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Microscopic calculation of phonon spectrum of KCl anti KBr
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A microscopic calculation is performed of the phonon spectrum of the alkali halide crystals KC1 and

KBr in the approximation where the dielectric matrix is assumed to be of separable form. The

calculations involve two adjustable microscopic parameters. Reasonable agreement with experiment is

obtained. A detailed discussion is also given of the microscopic treatment of effective charges and

overlap interactions in ionic crystals. It is shown how qualitative conclusions regarding the nature of

the overlap forces may be drawn from a simple consideration of the nature of the valence- and

conduction-band orbitals.

I. INTRODUCTION II. THEORY

The lattice dynamics of alkali halides has been
a subject of very considerable interest for the past
few decades. For a recent review we refer the
reader to the paper by Cochran. ' The phonon dis-
persion curves obtained from neutron scattering
data are usually analyzed in terms of the shell
model. " Ha, rdy and Karo have also performed ex-
tensive calculations for the alkali halides using the
deformation dipole model, 4' while several calcu-
lations are also available using the formalism de-
veloped by Tolpygo and co-workers. '7 More re-
cently, deformable shell generalizations of the
shell model have been used with considerable suc-
cess to fit the dispersion curves, requiring fewer
pa. rameters than the shell model to give equivalent
agreement with experiment. These include the
breathing shell model ' and its recent generaliza-
tions to include deformations of more general sym-
metry, ' the model of Verma and Singh "'~ which

takes into account charge-transfer effects, ' and the
model of Basu and Sengupta. '3 In general, the num-

ber of adjustable parameters in these models is
typically six or greater. A calculation based on a
more microscopic theory might be expected to re-
duce the number of parameters further. Recently,
there have been several attempts to formulate such
a microscopic theory for the alkali halides. '4 "

In this paper, we extend and develop the approach
given previously by one of the authors" and show

that even after making rather gross simplifications,
the theory is capable of yielding reasonable agree-
ment with experiment in the case of two alkali
halides investigated, namely, KCl and KBr, using
only two adjustable microscopic parameters. %e
also discuss how the nature of the "overlap" forces
between ions and the "overlap" contribution to the
effective charge can be understood qualitatively in

terms of the microscopic theory.

%e first briefly review the formalism developed
in Ref. 17 (henceforth referred to as I), and then

derive some further consequences of this approach.
The method is based on two main simplifications.
The first is the assumption that the microscopic
dielectric function matrix'8 may be written approxi-
mately in the form

&(q+ G, q+ G ) = 5M + v(q+ G)P (q+4)
ag
KK

xf (q+"G)a""a(q)f*" (q+G ) (q+6 )~

x exp[- f(C. r„-C' ~ r„,)],
where the ma. trix S ~ (q) is given by

S = (V+ a.-')-',
where

(2. 2)

(2. 3)

x exp[- f(5 ~ r„—6' ~ r„.) I, (2. 1)

where v(Q) is the Fourier transform of the effective
electron-electron interaction; G, G are vectors of
the reciprocal lattice; t(.', t(; refer to basis ions in
the unit cell with basis vectors r„, r„, ; f"(Q) is a
form factor associated with the zth ion; and a""8 (q)
is a generalized q-dependent polarizability matrix.
A more general form of Eq. (2. 1) may be written
and has in fact been used to ca1.culate the phonon
spectra of semiconducting crystals' but for sys-
tems with reasonably well-localized electrons, such
as the alkali halides, Eq. (2. 1) is expected to be
sufficient. The inverse of the dielectric function
given by Eq. (2. 1) may then shown to be

(q+G, q+G ) =5Sg —v(q+ G)g (q+G)
ag
KK

xf"(q G)S"",'(q) f""'(q G') (q+G')
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V"",'(q) =Q (q+6) (q+G)~f ~(q+ G)

&&f" (q+G)v(q+G)e' ' «' (2. 4)

&&r' '(x')gf. - - s' '"ec'
-If,sg (2. 6)

where m is the electron mass, E„Ek. are the one-
electron energy levels of states k, k, respectively,
the symbol 4„; g; means k =k+ q modulo a recip-
rocal-lattice vector 4 (which also defines P), the
prime over the summation in Eq. (2. 6) implies that
the ease k = k is to be excluded, and r" (x) is the
dipole matrix element in subcell K, defined by

r
r", (x) =

(0,.)
~P. p"„(r- r„),

dry,*"(r-r„)

(2. 7)

where p is the electron momentum operator, and
the integration is to be performed over the subcell
v in the origin unit cell.

The cross-polarizability terms in Eq. (2. 6) for
the case ~4~ are seen to result from overlap in
the sense that they vanish unless the states k, k
each have nonzero amplitudes in both subcells v, x .
Physically, they correspond to the fact that a local

[the vector r„„ is used to denote (r„—r„.)]. The
physical basis of the above model has been dis-
cussed in I and elsewhere. ' ' lt corresponds to
assuming that the pola, rization of the electrons in
response to an externally applied field may be de-
scribed in terms of dipole distributions centered
on the ionic sites r„with form factors given by the
f"(Q). [This may be seen by writing the electron
density response matrix ){(q+G, q+ G ) in terms of

(q+G, q+6 ). ]'
Let us write the valence-electron wave functions

tI)„ in the form

p„(~) = lV '~2 exp[ik ~ (r, + r„)]p~(r —r, —r„)

(2. 6)
where X is the total number of unit cells in the
crystal, k specifies both the Bloch wave vector k
and the band index, r, is the position of the origin
of the l th unit cell, rK is the basis vector for the
xth ion, and the function y~(r —r, —r„) is defined in
the (l, x) subcell only. In the tight-binding limit,
p~(r —r, —r„) is the atomic orbital (of type speci-
fied by the index x) associated with the ion at (l, x),
but in the general case y~(r —r, —r„) in a given
subcell (l, x) will have contributions from the or-
bital on the ion in the subcell (l, v) as well as or-
bitals from neighboring subcells. In I, it was
shown that an explicit expression for a~& (q) con-
sistent with Eq. (2. 1) is

() ka ~' n(k} n(n) «()~q= ~~ rI k lkl k
— kr

field applied at one site ~ may also induce dipole
Imoments on other sites v, corresponding to virtual

electronic transitions from states on one ion to ex-
cited states on neighboring ions. In the tight-bind-
ing limit, as q-0, Eq. (2. 6) reduces to the stan-
dard expression for the ionic polarizability (apart
from a constant factor). As q-0, the expression
for the electrical polarizability per unit volume is'

where

47Ie' ~—
K ~ K

(2. 9)

and

8„„,= (F'+a ')„„',

I

I',e = —Z G'f~(G)f" (G) ~(G) x&'

(2. 10)

(2. 11)
where the prime over the summation excludes the
singular contribution from 4=0. Note that because
of cubic symmetry, and because we are consider-
ing the limit q —0 the matrices a, V, S are ex-
pressed in (tc, x ) space alone, the (o., P) components
having been factored out via the trivial factor 5 8.
Thus V„'„.5 z is the limit as q-0 of the matrix
V, B (q) in Eq. (2. 4) with the singular contribution
from G=O removed.

The exchange and correlation corrections to v(Q)
are not known at all accurately for any system
other than a free-electron gas. For highly local-
ized systems, we may include all the interactions
between electrons on the same ion as a many-elec-
tron correction to the expression for the polariz-
abilities a"

8 given in Eq. (2. 6) (since these are
going to be taken as parameters in any case) and
consider interactions between more distant elec-
trons as being pure Coulomb-like, i. e. , unmodi-
fied by exchange and correlation effects (which are
generally short range in chara. cter). Thus we may
crudely represent the effective electron-electron
interaction as given by

s) ) =e /r, 2r~r„

+xc (2. 12)

where r„, is an adjustable pa, rameter which is
typically approximately an ionic radius. From Eq.
(2. 12), we obtain

n(Q) = (4ve'/&Q') cos (Qr„,) (2. 12)

We should point out, however, that this approxi-

o' ~=
& p d'~(0) (A=volume of unit cell). (2. 6}

KK

An explicit expression for the electronic contribu-
tion to the dielectric constant (for frequencies
» the lattice frequencies) for cubic crystals may be
obtained from Eq. (2. 2). It is given by' 'a
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mation is not likely to be very accurate in regions
of overlapping electron density from neighboring
ions and hence for systems where such overlapping
regions are a significant fraction of the total
volume.

In the case that the real-space distributions cor-
responding to the form factors f"(tk}) do not overlap
on neighboring sites, it has been shown else-
where"'20 that Eq. (2. 9) is equivalent to the Lo-
rentz-Lorenz formula

e„=(1+', vo. )/(I —,'vo. ) (2. 14)

4xe2 sinqr, (x)
K k QQ2 qr (x)

(2. iS)

where Z„e is the total cha, rge inside V2(x), and

r, (x) is the radius of the (spherical) volume V2(f, x),
and

which one obtains in the point-dipole models. How-

ever, in the general case, Eq. (2. 14) is modified
by the so-called local-field corrections to the
point-dipole fields, and as we shall see this effect
is probably significant, even in the alkali halides.

The explicit expression for e '(q+G, q+P ) )Eq.
(2. 2)] enables us to obtain an analytic expression
for the dynamical matrix. In order to do this,
however, a second important simplification is
necessary. This is based on an identity obeyed by
the electron-phonon matrix element, and the method
has been developed in Ref. 21 and in I. The initial
step is to choose an arbitrary (in practice, spher-
ical) volume V2(x) around each ion of type x. It
may then be shown that the total electron-nucleus
interaction may be replaced by the sum of two
terms: (i) a weak residual potential W„(r), which
is approximately constant inside Vo(x) and outside
Vo(x) is equal to the interaction between the elec-
tron and the total "pseudoion" inside Vo(x) and (ii)
a nonlocal pseudopotential whose matrix element
M&, between states tt}~. and g, may be written as a
surface integral over the surface of V2(x). We may

also, in principle, absorb the nonlocal (exchange)
part of IV„(r) inside this matrix element although

we shall neglect this complication here. The net
result of this transformation is that the nuclei (or
the ion cores) may now be replaced by the "pseudo-
ions" consisting of all the charge inside the volumes

V2(x) These m. ay be regarded as moving rigidly
with the nuclei, and the remainder of the electron
density deformation can be calculated by perturba-
tion theory in terms of the transformed electron-
phonon matrix element. %e may write~~

1 2

I, (~) = — dS —p, , (r —r„)2]rK

2m g P(K) Bn

D."2 (q) =D""2 (q)

—ll„„. li P II (q))""
a o 2.

where

8""; (q) = Z„Z„,C",",'(q) + ff'"2"'(q)

(2. 18)

(J a-'&')"", (q) —(W' S W")"„",'(q), (2. »)
where C","2 (q) is the usual Coulomb-coupling coef-
ficient between charges ( e t on sublattices r&, If.",

e"'(q)=- —P " " lf" ( )1*II,"( ')]
0 2k'

«'~"" [-'(~- -.+ ~- - .)1 (2. 20)k k, q

(where 5 is the reciprocal-lattice vector which

equates (k —k} and+ q in the appropriate terms in

the last set of square brackets),

a i ~' n(u) - n(u')
m ~ ~„. EI, —F~.

~ (&k'k(&)]+ (rk2'2(& )1&& «

x p,"(r- r„) p"„," (r —r„) p",(r- r„)
~X~ ~B~X~

(2. »)
where the integral is over the surface of the volume
V2(x) in the origin unit cells. Q;» e (ajar j) are,
respectively, the normal coordinate and polariza-
tion vector for the phonon mode (q j). We have as-
sumed in Eq. (2. 15) that the potential seen by an
electron outside V,(x) due to the pseudoion inside
Vo(z) is pure Coulomb-like, i. e. , exchange and
correlation effects are neglected. This is likely to
be a good approximation in the limit where the
Vo(tc) can be chosen so that they actually separate
wave functions of electrons inside and outside V2(2),
i. e. , in the nonoverlapping limit. Although this
condition is never actually satisfied in practice, the
exchange and correlation corrections to W„(r) are
likely to be small for many of the ionic crystals.
Note that the exchange and correlation corrections
for electrons inside the V2(e) (in practice, the
largest part of the exchange and correlation effects)
is transformed away with the rest of the strong po-
tential in the region by means of the formalism.

Using the above results, it may be demonstrated
following the results in I, that the dynamical matrix
may be written

M, , =i0 'i2+ [q~, e (x ~q j)b,p „., ~
K ~ IX

+Qf*,e*(x~qf)ak, „-, -]f~'(~)

where

(2. 16)

(2. 21)
[where rk2 k(x ) has been defined in Eq, (2. 7)],

W'".",'(q} = W."",'(q) + (J a-')".",'(q}, (2. 22)

where
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P'""~ (q) =Q (q+G) (q+G)8 W„(q+6)

xf" (q+G)e' '«' (2. 23)

0= W t u+ (V+ a i)w

(2. 24a)

(2. 24b)

Here M is the diagonal matrix M„5 &5 ~, Z is the
diagonal matrix Z„B ~5„„., and u is a 3x-element
column matrix (x is equal to the number of ions in
the unit cell) denoting the nuclear displacement
amplitude vectors. w is also a 3r-element column
matrix, which represents the amplitudes of the
periodic array of dipole distributions a,rising from
the charge deformation on the ionic sites. Note
that these do not represent total electronic dipole
moments on the ions as part of the latter has al-
ready been represented in terms of a displacement
dipole moment corresponding to the rigid motion of
the valence charge inside the pseudoion Vo(it() along
with the ion core. Thus, Eqs. (2. 24) are not really
identical to the shell model equations as was implied
in I. The correct relationship between the two sets
of equations is derived later in this section.

The meaning of the coupling-coefficient matrices
in Eqs. (2. 24) may be made more explicit by re-
writing Eqs. (2. 24) as the set of equations

The matrix a has already been defined in Eq. (2. 6).
The last term on the right-hand side in Eq. (2. 18)
arises from translational invariance. A necessary
condition for this term to be well defined is that the
singular contributions to LP~B(q) cancel as q-0.
This is ensured by the effective-charge sum

rule, 5 which was not discussed in I. We shall
return to this condition later. For the present, we
anticipate this result and write the value of this
term as D~~'"" . Equation (2. 1S) is equivalent to
the pair of equations

coaM U=(Z C Z+ R + J a 'Jt+D'+)U+W w

P~= Z u~ K —M)~ K (2. 26)

The corresponding macroscopic field, neglecting
retardation effects, may be written

E "=—4vq (q P)/q'

We also note that as q-0,
(2. 27)

Vo(x) can be chosen large enough so that I",~ (z)
vanishes and hence by Eqs. (2. 20) and (2. 21), so
do the matrices J and R . Equation (2. 25a.) ex-
presses the equation of motion of the pseudoions,
the first term on the right-hand side representing
the force due to the Coulomb field of the other
pseudoions, as well as the "overlap" interaction
R; the second term the force due to the electro-
static field due to the deformation dipoles w, and
the last term representing the "overlap" force due
to distortion of the charge density inside the pseudo-
ion via the local field. It is worth noting that al-
though the latter is a long-range force, when E is
eliminated from the equations of motion (2. 25) to
yield Eqs. (2. 24), the effective overlap forces that
are left are all short-range. It should be also
noted that there are two types of "short-range"
forces in Eqs. (2. 24), namely, those arising from
the q-dependent parts of the matrices R, J, and
a ', which may properly be termed "mechanical-
overlap" forces, and those arising from the devia-
tions of the W and V matrices from the point-dipole
Coulomb coupling matrices due to overlap of the
dipole distmMtions corresponding to the form
factors f"(g), i. e. , from local-field corrections
to the point-dipole fields. In the shell model or
other phenomenological dipole models these two
types of short-range forces are not explicitly dif-

ferentiatedd.

The dynamic effective charge can be derived as
follows. We consider the limit q- 0. The bulk
polarization P is given by

ur'M u= (Z C Z+ R +D'")u+W w+ J E, (2. 25a)
7Te

C «'
( )

q~« ()«— (2. 28)

0=%~ u+Vw+E

0=J u+w —a E

(2. 25b)

(2. 25c)

where it is clear that the 3r-component column
matrix E is proportional to the amplitude of the ef-
fective local field at the ion sites Equatio. n (2. 25b)
may be regarded as serving as a definition of E.
Equation (2.25c) then expresses the deformation
dipole moment as depending linearly on the local
field as also on the displacements u via the short-
range coupling coefficient J, which may thus be
thought of as the "mechanical" or '*overlap" polar-
izability. In fact, in the limit of nonoverlapping
atomic orbitals, it is obvious from Eq. (2. 17) that

W~x'( ) Z 4&e qeqs iVgg (-)
g

4me2
VX~K~ (q)

4 q8 V «(q)

(2. 28)

(2. 30)

+(W+ J a ')w —~e ~Z E (2. 31a)

where C, W, V are as regular as q-0. All the
other matrices in Eqs. (2. 24) are regular as
q- 0.

As is well known, ~ '2' singular terms in Eqs.
(2. 24) can be associated with the macroscopic field,
and we obtain, as q-0,

u~M u= (Z C Z+ R + J a 'Jt+ D'+)u
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O = (W~+ a 'Jt}u+ (V+ a ')w+
i
e

i
E (2. 31b)

where E is the 3x-element column matrix formed
from the E ~ at each ion site. On eliminating w,
we obtain, from Eqs. (2. 31) and (2. 26),

&@2M u= (Z C Z+ R + J a 'Jt+D~ i —W S W t)u

Then Eq. (2. 38} may be written

(2. 41)

and

—I el
z'"+ E *' (2. Ssa)

The last step follows using the result (2. 9). Equa-
tion (2. 41) shows that in this limit the Szigeti charge
Z'(v) is given by

P, = Q [(Z"'u)~(e)+ hei(S E ) (x)]
k

(2. Ssb)
where

s = (v+ a-')-', (2. 33)

W =7+J a (2. 34)

z'"=z+s w" . (2. 36)

We restrict ourselves once again to cubic crystals,
so that the matrices 7, S, W are diagonal in (n, P)
space and, as before, we may drop the Cartesian
indices. From Eqs. (2. 32) it is clear that the ef-
fective charge on the rcth ion is

z'"(x)=z„+g (w's)„„, .
k

The acoustic sum rule may then be written~

(2. s6)

Z"'(x) =Z„+g J„„.+g [(W —J V)s]„z
K K

(2. s8}
Let us consider the limit where the dipole distribu-
tions corresponding to the f"gl) are spherically
symmetric and so well localized on the ions that
they do not overlap. By elementary electrostatics
it is obvious that in this case there are no local-
field corrections to the point-dipole Coulomb fields
in the W and V coefficients, i.e. , in this case

W=-Z C, V=C (2. s9)

We also have the well-known result'

C„„.= —4ve'/30 (2. 4o)

g Z'"(x) = Q Z„+g (W'S)„„.= O . (2. S7)
k K KK

It may be shown that in the limit as q- 0, the singu-
lar part of D~",z (q) given by Eq. (2. 19) is equal to
(4ve'/«)Z "(«)Z"'(~')q q, /q Hence . the sum

rule [Eq. (2. 37)] ensures that g„., D,""~ (q) has a
well-defined limit as q-0. It may also be shown

via Eqs. (2. 26), (2. 27), and (2, 3lb) that the macro-
scopic field vanishes for acoustic modes on account
of the acoustic sum rule, a result which is derivable
from more general considerations. ~

Using Eqs. (2. 33) and (2. 34) the expression for
Z' (x') may also be written in the alternative form

z'(x) = z„+Q J„„,
kk

(2. 42)

P Z„+g J„„.=G
k KK

(2. 4s)

In the case that the Vo(v) is taken to be the total
volume of the subcell "belonging" to the xth ion,
Z„becomes the total ionic charge on the ~th ion.
Due to over-all charge neutrality the sum rule then
requires that

P z„„,=o .
Kk

(2. 44)

Inspection of Eq. (2. 21) reveals that the quantity
on the left-hand side contains (inside the sum over
states k, k ) the factor [gP«, «(x)]*. From the de-
finition of f««(x} in Eq. (2. 17), it may be seen that
g„I«, «(~) involves an integral over the surface of
the whole unit cell of a Periodfc function (we are
working in the limit q-o, so that k = k). Thus the
integral must vanish, and hence Eq. (2. 44) is
identically satisf ied.

Thus we see that in the I orentz-field limit (i. e, ,
nonoverlapping dipole distributions), the effective
charge sum rule is identically satisfied without
imposing any further restriction on the dielectric
matrix. In the general ease, however, Eq. (2. 42)
is no longer valid, the Szigeti charge loses its
significance, and we must go back to the formula
(2. 38), or Eq. (2. 36). In this case, the sum rule
imposes a relation between the pseudopotential
W„(Q), the overlap coupling coefficients, and the
parameters of the dielectric matrix. In the limit
where overlap is neglected, it imposes a restric-
tion on the parameters of the dielectric matrix, a
fact we shall use in the calculation described in

It might appear that the quantity on the right-hand
side of Eq. (2. 42) is arbitra. ry in the sense that Z„
is the total charge on the pseudoion inside the vol-
ume Vo(x) and hence depends on the choice of Vo(«).
However, it should be remembered that the surface
integral I«(x) and hence the J„„.also depend on the
choice of Vo(e) and will tend to compensate the de-
pendence of Z„on Vo(e), so that (within the approxi-
mations of the model) the charge Z'(tc) is still a
unique quantity. Note that in the above Lorentz-
field limit, the effective charge sum rule, together
with Eq. (2. 40), requires that
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Sec. III.
In addition to the effective charge sum rules,

there is a set of similar sum rules arising from the
fact that for a uniform displacement of the crystal,
the total electron density perturbation must corre-
spond to a similar uniform translation of the elec-
tron density. " In the limit q- 0, the only non-
zero Fourier components of the electron-density
perturbation are for g= a vector of the reciprocal
lattice. According to the formalism developed in
I, we may write

&p(G) =t P (G)+&p'"(G), (2. 45)

hp~ ~(G)=tg [Z„—Z„(N)]P u G f„"(G), (2. 46)

where f"„(Q) is the form factor associated with the
unperturbed electron density inside Vo(a), Z„(v) is
the nuclear charge on the gth ion, and'~

(2. 47)

On the other hand, the sum rules require that

A p(G) = ig [Z, (z) —Z„(a)]P u G f"(G)

(2. 48)
where Z, (v) is the tota/ ionic charge on the gth ion,
and f,"(Q) is the form factor for the total ionic
charge, In the limit where Vo(x') is chosen as the
total subcell volume f",(4) =f~(G), and it was shown
in I that 4p~(5) = 0. Thus, the above sum rules are
identically satisf ied.

In the general case, by Eq. (2. 31b), since E
vanishes in the limit q- 0 by the effective charge
sum rule, we have

w (v) = —Q (S W ")„„u

I et us define

F„=g (s w")„„.=P (w s)„,„. (2. 50)

Then, combining Eqs. (2.45)-(2. 48), we obtain

P ([Z, —Z. (~) If."(&) —[(Z (~) —Z. (~)l

xf,"(G) + F„f"(G) )= o

The sum of the first two terms in the sum on the
left-hand side of Eq. (2. 51) is [Z„—Z, (~) ]fo(G),
where fo(Q) is the form factor for the electron dis-
tribution in the subcell v outstde Vo(~). Thus, a
solution (although not necessarily a unique one) to

where &p„, ~p' ' are, respectively, the deformation
and "rigid-pseudoion" contribution to the electron
density perturbation. If u is the (a.rbitrary) uni-
form displacement given to the lattice, we have

Eq. (2. 51) is

(2. 52)

and

f"(Q) =f"o(4) . (2. 53)

—u (it) = F„[u,. (~)+ w,"'(~)] (2. 54)

Using Eqs. (2. 50) it may be shown that the shell
model equations corresponding to Eqs. (2. 24) are

w2M u = A u+ B vr, 0 = B'u+ G w, (2. 55)

where

A=Z C Z+R + J a 'J +D ' —W Y- J a 'Y

If the electron-density distribution in the subcells
are known fairly accurately, Eq. (2. 52) may be
imposed as additional restrictions on (W S)„,„which
are more stringent than the effective-charge sum
rule [Eq. (2. 37)]. It is also obvious that if Eq.
(2. 52) are satisfied then the effective-charge sum
rule is also identically satisfied. The second set
of relations, Eq. (2. 53), may be used to define the
functions f"(Q) involved in the original factorization
hypothesis for e(q+ G, q+ G ), in the absence of any
other information about the dielectric matrix. If
the volume Vo(tc) is chosen to include only the core
electrons and contains only a negligible fraction of
the valence electron density on the ion z, Eq. (2. 53)
imply that the form factors should be chosen to be
the valence electron shell form factors for the vth
ion. We should bear in mind, however, that the
"best" set of form factors consistent with the ap-
proximate factorized representation of the true
e(q+ 4, Q+ G ) may not be consistent with Eqs.
(2, 52) and (2. 53).

We recall that (Z„e) corresponds to the total
charge assumed to be moving rigidly with the xth
ion, and hence corresponds to the "core charge"
in the shell-model language, while from Eqs. (2. 49)
and (2. 50), it is obvious that F„corresponds to the
"shell charge. " Their relative magnitude depends
on the choice of the volumes V,(v). The model
splits the electron-density perturbation due to the
lattice displacements into a rigid part and a de-
formation part, and then approximates the calcu-
lation for the latter. Obviously, there is an
optimum choice for Vo(v) where this approximation
is most likely to be valid. We recall that in the
shell models too, the core charge and shell charge
are often taken as adjustable parameters.

To obtain the exact correspondence of Eqs. (2. 24)
with the shell model equations, we recall that the
"shell" dipole moment developed in the latter is
represented by the motion of the "shell" of charge
Y„lel with an amplitude w~~ of the relative core-
shell motion. In our model the same dipole ampli-
tude is given by —

) e)w„. Thus, we have
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—Y Wt —Y a 'Jt+ Y(V+ a ')Y=Z C Z+ R g ft".;"=0

K

(2. 67)

+J a'Jt —W Y- YW i+ Y(V+a')Y+D' '

(2. 56)

(where R denotes the value at q= 0), and also that

B = —W Y —J a 'Y+ Y(V+ a ')Y
T g

——0 (2. ss)

= —W Y+ Y(V+ a ')Y, (2. 57)

G = Y(V+ a ')Y (2. 5s)

where w~ is the 3r-element column matrix w (v),
and Y is the diagonal matrix Y„6 z5„„,, with F„de-
fined by Eq. (2. 50).

Let us define an "ionic charge" by

Equations (2. 67) and (2, 68) are the usual invariance
conditions imposed in the shell model to satisfy the
conditions of vanishing frequencies and dipole
moments for a uniform lattice translation. They
are seen here to arise as a result of the way the
microscopic theory defines the shell charge, and
the acoustic sum rule. If we further impose the
usual shell mode1, invariance condition on the matrix
U, i. e. ,

Z, (~) = F„+Z„ (2. 59)

(Z, (z) would be the actual ionic charge if the sum
rule [Eq. (2. 52)] were satisfied]. By Eq. (2. 50),
the acoustic sum rule is equivalent to the condition
for total ionic charge neutrality in the unit cell.
We may then rewrite Eqs. (2. 56)-(2. 58) in the con-
ventional shell model form

UKK 0

then by Eq. (2. 65),

k(x) =Q (- Y C Y+ Y S 'Y)""~
K

=Q (- F„C„„.F„.+ F„W„"„.)

(2. so)

(2. 6o)
A=Z C~Z+R (2. 60)

B= Z]C Y+ T (2. 61)

0= Y C Y+U+k (2. 62)

[k assumed to be independent of q and of the form
k(x)d„„. for cubic crystalsj, where

R=- Y C Z]-Z]C Y-W Y- YW ~

+YC Y+YS 'Y+R'+Ja 'Jf+D' ', (2 63)

T=- Z,.C Y-W'Y+ Y(S-')Y, (2. 64)

U+k=- YC Y+YS Y (2. 65)

(Note that in the shell model the matrix U is usually
called S, but here it must be distinguished from
our matrix S. ) The long-range (Coulombic) parts
of the matrices W a.nd S ' are, by Eqs. (2. 4) and

(2. 23), equal to —Z C and C, respectively. Using
this result and Eq. (2. 59) it may be shown that R,
T, U+k have no long-range Coulombic components
and hence are regular as q- 0. Also, by Eq.
(2. 32a) and the definition of D~+, it may be seen
that D o is given by

DP"" = —s„„,g (Z C Z+ R + J a, 'J - W S W't)
K

(2. 66)
Using Eqs. (2. 59) and (2. 66), and the microscopic
definition of the "shell charge" F„given by Eq.
(2. 50), it may be shown after a little manipulation
that

We note that the coupling coefficients R, T, and
U+k contain short-range interactions that arise
both from the "mechanical-overlap" matrices R
and J, and from the "dipole overlap" or short-
range corrections to the Lorentz fields in the ma-
trices W and V. In addition, there may be a fur-
ther short-range contribution from possible q de-
pendence of a. Let us suppose that the mechanical-

overlap matrices R and J vanish. In addition let
us suppose that the pseudo potential W„(Q) is such
that it is pure Coulomb-like for interaction between
a core and the dipole distributions on neighboring
ions but is a constant for interaction between a core
and its own dipole distribution, as would for in-
stance be the case for W„(Q) given by Eq. (2. 15) if

r, (v) were greater than the diameter of the dipole
distributions on the site v. In such a case W be-
comes equal to —Z C, and it may be easily verified
that the k(~) given by Eq. (2. 69) vanish, and that
further by Eqs. (2. 63) —(2. 65), R= T = U, which is
a commonly used assumption in practical applica-
tions of the shell model. In general, however these
short-range coupling coefficients will not be equal.
Equa. tion (2. 69), in conjunction with Eq. (2. 50),
represents a microscopic expression for the force
constant between an ion core and its own "shell, "
and it is not surprising that it vanishes in the case
that the pseudopotential removes all self-interaction
at an ion site.

The "electronic polarizability" matrix for the
ions in the shell model is given by'

(n, )„„,= (s'/fl) [Y(8+k)-' Y j„„, .
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In the above microscopic interpretation of the shell
model, using Eq. (2. 65), this matrix is given by

((r,)„„=(e'/fl) (P- 6+ a ')„„'. (2. VO)

A rigorous calculation of the phonon spectrum of
ionic crystals within the framework of the formal-
ism described in Sec. 0, is an extremely difficult
task. In principle, one has to calculate e(q+ 5, q
+ G ) in terms of the electronic band structure and

from it obtain the "best" a"WB (q) and the f"(Q). In

addition, the task of calculating the overlap ma-
trices J and R from Eqs. (2. 17), (2. 20}, and

(2. 21) is a formidable one. Finally, there is the
question of exchange and correlation corrections to
the effective electron-electron interaction. We
therefore introduce at this stage some drastic
simplifications so that a practicable calculation can
be carried out. The first simplification is to as-
sume that the alkali ions are nonpolarizable (i. e. ,
behave like rigid cores) and there are neither
cross-polarizability terms nor any q-dependent con-
tribution to a. Then a simplifies to the form

a""(I (q) = a26 ((5„„.5,2 (s. 1)

where 2 denotes an anion site. (e'/Q)a2 is then the

polarizability of the anion in the crystal. The form
factor f'"(Q) associated with the cation disappears
from the equations. For the form factor f'~'(Q) we

have chosen the form factor of the outer p electrons
on a free halogen ion, as calculated from the Cle-
menti wave functions. The procedure has some
justification from the discussion following Eq.
(2. 53) in Sec. II.

The second simplification is to totally neglect
the overlap matrices J and R . This may be justi-
fied somewhat by remembering that J and R de-
pend on the choice of volumes Vo(x) chosen around
each ion. [Their variation with Yo(v) being com-
pensated for by a corresponding variation in the
matrix W. ] The overlap matrices are discussed in

more detail in Sec. IV. The most dominant over-
lap contributions will arise from overlap atomic
orbitals centered on neighboring ions. It is shown

in the next section that, under certain approxima-
tions, if we regard the alkali ion as being nonpolar-
izable (i. e. , as a rigid core) then overlap can be

neglected, provided there is no occupied halogen
orbital inside the V~(1). (1 is the cation site).

Finally, the electron-electron interaction is ap-
proximated by the simple form given in Eq. (2. 13),

a.nd would be (e /Q)a„„. , if the coupling coefficient
V did not differ from the usual Coulomb-coupling
coefficient C due to overlap, exchange and correla-
tion effects. This is consistent with Eq. (2, 8) which

is the true microscopic expression for the polar-
izability.

III. CALCULATIONS FOR KCI AND KBr

representing exchange and correlation effects in
terms of a simple "cut-off radius" r„,. The resid-
ual potential W„(|()) is given by Eq. (2. 15).

With these approximations it may be verified that
the only nonvanishing components of the matrix
S""(((q) are for x = v = 2, and that S„z defined in Eq.
(2. 10) simplifies to

S„z = [a,/(I+ V»a, )]6„„,6„, (3. 2)

4ge a& (3. 3)1+ Vzza2

The formulas for the effective charges [Eq. (2. 36)]
reduce to

Z"'(l(=Z, (l ~ W," 1+ Var&a

Z' '(l(=Z (l W, 1+ V23a2

where we have written

gf KK g +722
k l

(S.4a)

(s.4b)

(s. 5)

so that S"„"" is independent of Z„. The effective-
charge sum rule then becomes

(Z, W„' +Z~W, )= —(Z, +Zz)1+ V&2a~
(s. 6)

Using Eq. (3.6}, the shell charges given by Eq.
(2. 50) may be seen to be

Y, =O, Y2= —(Z, +Z2)

The dynamical matrix may be written

D.""('(q) = Z.Z" &".~s (q} —(W S W'}w"8 (q}+D."s'

(3.7)
The model is now physically similar to a simple
shell model with only the halogen ion polarizable ex-
cept for the difference that the point-dipole as-
sumption is here generalized to include multipole
corrections arising from the overlapping extended
dipole distributions (approximated here by the free
halogen-ion p-electron distribution). These multi-
pole corrections give rise to the only short- range
forces present in this model.

At our disposal are the radii r&, r, of the volumes

Vp around the cation and anion, respectively. In
order to carry out the calculations we also need to
know the corresponding pseudoion or "core"charges
Z„Z2, the parameter a and the value of r„,. It is
to be noted that r„, (which enters into a calculation
of V2z) and az determine the high-frequency dielec-
tric constant f„. In practice, it was found that the
phonon-dispersion curves did not depend sensitively
on the separate values of a~ and r but only on that
combination which yielded a. given E„. Thus, r„
was fixed at 0. IOa (a is the lattice constant) and a2
was left as an adjustable parameter, which was
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FIG. 1. Comparison of calculated phonon dispersion
curves for KCl with the experimental results of Copley
et al. (Ref. 29) at 115'K.

adjusted to fit reasonably wel1. to the experimental
E„, as well as to give good agreement with the dis-
persion curves. For the radius z, around the cation
it is sufficient to choose a value which is consistent
with V,(1) containing afl the core electrons. For
both KCI and KBr r, was set at a/v 8 [or the radius
at which the spheres V,(l) centered on the cations
touch] and Z, at+ 1. Z2 is then determined by the
effective-charge sum rule as given by Eq. (8. 6).
The radius y~ was kept as an adjustable parameter,
together with a as discussed above. The calcu-
lations were quite sensitive to the choice of xz.
Figure 1 shows the resulting curves for KC1 to-
gether with the experimental data of Copley et al. "
The agreement with experiment is better than 10k.
The value of az chosen was 0. 46&& 10 cm/dyn.

The value of c caleula. ted using a is 2. 13 in
agreement with the experimental value. ' The
value chosen for x~ was 0. 132a in order to obtain
reasonable agreement with the dispersion curves.
The value for Zz calculated from the sum rule was
1.4 implying 3.6 3p electrons inside the volume
V, . Estimates of the valence electron charge den-
sity on the Cl ion based on the Clementi wave func-
tions used in the calculation indicate the number of
3p electrons inside the radius r~ to be -2. 2 how-
ever, implying that the above simple model is not
totally consistent with the static charge density in
the crystal. It is to be emphasized that we are
here referring to the distribution of all six p elec-
trons belonging to the Cl ion.

Figure 2 shows the corresponding calculations
for KBr together with the experimental data, of
Woods et al. ~ Agreement with experiment is in
general better than 5%. However, there are large
discrepancies at the zone boundary for the TA[001]

[oo~]

KBr

[&&o]

~ ti
~ Z

'2

0.0 I.Q 0.0 0.5

FIG. 2. Comparison of calculated phonon dispersion
curves for KBr with the experimental results of Woods
et aE,. (Ref. 2) at 90'K.

and LO[lll] branches. The discrepancy for the
LO[111]branch is also present in the six-pa. ram-
eter simple shell-model analysis of Cowley et al. ,

3

where they assume that the ionic charge is unity
and the cation is nonpolarizable (i. e. , we refer
here to their model II). Physical argumentss sug-
gest that this discrepancy is unlikely to be resolved
by any model which assumes spherically symmetric
dipole distributions on the anions only, as in the
simple shell model or in the present model, whereas
introduction of a breathing mode' or other "shell
deformation" modes is known to be able to con-
siderably reduce this discrepancy. The effect is
also expected to be larger for the more polarizable
anions, which may explain why KCl is fitted much
better by our model, Another possible explanation
is that the experimental measurements of the
LO[111]branch in KBr are contaminated by inter-
ference with two-phonon scattering from the TA[111]
branch, a circumstance that does not occur for
KCl. The cause of the discrepancy in the TA[001]
mode is not clear. The value of r2 used was 0. 15a
and a2 was chosen as 0. 617&& 10 ' cm/dyn.

The calculated value of E„ is 2. 18 which is about
2% less than the experimental value. " This set of
parameters also yield a value for Z~, the charge on
the Br pseudoion core of 0.725, and would thus
imply that the number of 4p electrons inside the
radius ~2 was 4. 275, whereas the Clementi orbitals
for the free bromine ion yield 2. 35 electrons inside
the radius x~.

One of the essential approximations used in the
present calculations is to use the form factor of the
outermost p shell of the anion in place of f ~'(Q).
In rinciple, a2 and f'2'(Q) could be determined by

, Q) calculated from the valence electron energy
bands and wave-functions. Such a calculation has
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been performed for the alkali halides by Lipari ' '
using a tight-binding representation for the valence
bands and a single orthogonalized plane wave rep-
resentation for the conduction band. Lipari ad-
justs the parameters of his wavefunctions so that
his calculated e(Q, Q) at Q = 0 agrees with the ex-
perimental c„, thereby completely ignoring the
local-field corrections to e„. This procedure is
highly questionable and likely to be very inaccurate
for ionic crystals. Thus the calculations of e(Q, Q)
using his method were repeated (after correcting
some minor errors in some of his equations) in
such a way that &„ calculated using the correct ex-
pression (3.3) agreed with experiment. However,
the f(Q) thus obtained appea. rs to decrease too
rapidly as a function of Q and the calculated dis-
persion curves could not reproduce the experi-
mental results very well, even if all parameters
were adjusted. The use of the p-shell form factor
may be partially justified by appealing to the sum
rule given in Eq. (2. 51) [see Eq. (2. 53)], but even
so the free-ion form factor may be changed in the
crystal and no attempt is made here to account for
this. The neglect of the overlap matrices J and R
while allowing for the overlap of the form factor on
the anion onto the cation site is also, in principle,
an inconsistent procedure. Nevertheless, con-
sidering the simplicity of the model it appears to
be reasonably successful in explaining basic fea-
tures of the phonon dispersion curves without in-
voking any highly unphysical parameters or arbi-
trary short-range force constants.

IV. DISCUSSION OF OVERLAP FORCES

In general, it is not always possible to neglect
the "mechanical-overlap" forces, no matter what
choice is made for the Vo(x). An example of an
ionic crystal where such forces will always be
important is AgC1. In general, the short-range
"overlap" forces arise from two causes. The first
is the exchange interaction between charge clouds
on neighboring ions. Such interactions have been
analyzed by L™owdin and Lundqvist for ionic
crystals, and also by several other workers. "'""
In addition to two-body forces, they also give rise

to three-body and higher many-body forces. Within
the context of the present formalism, the major
part of such interactions are taken into account by
including the exchange part of W„(r), the electron-
pseudoion interaction [for electrons outside V, ((()]
in the nonlocal matrix element Mk. k, as discussed
in Sec. II. The second type of overlap force arises
from the distortion of the ionic wave functions as
the ions change their relative distances. Within
the framework of the harmonic and adiabatic ap-
proximations, such effects are included in the dy-
namics by directly calculating the effect of Mk. k

[as given by Eq. (2. 16)] on the electronic state en-
ergies to second order in perturbation theory. This
results in the "overlap" coupling coefficient R, de-
fined in Eq. (2. 20). Corresponding overlap cou-
pling coefficients involving the dipole moments are
a and J defined in Eqs. (2. 6) and (2. 21), respec-
tively. In the present work, therefore, only the
second contribution to the overlap forces has been
explicitly discussed. While the exchange inter-
actions are undoubtedly important for calculating
the cohesive energy and stability of the static lat-
tice, it is likely that the "distortion effect" plays
a major role in determining the dynamics of the
vibrating lattice, since the dynamics will involve
the first effect only through second-order changes
of the exchange interactions. This hypothesis is
thus equivalent to stating that the contribution to
M~. ~ given by Eq. (2. 16) dominates over additional
contributions introduced by the nonloeal exchange
part of W„(r).

Although, as mentioned, numerical evaluation
of such forces is extremely difficult, we show in
this section how the nature of such forces can be
qualitatively analyzed in terms of the electronic
structure. Such considerations may be useful for
an economical parameterization of such forces, if
necessary. We confine ourselves to crystals where
each ion is at a center of symmetry. We thus ex-
amine the matrices a, R, and J as defined in Eqs.
(2. 6), (2. 20), and (2. 21), respectively. Let us
first consider the matrix R . The corresponding
force constant between the ion at (0, g) and that at
{I ) K') may be seen by Fourier analyzing Eq. (2. 20)
to be given by

(4. 1}

2 2

4 z („„'.) = — P —,'(exp[i(k —k) ~ (r, , + r„. —r„)]+exp[- i(k —k) ~ (r, , + r„, —r„)]]
kk'

n(k) —~(a') ", sx d r V'y,",(r- r„)- " Vo(o.e) Xfy

~'v', "'( —,) rC'( — .)-9; ( — . )&' vl'( -'. ))

where we have transformed the surface integrals in Eq. (2. 17) to volume integrals by the use of Green's
theorem. The integrations are over the volumes Vo(v), Vo(v ) in the origin unit cell.
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Equation (4. 1) shows that the force constant is a sum of contributions from various sets of interband

transitions. [Since, for an insulator, we need only consider interband transitions, we may drop the prime
over the summation in Eq. (4. 1). ] Let us consider the contribution to the above force constant from iwo
bands X, X, which we shall assume for simplicity to be flat, i. e. , we assume d„~, = (Ef ~

—Ef. „.), indepen-
dent of the Bloch wave vectors k, k . In this tight-binding approximation, we may regard the functions
('I I„(r—r„) in the subcell (0, g) to be made up of atomic orbitals centered both on the ion at (0, ((:) and on
neighboring ions, i. e. , we write

(p f„(r—r„)= g exp[i k ~ (r, , + r„,—r„)]g C f „(((',t) y, (r —r, , —r„,) (4. 2)
«1l 1 t

where )f, (r —r, —r„) denotes an atomic orbital of type f centered on the ion at (l„((,). Consistent with our
approximation of flat bands, we neglect the dependence of C(-, „(~, t) on k. Then the X- & contribution to
4 "~(0(z) may be written

I 2 2Ol 1 Il
((. (Klil)CX (K3f3) (( (KZt2)Ci (K4f4) l (I

/1K1 l3K3 0.)t1 t3
«2l 2 K 4l 4 t 3t

12

l2K2 l4K4 . ~l
X p,~ Otc texp[j k ~ (r, . +r, + r —r, —r +2r, —2r )]l2 «2

2 4

1 rxexp[ik ~ (-r ~ —r& —r +r +r —2r, +2r)]+exp[ik ~ (-r, +r +r —r, —r )]l3 «3 l 4 K4 K K

where

x exp[i k ~ (r, . —r, —r„+ r, + r„)]) (4. 3)

OK

C„(~f)=V„f„, ; C„.(~f) =b,„,V„, .
Then Eq. (4. 3) becomes

x ( -, —:(-xl(—,— .(v' x, ( —,— .().
Vp (Oy K)

(4. 4)
We now consider the case where band X is made up only of orbitals centered on sites K = 2, of specific type
X, while band X is made up only of orbitals centered on sites K = 1 of type X, i. e. , we set

-1 ~+ 1 3
O ~ 2 4 0

x g exp[i k ~ (r, —r, —r, +2r„—2r„,)]g exp[i k ~ (r, , —r, +r, —2r„+2r„,)]
k k

+ Z u(( & . (, — , , )(Z ~ v( & (, — , — , (()4 3» 1 2
k kt

(4. 5)

For lattices with every ion at a center of symmetry 2(r„, —r„) —= L(z, v) equals a lattice vector for all ((. , ((~I
and the sums over k, k yield 0 functions in terms of which /2, /4 can be eliminated. The result is

@V.' eR' g 1 l11 l32 /11+L K K, 1 /3+l +L K K, 2
OK Pg OK

l1 —l 1 l3 —l 2
OK (4. 6)

where the notation

p.~
~ ~

I I
l, +l2 +. . . ~1 /1+l2+ ~ ~ ~ r2

X

stands for p ('„,' „'210'), with
~4

r&. ——r, +rl. +. . . , rl=r, +r, +. .. , etc.
2 ' 1 2

Now

l1 —/, 1 /3 —l, 2 I l11 /32 I I
Pa I OK = Pg I l K

(4. 7)

upon shifting the origin of integration in Eq. (4. 4).
Let us choose the unit cell origin to be at the Kth

ion. Then the inversion operation will take a gen-
eral ion position (r, +r„,) to [-. r, ~ —L(v v)+ r„.].
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Let us symbolically represent this operation by
(I, K ) ( —I —K ). Tllell

I, +I +L(K K), 1 /3+I +L(K K), 2

/y1 /32 / K
= JJg (4. 8)

On examination of Eq. (4. 4) we also see that

c
-/, —1 —/3 —2 I I /1 /32 I I-/

(4. 8)
since the y, 's have a definite parity. Since the
sums run over all /y /, we see by performing the
inversion operation on both p,

* and pz in the first
term of Eq. (4. 6) and making use of Eqs. (4. 7)
and (4. 8) that the first term is identical to the sec-
ond, and hence

c,&' yR' g 1

cl, 1 42
) c/, 1 /, 2,

)Eyl3

(4. 10)
From Eq. (4. 10), the physical meaning of the ori-
gin of the contribution 4~"s' („"„.) becomes clear.
It arises from a process where the displacement
u, (OK) of the ion inside the volume V,(0, K) causes
a virtual excitation of an electron from an occupied
orbital X centered on the ion at (I~2) to an unoc-
cupied orbital X centered on the ion at (I,I), due to
overlap inside the volume V~(0, K), while the virtual
deexcitation between the same two orbitals occurs
due to the displacement us(l K ) via the overlap in
the volume Vo(l K ). Thus the most general kind
of force of this type is a four-body force (see
Fig. 3).

The restrictions on this kind of force are also
obvious from Eq. (4. 10). Both the occupied or-
bital X centered on (ls, 2) and the unoccupied orbital

centered on (l„1)must have appreciable overlap
in both volumes Vo(OK) and Vo(l K ) simultaneously,
otherwise the ions at (0, K) and (I K ) will not be
coupled via this mechanism, Thus in practice the
most important such interactions are of the two-
body type [where the pair (I„I) and (l„2) coincides
with the pair (0, K) and (I, K ) I or of the three-body
type [where one of (l„1)or (l„2) coincides with
one of (0, K) or (I, K )]. It may also be seen that if
the occupied orbitals X centered on the sites 2 do
not overlap onto the volumes Vo(l, 1) or Vo(l, 2) of
other cells, there is no overlap contribution as dis-
cussed in Sec. III. The next case to consider is that
of both orbitals ~', X overlapping only onto volumes
Vo(l, K) centered onneighboring ions In this case, i.t
is obvious that second-neighbor ions cannot be cou-
pled together, since such a pair of ionscannotsimul-

u (0~)

/
u (l'~')

v(o ) V(l )

l

/

/

FIG. 3. Diagram indicating hour the ionic displace-
ments u~(0, ~) and u~(l', t(') get coupled via the overlap
of an occupied orbital {indicated by X) and an excited
state orbital (indicated by X') centered on two different
ions into both the volumes Vo(0, tf:) and Vo(l' ~') surround-
ing the ions in question. For simplicity, the orbitals
shown here are both spherically symmetric.

taneously have a type-1 and a type-2 ion as nearest
neighbors. On the other hand, nearest-neighbor
interactions of the two-body type will be present.
We now examine the nature of the forces when the
atomic orbitals overlap onto volumes Vo(IK) centered
on second-neighbor ions. Let us consider the case
of an alkali halide of the Nacl structure as shown
schematically in Fig. 4. The occupied orbitals X

are centered on the type 2 (anion) sites and we sup-
pose these to overlap only with nearest neighbors.
The excited state orbitals X are centered on the
type-1 (cation) sites and we suppose that these can
overlap second neighbor as well. Then it is ob-
vious that there is still no second-neighbor anion-
anion interaction, since there are no orbitals X

common to both volumes Vo on these sites, (see
Fig. 4). On the other hand, cation-cation inter-
actions now exist up to second and third neighbors.
For example, the second neighbors A and D may
interact via three-body forces involving the orbital
X on ion 8 and the excited state orbitals X on
either A or D. The third neighbors A and C may
interact via four-body forces involving the orbitals
X on 8, and orbitals X on D or E, and so on.
Figures 3 and 4 implicitly assume spherically sym-
metric or s-type orbitals on the ions, The case of
p-type and d-type orbitals with directed lobes can
also be considered and the presence or absence of
specific interactions can be analyzed in a similar
fashion.

We now show explicitly how the structure of the
force constants is determined by the symmetry of
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(4. 12)
where the rotation is assumed to be performed
about the point (Oa' ). Substituting in Eq. (4. 10)
we obtain

. (DI
)

(II
)

VV' l |l3
&& T„g(R) T„*„(R)T"„(R)T„„(R)R„R

E

I

V

9
/

the orbitals involved. Consider any unitary trans-
formation R z (which includes rotations and refiec-
tions) under which (le) is brought to R(lac) (Note.
as yet we do not specify these to correspond to
point group operations of the crystal lattice. )

Under such a transformation the atomic orbitals
are transformed a.ccording to

1,(Rr) =g T« ~ (R))l, , (rf (4. 11)
tl

where the y t. are the set of atomic orbitals having
the same angular momentum quantum number as

On examination of Eq. (4. 4) we see that

R(lx) H (I'~')
~ ~ ~

t' 't '"g

FIG. 4. Diagram indicating how ionic displacements
get coupled by overlap interactions in the case that the
occupied orbitals {indicated by A) overlap only onto
volumes Vo centered on neighboring ions, whereas the
excited state orbitals {indicated by ~') overlap on to
volumes Vo centered on ions out to second neighbors.
The full circles indicate the volumes Vo {chosen equal
on both anion and cation sites for simplicity). The
dashed circles indicate the orbitals {taken as spherically
symmetric here for simplicity). A, C, D, E denote cat-
ion sites and B is an anion site. Az denotes an orbital
centered on site B and so on. Note that A and C are
coupled via Aa ~k and ~a ~D transitions' A a
are coupled via A& -A& and A& -Xh transitions; and so on,
while A and B are coupled via Xz X&, X&-AD and Az—

A@ transitions, etc.

e

R(F„F) R(F, 2)

)Ru'i, i,

(4. 14)
where p, belongs to band p, and p, to band p. Let
us further consider the case when only two-body
contributions [(1„1),(l„2)]= (0, z), (l'v') are ap-
preciable . So far there has been no restriction
on the matrix R. Let us now restrict it to those
operations that leave [r(l a ) —r(0, z) ] unchanged.
For such matrices, Eq. (4. 14) yields (for the case
of two-body forces on1y)

@PP sR' g g ~P yB

Consideration of all such operations leads to the
result that the force constant must be of the form

I

4'~g '
g = C X~ X~+D 5~g

OE (4. 16)

where

X = r(f 'x') —r(ox) (4. 17)

„ R(l„i) R(l„2) „,R~O&)

R(l„1) R(ls, 2) 2 2

V P

(4. 13)
In g„, the rotation is performed about (Ov) and in

OFF, it is performed about (l v ). I et us now sup-
pose that we have two sets of bands p, p, with the
occupied set p being a degenerate set formed out
of orbitals X which completely span the space of
functions of a given angular momentum, and simi-
larly for p . Thus p, P may be single s bands, or
triply degenerate p bands, or fivefold degenerate
d bands, and so on. The total contribution
Fe~ 's (0„' ) is obtained from Eq (4. 1.3) by summing
over all X, X orbitals belonging to bands p, p . Us-
ing the unitary character of the T«. (R), we obtain
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i. e. , we have the result that the force-constant
contribution arising from the transition from a
completely occupied set of bands to a completely
unoccupied set is of the axially symmetric kind.
This result is of course intuitively obvious. In
particular, s-s transitions always give rise only
to central overlap forces in the two-body approxi-
mation. In the case that three-body forces are
appreciable, or that crystal-field effects separate
out a subset of orbital states for the bands p or p
(e. g. , T~ or F., bands from the total set of d or-
bitals), R must be restricted to one of the point-
group operations of the crysta/ itself, and Eq.
(4. 15) then reduces to the usual crystal symmetry
restrictions on the tensor force constants, Equa-
tion (4. 12) however can still be used to reduce the
number of independent overlap (multi-center) in-

tegrals which go into a calculation of the force con-
stant tensor. In addition, the number may be re-
duced further by recognizing that certain orbitals
will have very little overlap with certain sets of
neighbors.

Sinfilar considerations hold for the force con-
stants contained in the matrices J and a. It is to
be noted however that it is a ' which enters the
equations of motion for the lattice, and hence even
nearest-neighbor force constants in a. will give rise
to rather complicated force constants between the
constituent entities ("cores" and "shells" ) in the
shell model interpretation of the equations of mo-
tion. Thus, in practice, it may be better to pa-
rametrize a directly in terms of "force constants"
rather than to parametrize the interactions in the
shell model where a ' appears„
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