T) =Iqv(V, T)
and Vo, (V, T) =I~(V, T) No. te that Schlup gives
the opposite sign for g, . Because of the infinite
slope of Iqp and I» at zero voltage and finite tem-
perature the conductivities corresponding to these
currents have infinite value at zero voltage. In
this case the infinite conductivity corresponds
to zero current. Because of the possibility that
this last feature might be overlooked we have
chosen to discuss all three terms as currents.

V. NUMERICAL RESULTS FOR
DIFFERENT SUPERCONDUCTORS

Figures 6-8 give the numerical results for tun-
nel junctions composed of different supercon-
ductors on each side of the tunneling barrier. We
have chosen the hypothetical example in which
one of the superconductors has an energy gap at
zero temperature which is three times that of the
other: A, (0) =3~,(0). In calculating the finite-
temperature curves, the temperature dependence
of each energy gap has been included. The voltage
has been normalized by a, (0) + a, (0) so that the
sum of the energy gape appears at unity for zero
temperature. The difference in the energy gaps
appears at 0.5 for zero temperature. The reduced
temperature t, corresponds to the superconductor
which has the smaller energy gap, a, .

Figure 6 gives Iqp and reveals the well-known
logarithmic singularity at the difference in the
energy gaps. With different superconductors the
infinite slope at zero voltage is no longer present.
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FIG. 6. Quasiparticle current I~ for different super-
conductors.

giving numerical evaluations, Poulsen and Schlup,
present these results as conductivities:

I = V[c,(V, T)+o,(V, T)cosyj+I»(V, T)sinter.
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in the energy gaps should be measurable by the
same techniques.

In Fig. 9 we have plotted the ratio of the cosine
term to the quasiparticle term. It has previously
been plotted (with the opposite sign) for identical
superconductors by Schlup. We see that this ratio
is +1 at the difference in the gaps but at low tem-
peratures approaches -1 at the sum of the gaps.
It is clearly bounded by +1.

Vl. EFFECT OF COSINE TERM

ON RF-INDUCED STEPS

0.0 1.6

FIG. 7. Amplitude of the cosine term Iz& for different
superconductor s.

Figure 7 gives the amplitude of the cosine term
I~, and reveals a similar logarithmic singularity
at the difference in the energy gaps. This singu-
larity has the same sign and strength as that in the
quasiparticle term.

Figure 8 gives the amplitude of the sine term
I~,. We see a step at the difference in the gaps
when the temperature is nonzero. This step is
connected through the Kramers-Kronig relation
with the logarithmic singularity in the cosine term.
This step represents a change in the amplitude of
the sine term in some cases of almost a factor of
2. This is only slightly smaller than the measured
changeix, u of this term near the Riedel peak which
is presumably reduced in size by anisotropy in the
sample. In contrast, anisotropy should merely
broaden the step rather than reduce its height.
The demonstrated ability to measure a change in

I&~
xx, n of less than a, factor of 2 near the Riedel

peak implies that the step change at the difference

To our knowledge the effect of the cosine term
on rf-induced steps in tunnel junctions has never
been explicitly considered. We show here that
when one carries through to completion a calcu-
lation by Werthamer, " there is no effect due to
the cosine term on the amplitude of the rf-induced
steps in the special case of a junction biased by a
constant dc voltage.

Werthamer assumes that the rf field acts like a
voltage source. His Eq. (11) describes the re-
sulting time-dependent current. Our Eq. (1) is a
special case of this result for zero rf field.
Werthamer shows that the magnitude of the dc
component of the current on the Nth rf-induced
step is given by the following:

I '= P {J„'(y)I„~[(n,' N)hv]---

+J„„(y)J„(y)I,[(n —„'N)hv] sing,

+J„„(y)J„(y)I„[(n,'N) h v] co—s—--y,),
(4)

where y =ev,„/hv, v„is the rf-induced voltage
across the junction, v is the rf frequency, andJ„is the nth-order Bessel function. The constant
cp, is determined by the circuit to which the junc-
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FIG. 8. Amplitude of the sine term Izj for different
superconductor s.
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FIG. 9. Ratio I+2/~pp of the amplitude of the cosine
term to the quasiparticle term for different supercon-
ductor s.
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tion is attached. Actually cpo is indeterminate when

a true voltage source is used. It is assumed, how-

ever, that one can use a nearly-constant-voltage
source which holds constant both the voltage and
the phase yo to a sufficiently good approximation.

The first term in Eq. (4) describes the effect
of the rf field on the quasiparticle term, the
process being referred to as photon-assisted
tunneling. " %'e will not discuss it further. The
second and third terms give the effect of the rf
field on the phase-dependent terms of the tunneling
current.

Considering only terms two and three, we notice
that the sum is over all positive and negative val-
ues of z. Thus for every Bessel function productJ„„J„,there is another equal product J„J„„in
the series. Grouping these terms together one
obtains the following expressions for odd step
number ¹

J(~x]'2+)) & J(er +an-)) &
l=&

x Q»[(l- —,')hvj+I„[(-f+-,')hv]) sing,

+ &I„[(f-k)a vl+ I~~[(-f+k)a vjj cosy o.

We see that the Bessel-function products are
multiplied by sums of I~, and I~2 evaluated with

opposite arguments. Because I~, is an even func-
tion of its argument those two terms add. How-
ever, I» is an odd function of its argument so
that those two terms cancel. This discussion is
for steps of odd number N, but a similar one can
be repeated for even ¹ %e conclude that for a
constant-voltage bias, the cosine term has no ef-
fect on the rf-induced steps.

In the case of a circuit having finite impedance,
there may be an effect due to the cosine term. It
also might appear in a mixing experiment or in a
high-speed Josephson switching device where the
voltage is changing rapidly with time.

VII. COHERENCE EFFECTS AND

THE TUNNELING CURRENT

To obtain some feeling for the origin of the co-
sine term in the theory of superconductivity, one
can characterize the theoretical expression for
the tunneling current in a way very similar to that
used in the original BCS paper" '" for other
experiments on superconductors. In that paper
BCS divided the matrix elements one must calcu-
late to predict the results of experiments into two
cases which they called I and II. The matrix
element for scattering of an electron from a state
k to a state k' is written symbolically B], p. . For
simplicity we consider only cases where there is

no spin flip. The Hamiltonian for many experi-
ments can thus be written as the sum over al.l
initial states k, final states k', and spins o'

Acoustic attenuation (case I):

a, /a „=Re[X((u) +P((u)],

Far-infrared absorption (case fl):

c,/o„=Re[N((u) P(&u)] . —

(5a)

(Sb)

The quantity &u is the appropriate acoustic or far-
infrared frequency. The functions N(&u) and P(&u)

are given below. As can be seen, the only dif-
ference between the two results is in the sign of
the function P(&u) This differe.nce can be traced
directly to the sign change, or lack of it, in the
matrix element 8& y under inversion of k and k'.

In the case of tunneling we note, simply by com-
parison with the above functional dependence, that
the tunneling current, normalized to the normal-
state current, can be written in the following man-
ner:

I /I„=Re[N((o) —e' "P(cv)] .

%'e have replaced the voltage by +. The similarity
to Eqs. (5) is immediately apparent"'" and it is

For case I there is no change in the matrix ele-
ment for scattering from -k into -k'; i.e., Bj, t-„

=B k g. This is true for an experiment such as
acoustic attenuation where the scattering is from
density variations in the lattice. In this case the
interaction is related only to the magnitude of the
momentum k. For other experiments such as far-
infrared absorption where the interaction energy
is given by A ~ p, where A is the vector potential
due to the far-infrared radiation, the Hamiltonian
obviously changes sign when the momentum
changes sign. Here B„-p=-B „-&, and this situa-
tion is called case II.

BCS showed that for these experiments the nor-
mal-state properties of the metal enter only in an
average way so that if experimentally determined
quantities such as acoustic attenuation per unit
length nz, or far-infrared conductivity o„are
normalized to the normal-state results, the re-
maining variation can be fully characterized by
coherence factors determined only by the proper-
ties of the BCS wave function and the distinction
between cases I and II.

In fact, these theoretical predictions have been
verified experimentally. In the local limit they
can be written as follows"'":
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now clear that Re iV(a) = (1/u}Iq~ and P(&u) = (i/&u)

& (I~, +il~, ). For zero phase difference (y =0) the
normalized tunneling current has the same form
as the real part of the normalized far-infrared
conductivity o,/o„. More generally, it appears
that in a tunneling experiment there is a continuous
oscillation with frequency 2eV/h between cases 1

and II.
We can partially see how this similarity arises

from the interaction energy for tunneling:

H= Tp qQpQq + H.c.k, q

This has the same form as cases I and II. Fur-
thermore, in the absence of magnetic impurities,
we have T„--=Tz

-. Since this is like case I
rather than case II, the minus sign in Eq. (6} is
not immediately explained. Although the expla-
nation lies in details of the calculations, Tinkham"
has pointed out to the author that a simple under-
standing of the minus sign is possible. One imag-
ines forming a tunnel junction from a single super-
conductor by gradually increasing the thickness
of an insulating layer within the superconductor.
The conductivity of Eq. (5b) describes the response
to an electromagnetic field for zero insulator
thickness. Since there is no thickness at which
the coherence effects can abruptly switch type, a
Josephson device must exhibit essentially the
same type observed in a. far-infrared experiment
on a single superconductor.

Another difference, the presence of the phase,
remains. A detailed theoretical examination of
the theory would be necessary to understand
exactly how the phase enters the expression for
the tunneling current. We simply note that the
transfer of a pair from one side of the tunneling
barrier to the other multiples the wave function
by e'~. 39 This does not happen in the case of the
other kinds of experiments because there the
initial and final states are all in the same super-
conductor. For tunneling the initial and final
states are separated by the tunneling barrier per-
mitting the phase to appear.

Thus it seems that a slight generalization of the
BCS concept of case I and case II matrix elements
can include tunneling. From this approach one
can see that the terms He& and ReP correspond to
the lossy processes in tunneling just as they do in
acoustic attenuation and far-infrared absorption.
This correlates with Josephson's statement"
that the cosine term corresponds to a phase de-
pendence of the quasiparticle current. His dis-
cussion is in terms of conductivities rather than
currents. We can write the quasiparticle and co-
sine terms in the following way:

I„„=I„,(1+ (~ I~, ~ /I, ~) [sgn(I~, )cosy]} .

Thus the net quasiparticle current is I„,modulated

by the phase-dependent term. The magnitude of
the modulation function is always less than or equal
to unity because I„~~Iz, ~. We can think of the
cosine term as a phase modulation of the quasi-
particle current. Of course, when one uses a
constant-voltage bias to measure the quasiparticle
current the result agrees with Iq~. On the other
hand, one obtains I„for real situations where the
bias is only approximately constant voltage. This
is true for three possible reasons: First, a
constant voltage bias is a good approximation for
tunnel junctions whose inherent capacitance tends
to hold the voltage constant. Thus the cosine term
averages to zero. Second, experimenters some-
times apply a magnetic field to quench" the
Josephson effect. The field produces a linear
change in the phase along the length of the junction.
Thus, the Josephson current has alternating signs
along the junction. The total dc Josephson current
is the sum over the length of the junction and is
thus reduced. A similar thing happens to the ac
Josephson currents, reducing their amplitude
also. The latter applies to the cosine term as well
as the sine term. The result is that one measures
the function Iqp Finally, one must not dismiss the
possibility that detailed analysis may show that
the cosine term has no effect on dc current-voltage
characteristics regardless of the circuit which
biases the junction.

VIII. SUMMARY AND APPLICABILITY
OF PRESENT TUNNELING THEORY

We have examined the predictions of the BCS
theory applied to tunneling between different super-
conductors. Numerical results have been graphi-
cally displayed, revealing at least one measurable
result: the step in the sine term at the difference
in the energy gaps. It has been shown that the co-
sine term has no effect on the amplitude of the rf-
induced steps in the case of a voltage bias. It has
further been shown that tunneling can be described
in terms of the coherence effects important in
other experiments on superconductors.

While the Werthamer theory is the most general
that is available for tunnel junctions, it does have
important limitations. It has only been shown to
assume a tractible form in the special case of
zero-impedance dc and rf sources (voltage
sources), although Werthamer does state a more
general result. Additional parameters such as
possible shunt conductance, capacitance, and in-
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ductance are also not included. It is important to
note in this context that the widely used Eq. (1) is
not Werthamer's most general result and is rig-
orously valid only for dc voltages.

Undoubtedly the general problem is exceedingly
complicated. On the other hand, an understanding
of combined circuit and high-frequency (v& 2h/h)
effects is becoming increasingly important in view
of recent experiments in which two signals from
CO, lasers were mixed using a point-contact junc-
tion." One needs to know, for example, how to
simplify the general Werthamer result for finite
impedance sources which give rise to voltages
having nonsinusoidal time dependence, and whether
additional terms, other than a simple capacitive
one, must be added.

Theories of other devices" ~ such as micro-
bridges, proximity effect bridges, and point con-
tacts do not seem to include high-frequency ef-
fects as does the Werthamer theory. Because of
the widespread use of these other devices there

is a significant need for a detailed understanding
of them. For example, the simple way in which
the coherence effects produce the sine and cosine
terms in tunnel junctions possibly suggests that
one can show on general grounds that theories of
the other devices will have a cosine term which is
the Kramers-Kronig transform of the sine term.
The high-frequency theory of these devices may
be based on a different physical mechanism and
awaits further development.
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