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Electron-syin resonance in the imyurity-doyed Heisenberg linear chain (CHs),NMnC1, :Cu~
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The room-temperature 23.4-6Hz electron-spin-resonance linewidth and line shape are reported in a
linear-chain crystal of (CH,)4NMnC1, (TMMC) containing 4-at.% Cu++ substituted for Mn++. The
width at 8 = 0 is 50% greater than for pure TMMC but is the same as in pure TMMC at 8 = 55',
where 8 is the angle of applied field with respect to the chain axis. The line shapes are the same in

pure and impure TMMC at both angles. These results are explained in terms of a model in which the
only effect of impurities is to alter the rate of diffusion along the chain. The slower diffusion produces
a marked increase in width at 8 = 0', where long-time effects dominate the one-dimensional {1d)spin dynam-
ics, but has no effect at the "magic angle" {8= 55, 3 cos~ 8 —1 = 0), where there is no secular contribution
to the broadening and thus the 1d character is unimportant. A continuum calculation is presented in which
an impurity is replaced by a region in which the diffusion coefficient is D', compared with the host value D.
The line shape is not altered in this model, in agreement with experiment, and the width, compared with
pure TMMC, is related to D'/D. A relation is then assumed between D'/D and J'/J from which we estimate
g/J( = 0.06,where J' and J are impurity-host and host-host intrachain interactions, respectively.

I. INTRODUCTION

Exchange-narrowed electron-spin resonance
(ESR) has markedly different characteristics in
low-dimensional systems than in three-dime nsional
(3d} systems. The differences are reflected in the
magnitude of the linewidth ALE, the angular depen-
dence of rhH, and the line shape and have been
well-documented experi mentally in both quasi-1d
and quasi-2d materials. Theories in terms of
diffusive motion for the spin dynamics have gen-
erally been successful in giving quantitative inter-
pretation to the results.

The effects are particularly strong in 1d, where
a physical explanation is also quite clear. The
possible paths of diffusion are severely limited for
1d so that the rate at, which spin polarization de-
cays is greatly reduced compared with 3d. A con-
sequence of this persistence of spin correlation for
long times is that exchange narrowing, which
occurs because of rapid fluctuations which tend to
average the line-broadening mechanism (typically
the dipole-dipole interaction) to zero, is much
less effective in 1d.

In the above context, it is particularly interest-
ing to study the influence of a relatively small con-
centration of impurities on ESR in 1d. Since the
diffusion path cannot avoid an impurity placed on
the chain, we expect impurities to have a far more
pronounced effect in 1d than in 3d or 2d. Hone
and Petzinger did a theoretical study of spin dy-
namics in impure chains and calculated the NMR
width for two limiting cases: (i} diamagnetic im-
purities and (ii) paramagnetic impurities with

rapid spin-lattice relaxa. tion. In either case a
simplification occurs since there is no diffusion
across the impurity site so that only independent

chains of finite length need be considered. In
case (i), which is more nearly related to our
studies of Cu" in (CHB)4NMnC13 (TMMC), the im-
purities act as perfectly reflecting boundaries and
therefore the spin polarization can never com-
pletely diffuse away. Consequently, the effective
rate of decay of the spin correlations is slower
than in an infinite 1d system, and exchange nar-
rowing thus should be less effective.

In Sec. II we report room-temperature ESR
measurements on a single crystal of TMMC in
which 4 at. % of the Mn" iona have been replaced
by Cu", and on a single crystal of pure TMMC for
comparison. TMMC is probably the best-docu-
mented and most nearly ideal quasi-1d system with
transition-metal-ion paramagnetism (as opposed
to the organic solids) and thus is the logical choice
for host crystal. The selection of Cu, rather than
a diamagnetic ion, as the impurity was based
strictly on availability of this particular mixed
crystal. The linewidth at 8 =0' (8 is the angle of
applied field with respect to the chain axis) is 50%%u~

greater in TMMC: Cu than in pure TMMC, but the
linewidths are the same at 8= 55 (3cos e —1=0).
Line shapes are also the same at both angles.

The theory of Hone and Petzinger is extended in
Sec. III to a treatment of the ESR line and to the

case, appropriate to Cu", of impurities which are
not perfect reflectors. %e find that all the ob-
served features are consistent with this model,
whose adjustable parameter is the Cu-Mn exchange
interaction. The conclusions in Sec. IV reempha-
size the relative importance of impurities in ld
and point out that ESR studies of this type give
strong additional comfirmation of the effects of
long-time diffusive decay in low-dimensional
systems.
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FIG. 1. Peak-to-peak derivative linewidth 4 H vs
angle 8 of applied field with respect to chain axis. Curves
are aids to eye only. Data are for room temperature,
23.4 GHz.

II. EXPERIMENT

Measurements of the ESR absorption derivative
were performed at room temperature in a con-
ventional E-band spectrometer at 23. 4 6Hz. Ap-
proximately the same size single crystals of
TMMC: Cu and pure TMMC were used. The for-

mer crystal, which was grown by R. Dingle of Bell
Laboratories, had a molar Mn: Cu ratio of 24: 1
according to chemical analysis.

Figure 1 shows angular dependence of the peak-
to-peak derivative linewidth. The values for pure
TMMC, grown from solution at this laboratory,
are in agreement with previous measurements.
The salient feature, to be discussed in Sec. IG,
is that TMMC: Cu has a 5(P/& greater ~ at 8=0'
but the same width at 8= 55'. In Fig. 2 we plot
the line shapes at 8=0' and 55'. For a Lorentzian
shape, the quantity ({H Ho)/I-(H) I' t, where l(H)
is the absorption derivative at the field H and Hp

is the resonance field, is a straight line when
plotted versus (H Ho) -. As treated elsewhere'
(see a.iso Sec. III), a Lorentzian shape is expected
for 8= 55' whereas, for a pure chain, the absorp-

,3ya
tion at 8=0' is the Fourier transform of e '
The resulting 1{H Ho)(I(H-) I' t, when f(H) is the
derivative of the Fourier transform of e-& ~, is
shown as the solid curve in Fig. 2. %'e see that
the pure and impure crystals have identical line
shapes, within experimental error, which con-
form to the theory for a Pure (infinite) chain.

III. THEORY

A. General theory of ESR in linear chains

We review below the pertinent theory' ' of
line shape as applied to a linear chain, either pure
or impure. The exchange-narrowed ESR line in
a low-dimensional system appears to be adequate-
ly described by the Kubo- Tomita formula4'

X (~) ~ F exp — dr (t —7.)g (v) e "o-&Id t
(d 0
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FIG. 2. Line shape
data. Straight-line plot is
indicative of Lorentzian
line shape observed in both
TMMC . Cu and pure TMMC
(not shown) at 8= 55'.
Curve is theoretical line
shape for pure 1d chain at
8=0'; I(H) is the derivative
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where }{ (m) is the absorption at frequency &u, the
symbol 5 indicates Fourier transform at the fre-
quency &u, and (do is the angular resonance fre-
quency. The quantity exp[- Jpdv {f—v)g(7)] is the
relaxation function, and its characteristic decay
time and functional dependence determine the
width and shape of the line. The relaxation func-
tion is governed by the spin-time-correlation
function g(v) which has the form

g(g)= Qg„(~}e'"o',

where g„(r) is related to that part of the line-
broadening dipolar perturbation which produces a
change M in Zeeman quantum number. Time de-
pendence of g„(v) is with respect to the excha, nge
modulation only. Modulation at the Zeeman fre-
quency is explicitly accounted for by the e'""0'
factors.

The basic features of line shape and angular de-
pendence of ~ in 1d may be seen from the fol-
lowing arguments. If the spin dynamics are dif-
fusive, then gs(v) o:v for long times. (This
follows from the familiar result that the decay of
particle density at the origin is proportional to
v ~ for classical diffusion, assuming an initial
distribution confined to the origin. ) The M = 0 in-
tegral does not converge at the upper limit and is
given by

J (f —r)g (v)dv=+g, (0) v', ~'t'~', (3)

for f —~, where the asymptotic form go(v) =go(0)
&&(w, /r)' has been assumed. The Me0 inte-
grations do, however, converge at the upper limits
if (dot »1, which is true for times of interest as
long as ~0T2»1 where T2 is the decay time of the
relaxation function. Hence we have, for t » v,

~t
dq {f—r) gg„{r)e'"o'

NPO

=f
~

dv Q g„(7)e'"o'= g,
WO

(4)

where g is an appropriate relaxation rate which is
of the order of P„zg~(0)w, . (We assume that all
g~ have the same characteristic decay time of the
order of 7, . )

The results (3) and (4) applied to (1) then show
that,

c 5(exp[-A(8)r', of '~o —B(8) 7, f]e-'"o'),x"(~)

(5)
where A(8) and B(8) are constants which have an
angular dependence discussed below. Since the
correlation time v, is of the order of K/Z«To (Z
is the exchange interaction), we have v, «t in the
region of interest so that the t3~~ term dominates

as long as A(8) and B(8) are comparable in size.
The function A(8) is proprotional to the M =0
(secular) part of the dipole interaction and is there-
fore given by

A(8)o: (3cos 8 —1) (6)

B. Pure chains

In this part we derive an expression for go(7')
in a pure infinite chain which is cast in the form of
Eq. (16) which we show in Sec. IIIC to be valid for
the impure chain as well. For the pure chain in
which each site i is occupied by the same type of
spin S, it is convenient to work in terms of the
wave-vector normal modes

~-1/3~ gg iqcn
a n

since

where e is the angle of the applied field with re-
spect to the chain axis. Hence the 1d line shape
is given by the Fourier transform of e-t and the
width shows a )3cos 8-1) ~'dependence. [From
{5) it is evident that the decay rate To is propor-
tional to IA(8)I ~ in the region where f ~ is dom-
inant. ] At the "magic angle" —where 3cos 8 —1
= 0, 8 =55' —A(8) vanishes so that the line is
Lorentzian (Fourier transform of e '). The an-
gular dependence and line shape have been veri-
fied in TMMC.

For further discussion it is necessary to write
the specific form of go(v) for classical dipolar
coupling in a linear chain,

9 'r g (3cos 8 —1)
go(v 8 o

~j AL

~ ~u-I ~-'(S', (r)S;(r)S;(O)S;(0)) Q(S(&,
( f)

where y, the gyromagnetic ratio, is taken to be
the same for all spins on the chain, S, is the spin
at the ith site on the chain, and N is the total num-
ber of sites separated by a distance t.". Primes on
the summations indicate i 0j and k 4 l, and the de-
nominator g, (SP) assumes infinite temperature.

A major problem is the presence of four spin-
time-correlation functions. These have generally
been handled by the decoupling approximation,

(S&(v) S~(r) S~(0)S,(0)) = (S&(v) Sq(0)) (S~(&)Sg(0))
(8)

whose validity is somewhat difficult to assess since
there exist no exact results upon which to base
comparison. Recent computer studies of classical
spin dynamics in a linear chain, however, sug-
gest that the decoupling may be fairly reasonable,
though not exact. We will assume Eq. {8)to hold
hencef orth.
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(S;(r)S; (o)) = (S;(r)S*„(0))6„„
for the translationally invariant periodic system.
Use of Eqs. (8)-(10) then reduces Eq. (7) to

3yS
ga(r)= —,(3cos 8 —1) S(S+1)N '

4 c' p

0

I
I
2

-I b(-

x Q f, [4c(v)]
FIG. 3. Schematic of 1/ D{x) for random impurities.

where

n
i

-3 e ice(m-c) (12)

y, (r) = 3(S,'(v) S' (0)) /S(S+ 1)

= —,
' (S;(r)S,(0)) /S(S+1) .

We assume exponential decay

(13)

y, (r) = e 'c', - (14)

[note that Eq. (13}shows $,(0) = 1 at infinite tem-
perature] where I', =Dq for q -0, with D the dif-
fusion coefficient. As discussed in Sec. IIIA, the
1d anomalies are associated with long-time be-
havior, which corresponds to dominance by the
slowly decaying q -0 modes; so it is permissible
to replace f, by its q = 0 value and thus the sum-
mation in Eq. (11)becomes

N Qf, [P,(v)] =N fog e are' (15)

for v'-~. At this point one normally replaces I',
by Dq', converts the sum to an integral over dq
for N-~, and observes that Eq. (15) is propor-
tional to v' ~, the previously stated result for
spin diffusion in 1d.

For later discussion, however, we maintain the
form (15), which when combined with Eq. (11) gives

go(r)= —
6 (3cos 8 —1) S(S+1)f&N 'Z e arc'.3&K 2 2 2 -~~ -2r v

4 c'
(16)

It is useful to restate that I', is the decay rate for
the qth normal mode of the spin dynamics. We
next argue below that Eq. (16), with the general
interpretation of I and q just given, holds for the
impure chain as well, apart from a trivial cor-
rection to account for the concentration depen-

2
dences of the dipolar interaction and of P, (Sf ).

C. Impure chains

The model to be treated is one in which a con-
centration x of impurity spins is distributed ran-
domly among the magnetic-ion sites of the chain.
We assume that the major effect of impurities is
to alter the rate and manner of diffusion along the
chain. Since we are primarily concerned with long-
wavelength modes which are sensitive mainly to an

3(S((v')S~)/S(S+ 1) =—pi(x(, r) . (17)

The function P&{x,, v') represents the probability
that a spin at position x, on the chain has a given
z component, say S, at time ~ given that the spin
at x& has S&=S at v =G. It satisfies the initial con-
dition

(16)pq(x;, 0) =6,q.

Hone and Petzinger set up a difference equation—
which reduces to the diffusion equation in the long-
wavelength limit-and determined P&(x;, r) for the
case of a single impurity with arbitrary impurity-
host exchange interaction. They also solved the
problem for diagmagnetic (perfectly reflecting
boundaries} and rapidly relaxing (perfectly absorb-
ing boundaries) impurities, as mentioned in the
Introduction. Following their example, we assume
that P~(x;, r) obeys a diffusion equation of the gen-
eral form

8 8 8
D(x) —&f&q(x, r) = —PI(x, 7), {19)

for the slow spatial variations which are of in-
terest. The diffusion coefficient D(x) has a value
D at the host, sites and D at the impurity sites,
as sketched in Fig. 3.

Before discussing the solution of Eq. (20) for the
particular model of Fig. 3, we estlblish validity
of Eq. (16). By the standard theory of partial dif-
ferential equations with boundary values, there
exists a complete set of orthonormal eigenfunc-
tions to Eq. {19)

t)I„(x, r) = e "&'g„(x),

—,
' ax —'q„(x =-r„q,(x

(20)

(21)

averaged medium, it is reasonable that the de-
scription based on diffusion is still valid. Other
possible effects, which are not peculiar to 1d,
include altering ot the mean dipole field and ad-
ditional broadening due to the impurity-host ex-
change interaction combined with impurity spin-
lattice relaxation. ' We do not believe these other
effects are operable here to any significant degree,
and they will be dismissed for the moment.

The problem reduces to finding the two-spin-cor-
relation function which we write as
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into which Q&(x, v') can be expanded,

Pq(x, r)=gaj„g„(x)e ""' . (22)

The initial condition (18) together with the com-
pletness and orthonormality of the g,(x) shows that

ega Ox{xJ) ' (23)

If (22) and (23) are used in {17), together with {8),
the summation in the numerator of (7) becomes

g' p' lf-jl-'lb -fl-'(s;. (,) s;(,) s;(0) s;(0)&
jj Al

=&s'(s+I)'g' P'11 jl-'lb-fl-'

x p C,*( x) q, ( x) g;(x, ) g (x,)."""" . (24)

[We have used the fact that at infinite temperature
q, (x, , r) = P, ( ,x, —r) = g, (x, , r) so that L, P, ,{x,)
&&t)'„.(x,) =g„.P,.(x,) P„.{x,)]. As before, the domi-
nant contribution is expected to come from P„(x)
which have slow spatial variation since these are as-
sociated with small decay rates I'„. Hence we have

l1 jl '4 -(x1) 4(x;)= lf jl '41 {-x;)4{x1), (26)

as long as $1.(x&) does not change appreciably over
the one or two lattice spacings for which l i —j I

is important. A similar relation of course holds
for the k, l terms, so that the final result is

3 @4''
g2(r) = —

2 (3cos29 —1) S(S+1)
4 t.-'

Xf2 bt I P e-2 r1r

upon using the orthonormality and definition of f2
found in Eq. (12). This proves the important state-
ment that Eq. (16), which was derived for the wave-
vector normal modes of a pure chain, holds for the im-
pure chain as well provided that the general inter-
pretation of I', and q, as given after (16), is used.

The above treatment has neglected the fact that
in Eq. (7) not all sites i have the same spin value.
An estimate of the error involved here can be ob-
tained by considering the second moment g2(0).
Since (S, ) for a Mn" spin is ~~ greater than for a
Cu" spin, we can simply replace 8', by zero at the
sites occupied by Cu" impurities and therefore get
for the average over all sites

(S; ) = —'S(S+1)(1—x), (27)

where x is the impurity concentration. Use of Eq.
(27) in (7) then shows that @2{0)is decreased by a
factor (1 —x) /(1 —x) = (1 —x) from its value for the
pure chain. This is the small effect on the mean
dipole field mentioned earlier. It amounts to only
a 4% reduction here and thus is not important.

D. Density of states and results

For an infinite chain we expect a continuous
range of eigenvalues I'~ so that the summation in
(26) can be replaced by an integral

{28)

I'1 = D(1+ bD/LD') q1=—Dq„, {29)

where q~ is the wave vector of the Bloch function
associated with the &th mode, and b (see Fig. 3) is
the effective distance over which the diffusion coef-
ficient is D .

Equation (29), together with Eqs. (16) and (26),
shows that the impure chain behaves just like the
pure chain for long times but with a reduced dif-
fusion coefficient D. This result is to be expected
on the basis of hydrodynamic behavior for the long-
wavelength modes propagating through the random
medium. Two conclusions may be drawn at once.
First, one can show from Eqs. (5), (26), and (29)
that the relaxation rate is proportional to D '~

{assuming an e-12 ') decay so that, in particular at
8=0', we have

1meure (1+ bD/ID~)1/2
++pure

{30)

Second, the line shape is the same for both the pure
and impure systems since the only effect of the
impurities is to alter the diffusion coefficient.

It is of interest to compare the above results
with those for a chain with diamagnetic impurities.
In either case the width of the impure chain is ex-
pected to be greater at 8 =0' than that of the pure

The problem thus reduces to finding the density of
states dX/dI' for small values of I". We are not
aware of any such calculations for the random sys-
tem described by Eq. (19) and Fig. 3; however,
considerable work has been done on the very sim-
ilar 1d random Kronig-Penny model in quantum
mechanics. ' In this model, 6-function potentials
of equal strength are located at random with an
average spacing /. The salient feature of the re-
sults for our purposes is that the density of states
for small energies is the same as for an ordered
lattice in which the potentials are regularly spaced
a distance l apart. Only near band edges is there
a significant difference between the density of states
for the ordered and disordered lattices. This in
fact appears to be a characteristic of random and
amorphous systems in general. ~'

On the strength of the above argument we there-
fore assert that it suffices to compute the density
of states for a model in which the impurities are
regularly spaced a, distance I = c/x apart, i. e. ,
t, =t~= ~ ~ ~ =/ in Fig. 3. The result, derived in
Appendix A, gives
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3&S' (f) S'(0)) ~ (gf)S(S+1)
(31)

under two conditions. (A) The origin 0 is occupied
by an impurity spin S and the effective Hamiltonian
for the short-time dependence is

0„=2m'(S, S,'+S,' 0,), (32a)

and (B) the origin is occupied by a host spin so that

a, =2J(S, S,+S, S,) . (32b)

In case (B}the characteristic frequency As should
be of the order of D/ca as noted above, while for
(A} it should be related to D'/c since spin polariza-
tion must be transmitted through the impurity. We
make the simple ansatz

D /D=Q~/Qg

from which straightforward calculation yields

(33)

chain, and for similar reasons. With perfectly
reflecting diamagnetic impurities, spin polarization
can never diffuse away completely so that the decay
rate of go(~) is obviously lessened, and in fact go(7 )
does not decay to zero for v -~. If the impurities
are less than perfect reflectors, then go(~) will
eventually decay to zero but at a slower rate than
for a pure chain because of reflections. The line
shapes for the two cases, however, are different.
The fact that go(v) remains finite at r = ~ for the
diamagnetic impurities does alter the line shape.
In Appendix 8 we calculate and show curves of the
line shape for this case of finite chains with per-
fectly reflecting boundaries.

E. Relation between D' and impurity-host exchange

We have employed a continuum model in which
an impurity site is replaced by a region of size 5
with diffusion coefficient D while the host sites
have diffusion coefficient D. It is clearly desirable
to make some connection between these parameters
and the interaction constants J and J of the micro-
scopic exchange Hamiltonian, where J and J' are
the nearest-neighbor host-host and host-impurity
exchange interactions, respectively. (For a, small
concentration of impurities we neglect any impuri-
ty-impurity interaction. )

The diffusion coefficient D of a pure chain has
been treated by several authors who find that it is
of the order of Jc2[S(S+I)]'~~/5= &u, c, where ru,

is the characteristic exchange frequency which al-
so occurs in the short-time expansion of, for ex-
ample, the pair-correlation function (Sf(f)S;„(0)).
Thus the time required to diffuse one lattice spac-
ing is of the same order as the characteristic time
scale v, on which short-time correlations vary.
We make use of this fact to estimate D /D in terms
of J /J by considering the short-time expansion of
the function

D J S'(S'+1) ii'
D 8 S(S+1)

(34}

Note that for spins two 1.attice spacings apart as in
(31), f is the first nonvanishing term in the ex-
pansion at infinite temperature.

In the spirit of this model the effective distance
for which the diffusion coefficient is D (see Fig.
3) is given by

b=2c, (35)

since 2e is the space over which we consider cor-
relation in (31).

IV. COMPARISON WITH EXPERIMENT AND DISCUSSION

The combined results of Eqs. (30), (34), and
(35) give

ne --/&e -= [1+2&l&/z l(1.65)]'~', (36)

where 1.85 = [S(S+1)/S'(S + 1)]'~' for S = —,
' and S

= ~ and where I = c/x, with x the concentration.
The above holds only near 8 =0 where the line
shape is the Id form F(e-''~'). Since we observe
the ratio to be 1.5 at 8 = 0' for x = 0. 04, it follows
that (36) is consistent with a ratio of impurity-
host to host-host exchange IZ'/Zl = 0. 06. This
ratio is perhaps surprisingly low and may cast
doubt on the validity of our continuum model and
the connection between D and J . General prop-
erties of long-wavelength modes lead us to believe
that the impure chain acts as though it has an ef-
fective diffusion coefficient D, but making the pre-
cise microscopic connection between D and D may
be considerably more tenuous. However, in the
absence of any independent measurements of I J'/
Jl in this or similar compounds, it is difficult to
draw any firm conclusions, especially in view of
the complexities of the theory of superexchange.

The line shape at 8 =0' was found to be the same
for the pure and impure crystals, and this is in
agreement with theory. Here there is a definite
distinction between the case of paramagnetic im-
purities with a finite J and diamagnetic ones, for
which the system breaks up into independent finite
chains. The line shape would be quite different
for a chain containing 24 spins on the average, as
shown in Appendix B.

The linewidths at 8 = 55 {3cos 8 =1 } are identi-
cal, and this is also consistent with theory for the
following reason. At 55' the secular term go(r)
is rigorously zero so that the only contribution to
broadening comes from the nonsecular (MAO)
terms of Eq. (4). These terms are not affected
by the long-time behavior because of modulation
at the frequency coo. Hence alteration of long-time
diffusion by the impurities is unimportant.

Indeed we regard the equality of linewidths at
55' as crucial to the interpretation that the only
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significant effect of the impurities is to alter the
diffusion. If the widths differed at 55' we would
have to worry about possible changes in the lattice
or other effects which obviously would complicate
the comparison. One such possible effect, men-
tioned earlier, is an increase of 4H owing to the
impurity-host interaction J . This has been ob-
served in 3d paramagnets for impurities with
rapid spin-lattice relaxation. The "bottleneck "
can be broken and the interaction 2J'S S' broadens
the observed host resonance provided the impurity
spin-lattice relaxation rate 5 is comparable to or
greater than J . Since this would give an isotropic
contribution to ~H, it does not seem to be operable
here, as is reasonable because our estimate of J
=0.06J would require 5-5&1010 sec ~, given the
value of J for TMMC, which is unlikely for the
Kramers Cu ion.

In conclusion we have shown that a small concen-
tration (4 at. %) of impurities has a large (50%) ef-
fect on the linewidth in TMMC at 8=0 but no mea-
surable effect at 8 =55'. This is completely con-
sistent with a picture in which the impurities alter
the rate of diffusion along the chain but have no
other influence. The observed line shapes are the
same in pure and in impurity-doped TMMC which
indicates that the basic mode of spin diffusion in
an infinite chain still exists with the impurities.
Detailed analysis of the problem predicts a varia-
tion of the effective diffusion coefficient with con-
centration and impurity-host intrachain exchange
8 from which we estimate l J'/Z} =0.06, where J
is the host-host (Mn-Mn) intrachain interaction.

The fact that alteration of diffusion by a small
concentration of impurities can produce such a
pronouncedchangein ~H is clear evidence of the
the importance of long-time correlations in 1d.
So dramatic an effect certainly would not be ex-
pected in 3d where (i) it is possible for the dif-
fusing spin polarization to find paths which avoid
an impurity and (ii) the characteristic time for de-
cay of the spin-time correlations is much less
than the average time for the correlation to diffuse
to an itppurity and therefore sense its presence.

in which u„(x) has the periodicity /. In a region of
length l the diffusion coefficient is

D, ——,'l x&0, b&x & l
D(x) =

D', 0~x~ b.
(A2)

Boundary conditions are that g&(x) and the current
D(x) Bg„/Bx be continuous at x = 0 and x = b, and
periodicity requires u„(--, I) =u„(-, I), and likewise
for Bu&/Bx. Apart from the fact that D(x) aq„/Bx
is continuous rather than a/„/Bx, the method of
solution is the same as standard text book treat-
ments of the Kronig-Penny model.

In the limits D'-0 and b-0 such that b/D' is
finite, we find the boundary conditions at x =0, b

lead to

q, = [A(I+ ', f n. -,'fn-a-]e'""+ [a(I ', fn-)+-', im-]e

b &x~-,'l (A3}

if the solution for —
& l ~ x ~ 0 is

ge 5k% ge tax

In the above

n= {Dr )"'b/D'

and

x=(1 „/D)"' (A5)

cosKl ——', 4 sine'l = coskl .
For vl, kl«1 this reduces to

r„=D(1 + bD/ID')-'b'

upon using (A6).

(Aa)

25-

Imposition of the periodicity conditions on u„= $e '""

then leads to the secular equation
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APPENDIX A: CALCULATION OF DIFFUSION MODEL

%e calculate the eigenvalue spectrum for the
model depicted in Fig. 3 in which the impurities
are regularly spaced a distance l apart. Solutions
to Eq. (21) are in the form of Bloch functions

I i I l I

1

P„(x) =u„(x) e'~, (A1)
FIG. 4. Theoretical line shapes at 8= 0' for finite

chains containing 10, 30, and 500 spins.



812 P ET ER M. RICHARDS 10

APPENDIX B: LINE SHAPE FOR DIAMAGNETIC IMPURITIES
{FINITE CHAIN)

If there are diamagnetic impurities at positions
x=0, l, then we effectively have a finite, inde-
pendent chain of length l since no diffusion can take
place across the boundaries. The eigenmodes to
(21) are then simply

(2/I)'~ cos(nvx/I), n =1,2, . . .
4n x (I/f)1/8 n=O

since the boundary conditions a.re Sp„/Sx at x = 0, l

(zero current). The decay rates are

I'„=2(D/e2) [I —cos(nvc/l)], (B2)

where we have used the difference equation of
Hone and Petzinger, ' which reduces to the dif-
fusion equation result for nmc/l«l. The inte-
grated correlation function at 8 =0 is then given
by

J
t 6 8 t N

(t —r) go(r) dv =
~ S(S+ 1) N (t —r) Ch 2+g 1+cos e

0 C n1 N

S(S ~ l)N ' t I (1 ~ coa )( —
~ (1 —8 '""')) (B3)

according to Eq. (11), where we have considered
nearest-neighbor dipolar interactions only so that

f, = 2(1+ cos2q e) and N = l/e is the number of spins
on the chain.

Hone and Petzinger pointed out that Eq. (153),
which has essentially the same form for the NMR
problem with diamagnetic impurities, leads to a
Gaussian decay for very long times. However,
they did not present detailed calculations of the
line shape. The extent to which the line will actual-
ly appear to be Gaussian depends crucially on the
size of I'& T~, where Ta is the observed decay time
of the magnetization. If I', T2» 1 then all the n 4 0
modes will have decayed to a small value at the
times of interest and a Gaussian line will result.
But if I"z Tz«1, then ve must consider a large
number of modes for the decay, and the line
should be more nearly characteristic of an in-
finite chain.

The magnitude of I'~ T2 depends on the dipole pre-
factor 6y O' S(S+1)e ~ as well as on D and N. In
Fig. 4 we show the derivative line shape for %=10,
30, and 500 with 6y h S(S+ I)/D c~ = 3x 10 ~, which
is appropriate for TMMC. Curves were obtained
by using Egs. (B2) and (83) in the derivative of Eq.
(1). The shape for N= 500 is indistinguishable from
the infinite chain limit on the scale of the graph.

We have also computed the peak-to-peak width
hH vs N and find that AH(N= 30) =1.5&H(N- ~),
which corresponds to the experimental data. Thus
the linewidth by itself at 8 = 0' is consistent with a
finite chain of 30 spins, quite close to the average
number of 24 spins between impurities in the sam-
ple. However, the shape for a chain containing
only 30 spins is predicted to be significantly dif-
ferent from that of an infinite chain; so we feel
that the model of the main text and Appendix A is
much more appropriate.
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